Environmental Factors Shape the Differences in Biodiversity-Area Relationships in Riverine Macroinvertebrates of Two Rivers in the Tibetan Plateau in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data Information
2.3. Spatial and Environmental Factors
2.4. Data Analysis
3. Results
3.1. Macroinvertebrate Community Composition
3.2. Species- and Phylogenetic Diversity-Area Relationships
3.3. β-Diversity Values
3.4. Key Drivers of Beta Diversity and Its Components
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gaston, K.J. Global patterns in biodiversity. Nature 2000, 405, 220–227. [Google Scholar] [CrossRef]
- Leibold, M.A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J.M.; Hoopes, M.F.; Holt, R.D.; Shurin, J.B.; Law, R.; Tilman, D.; et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 2004, 7, 601–613. [Google Scholar] [CrossRef]
- Arrhenius, O. Species and area. J. Ecol. 1921, 9, 95–99. [Google Scholar] [CrossRef]
- Moradi, H.; Fattorini, S.; Oldeland, J. Influence of elevation on the species-area relationship. J. Biogeogr. 2020, 47, 2029–2041. [Google Scholar] [CrossRef]
- Tittensor, D.P.; Micheli, F.; Nyström, M.; Worm, B. Human impacts on the species-area relationship reef fish assemblages. Ecol. Lett. 2007, 10, 760–772. [Google Scholar] [CrossRef]
- Li, D.J.; Monahan, W.B.; Baiser, B. Species richness and phylogenetic diversity of native and non-native species respond differently to area and environmental factors. Divers. Distrib. 2018, 24, 853–864. [Google Scholar] [CrossRef]
- Dias, R.A.; Bastazini, V.A.G.; Knopp, B.D.; Bonow, F.C.; Gonçalves, M.S.S.; Gianuca, A.T. Species richness and patterns of overdispersion, clustering and randomness shape phylogenetic and functional diversity-area relationships in habitat islands. J. Biogeogr. 2020, 47, 1638–1648. [Google Scholar] [CrossRef]
- Li, F.; Tonkin, J.D.; Haase, P. Dispersal capacity and broad-scale landscape structure shape benthic invertebrate communities along stream networks. Limnologica 2018, 71, 68–74. [Google Scholar] [CrossRef]
- Leclerc, C.; Magneville, C.; Bellard, C. Conservation hotspots of insular endemic mammalian diversity at risk of extinction across a multidimensional approach. Divers. Distrib. 2022, 28, 2754–2764. [Google Scholar] [CrossRef]
- Karadimou, E.K.; Kallimanis, A.S.; Tsiripidis, I.; Dimopoulos, P. Functional diversity exhibits a diverse relationship with area, even a decreasing one. Sci. Rep. 2016, 6, 35420. [Google Scholar] [CrossRef]
- Helmus, M.R.; Ives, A.R. Phylogenetic diversity-area curves. Ecology 2012, 93, S31–S43. [Google Scholar] [CrossRef]
- Warwick, R.M.; Clarke, K.R. New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Mar. Ecol. Prog. Ser. 1995, 129, 301–305. [Google Scholar] [CrossRef]
- Clarke, K.R.; Warwick, R.M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 1998, 35, 523–531. [Google Scholar] [CrossRef]
- Matthews, T.J.; Rigal, F.; Kougioumoutzis, K.; Trigas, P.; Triantis, K.A. Unravelling the small-island effect through phylogenetic community ecology. J. Biogeogr. 2020, 47, 2341–2352. [Google Scholar] [CrossRef]
- Matthews, T.J.; Wayman, J.P.; Whittaker, R.J.; Cardoso, P.; Hume, J.P.; Sayol, F.; Proios, K.; Martin, T.E.; Baiser, B.; Borges, P.A.V.; et al. A global analysis of avian island diversity-area relationships in the Anthropocene. Ecol. Lett. 2023, 26, 965–982. [Google Scholar] [CrossRef] [PubMed]
- Mazel, F.; Guilhaumon, F.; Mouquet, N.; Devictor, V.; Gravel, D.; Renaud, J.; Cianciaruso, M.V.; Loyola, R.; Felizola Diniz-Filho, J.A.; Mouillot, D.; et al. Multifaceted diversity-area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Glob. Ecol. Biogeogr. 2014, 23, 836–847. [Google Scholar] [CrossRef]
- Matthews, T.J.; Rigal, F.; Triantis, K.A.; Whittaker, R.J. A global model of island species-area relationships. Proc. Natl. Acad. Sci. USA 2019, 116, 12337–12342. [Google Scholar] [CrossRef] [PubMed]
- Passy, S.I.; Mruzek, J.L.; Budnick, W.R.; Leboucher, T.; Jamoneau, A.; Chase, J.M.; Soininen, J.; Sokol, E.R.; Tison-Rosebery, J.; Vilmi, A.; et al. On the shape and origins of the freshwater species-area relationship. Ecology 2023, 104, e3917. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.W.; Pan, Y.J.; Bodegom, P.M.V.; Cieraad, E.; Xing, D.L.; Yang, Y.Y.; Xia, T.Y.; Luo, X.Y.; Song, K.; Da, L.; et al. Beta diversity of urban spontaneous plants and its drivers in 9 major cities of Yunnan province, China. Landsc. Urban. Plan. 2023, 234, 104741. [Google Scholar] [CrossRef]
- Harte, J.; Kinzig, A.P. On the implications of species-area relationships for endemism, spatial turnover, and food web patterns. Oikos 1997, 80, 417–427. [Google Scholar] [CrossRef]
- Sizling, A.L.; Kunin, W.E.; Sizlingová, E.; Reif, J.; Storch, D. Between Geometry and Biology: The Problem of Universality of the Species-Area Relationship. Am. Nat. 2011, 178, 602–611. [Google Scholar] [CrossRef]
- Polyakova, M.A.; Dembicz, I.; Becker, T.; Becker, U.; Demina, O.N.; Ermakov, N.; Filibeck, G.; Guarino, R.; Janisová, M.; Jaunatre, R.; et al. Scale- and taxon-dependent patterns of plant diversity in steppes of Khakassia, South Siberia (Russia). Biodivers. Conserv. 2016, 25, 2251–2273. [Google Scholar] [CrossRef]
- Tuomisto, H. A diversity of beta diversities: Straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 2010, 33, 23–45. [Google Scholar] [CrossRef]
- Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Qian, H.; Ricklefs, R.E.; White, P.S. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol. Lett. 2005, 8, 15–22. [Google Scholar] [CrossRef]
- Wright, D.H.; Reeves, J.H. On the Meaning and Measurement of Nestedness of Species Assemblages. Oecologia 1992, 92, 416–428. [Google Scholar] [CrossRef] [PubMed]
- Ofiteru, I.D.; Lunn, M.; Curtis, T.P.; Wells, G.F.; Criddle, C.S.; Francis, C.A.; Sloan, W.T. Combined niche and neutral effects in a microbial wastewater treatment community. Proc. Natl. Acad. Sci. USA 2010, 107, 15345–15350. [Google Scholar] [CrossRef]
- Hanski, I.; Hanski, I. Metapopulation Ecology; Oxford University Press: Oxford, MA, USA, 1999. [Google Scholar]
- Nekola, J.C.; White, P.S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 1999, 26, 867–878. [Google Scholar] [CrossRef]
- Keil, P.; Schweiger, O.; Kühn, I.; Kunin, W.E.; Kuussaari, M.; Settele, J.; Henle, K.; Brotons, L.; Pe’er, G.; Lengyel, S.; et al. Patterns of beta diversity in Europe: The role of climate, land cover and distance across scales. J. Biogeogr. 2012, 39, 1473–1486. [Google Scholar] [CrossRef]
- Lomolino, M.V. Ecology’s most general, yet protean pattern: The species-area relationship. J. Biogeogr. 2000, 27, 17–26. [Google Scholar] [CrossRef]
- Triantis, K.A.; Guilhaumon, F.; Whittaker, R.J. The island species-area relationship: Biology and statistics. J. Biogeogr. 2012, 39, 215–231. [Google Scholar] [CrossRef]
- Turner, W.R.; Tjorve, E. Scale-dependence in species-area relationships. Ecography 2005, 28, 721–730. [Google Scholar] [CrossRef]
- Battes, K.P.; Cîmpean, M.; Momeu, L.; Suteu, A.M.; Pauliuc, G.; Stermin, A.N.; David, A. Species-area relationships for aquatic biota in several shallow lakes from the Fizes Valley (Transylvania, Romania). North-West. J. Zool. 2019, 15, 117–126. [Google Scholar]
- Mancinelli, G.; Mali, S.; Belmonte, G. Species Richness and Taxonomic Distinctness of Zooplankton in Ponds and Small Lakes from Albania and North Macedonia: The Role of Bioclimatic Factors. Water 2019, 11, 2384. [Google Scholar] [CrossRef]
- Herceg-Szórádi, Z.; Demeter, L.; Csergo, A.M. Small area and low connectivity constrain the diversity of plant life strategies in temporary ponds. Divers. Distrib. 2023, 29, 629–640. [Google Scholar] [CrossRef]
- Maltchik, L.; Lanes, L.E.K.; Stenert, C.; Medeiros, E.S.F. Species-area relationship and environmental predictors of fish communities in coastal freshwater wetlands of southern Brazil. Environ. Biol. Fish. 2010, 88, 25–35. [Google Scholar] [CrossRef]
- Carl, L.M.; Esselman, P.C.; Sparks-Jackson, B.L.; Wilson, C.C. The species-area relationship for a highly fragmented temperate river system. Ecosphere 2021, 12, e03411. [Google Scholar] [CrossRef]
- Tickner, D.; Opperman, J.J.; Abell, R.; Acreman, M.; Arthington, A.H.; Bunn, S.E.; Cooke, S.J.; Dalton, J.; Darwall, W.; Edwards, G.; et al. Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. Bioscience 2020, 70, 330–342. [Google Scholar] [CrossRef]
- Covich, A.P.; Palmer, M.A.; Crowl, T.A. The role of benthic invertebrate species in freshwater ecosystems—Zoobenthic species influence energy flows and nutrient cycling. Bioscience 1999, 49, 119–127. [Google Scholar] [CrossRef]
- Haase, P.; Bowler, D.E.; Baker, N.J.; Bonada, N.; Domisch, S.; Marquez, J.G.R.; Heino, J.; Hering, D.; Jähnig, S.C.; Schmidt-Kloiber, A.; et al. The recovery of European freshwater biodiversity has come to a halt. Nature 2023, 620, 582–588. [Google Scholar] [CrossRef]
- Albini, D.; Lester, L.; Sanders, P.; Hughes, J.; Jackson, M.C. The combined effects of treated sewage discharge and land use on rivers. Glob. Chang. Biol. 2023, 29, 6415–6422. [Google Scholar] [CrossRef]
- Rumschlag, S.L.; Mahon, M.B.; Jones, D.K.; Battaglin, W.; Behrens, J.; Bernhardt, E.S.; Bradley, P.; Brown, E.; De Laender, F.; Hill, R.; et al. Density declines, richness increases, and composition shifts in stream macroinvertebrates. Sci. Adv. 2023, 9, eadf4896. [Google Scholar] [CrossRef]
- Chiu, M.C.; Ao, S.C.; Resh, V.H.; He, F.Z.; Cai, Q.H. Species dispersal along rivers and streams may have variable importance to metapopulation structure. Sci. Total Environ. 2021, 760, 144045. [Google Scholar] [CrossRef]
- Godínez-Domínguez, E.; Freire, J.; Franco-Gordo, C.; González-Sansón, G. Decomposing diversity patterns of a soft-bottom macroinvertebrate community in the tropical eastern Pacific. J. Mar. Biol. Assoc. U. K. 2009, 89, 31–38. [Google Scholar] [CrossRef]
- Feio, M.J.; Hughes, R.M.; Serra, S.R.Q.; Nichols, S.J.; Kefford, B.; Lintermans, M.; Robinson, W.; Odume, O.N.; Callisto, M.; Macedo, D.R.; et al. Fish and macroinvertebrate assemblages reveal extensive degradation of the world’s rivers. Glob. Chang. Biol. 2023, 29, 355–374. [Google Scholar] [CrossRef]
- Chen, F.; Wang, H.Q.; Yuan, Y.J. Two centuries of temperature variation and volcanic forcing reconstructed for the northern Tibetan Plateau. Phys. Geogr. 2017, 38, 248–262. [Google Scholar] [CrossRef]
- Gao, Q.Z.; Guo, Y.Q.; Xu, H.M.; Ganjurjav, H.; Li, Y.; Wan, Y.F.; Qin, X.B.; Ma, X.; Liu, S. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci. Total Environ. 2016, 554, 34–41. [Google Scholar] [CrossRef]
- Li, Z.; Xing, Y.; Liu, Z.; Chen, X.; Jiang, X.; Xie, Z.; Heino, J. Seasonal changes in metacommunity assembly mechanisms of benthic macroinvertebrates in a subtropical river basin. Sci. Total Environ. 2020, 729, 139046. [Google Scholar] [CrossRef]
- Liu, C.; Dudley, K.L.; Xu, Z.H.; Economo, E.P. Mountain metacommunities: Climate and spatial connectivity shape ant diversity in a complex landscape. Ecography 2018, 41, 101–112. [Google Scholar] [CrossRef]
- Qin, C.; Ge, Y.; Gao, J.; Zhou, S.; Yu, J.; Wang, B.; Datry, T. Ecological drivers of macroinvertebrate metacommunity assembly in a subtropical river basin in the Yangtze River Delta, China. Sci. Total Environ. 2022, 837, 155687. [Google Scholar] [CrossRef]
- Qin, H.H.; Gao, B.; He, L.; Hu, X.H.; Dong, L.; Sanjay, D.; Dong, A.; Sun, Z.X.; Wan, W. Hydrogeochemical Characteristics and Controlling Factors of the Lhasa River under the Influence of Anthropogenic Activities. Water 2019, 11, 948. [Google Scholar] [CrossRef]
- He, Q.L.; Kuang, X.X.; Ma, E.Z.; Chen, J.X.; Feng, Y.Q.; Zheng, C.M. Reconstructing runoff components and glacier mass balance with climate change: Niyang river basin, southeastern Tibetan plateau. Front. Earth Sci. 2023, 11, 1165390. [Google Scholar] [CrossRef]
- Jiang, X.M.; Xie, Z.C.; Chen, Y.F. Longitudinal patterns of macroinvertebrate communities in relation to environmental factors in a Tibetan-Plateau river system. Quatern Int. 2013, 304, 107–114. [Google Scholar] [CrossRef]
- Li, Z.F.; Jiang, X.M.; Wang, J.; Meng, X.L.; Heino, J.N.; Xie, Z.C. Multiple facets of stream macroinvertebrate alpha diversity are driven by different ecological factors across an extensive altitudinal gradient. Ecol. Evol. 2019, 9, 1306–1322. [Google Scholar] [CrossRef]
- Li, Z.F.; Heino, J.; Zhang, J.Q.; Ge, Y.H.; Liu, Z.Y.; Xie, Z.C. Unravelling the factors affecting multiple facets of macroinvertebrate beta diversity in the World’s Third Pole. J. Biogeogr. 2023, 13, 792–804. [Google Scholar] [CrossRef]
- Xu, M.Z.; Zhao, N.; Zhou, X.D.; Pan, B.Z.; Liu, W.; Tian, S.M.; Wang, Z.Y. Macroinvertebrate Biodiversity Trends and Habitat Relationships within Headwater Rivers of the Qinghai-Tibet Plateau. Water 2018, 10, 20. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, J.L.; Tan, X.; Zhang, Q.F. Nitrogen loadings affect trophic structure in stream food webs on the Tibetan Plateau, China. Sci. Total Environ. 2022, 844, 157018. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.D.; Xu, M.Z.; Lei, F.K.; Zhang, J.H.; Wang, Z.Y.; Luo, Y.Y. Responses of Macroinvertebrate Assemblages to Flow in the Qinghai-Tibet Plateau: Establishment and Application of a Multi-Metric Habitat Suitability Model. Water Resour. Res. 2022, 58, 19. [Google Scholar] [CrossRef]
- Jian, D.; Hang, D.; Chang, X.; Zhang, Q.; Xie, S.; Chen, F.; Chen, S. Zoobenthos Community Structure in the Middle and Lower Reaches of Lhasa River. J. Hydroecology 2015, 36, 40–46. (In Chinese) [Google Scholar] [CrossRef]
- Chen, L.; Wang, D.; Jun, S. Macroinvertebrate community structure and relationships with environmental factors in the Lhasa River Basin. Acta Ecol. Sin. 2019, 39, 757–769. (In Chinese) [Google Scholar] [CrossRef]
- van Klink, R.; Bowler, D.E.; Gongalsky, K.B.; Swengel, A.B.; Gentile, A.; Chase, J.M. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 2020, 368, 417–420. [Google Scholar] [CrossRef]
- Jacobsen, D. Contrasting patterns in local and zonal family richness of stream invertebrates along an Andean altitudinal gradient. Freshw. Biol. 2004, 49, 1293–1305. [Google Scholar] [CrossRef]
- Cardoso, P.; Rigal, F.; Carvalho, J.C. BAT—Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 2015, 6, 232–236. [Google Scholar] [CrossRef]
- Jia, Y.T.; Jiang, Y.H.; Liu, Y.H.; Sui, X.Y.; Feng, X.; Zhu, R.; Li, K.M.; Chen, Y.F. Unravelling fish community assembly in shallow lakes: Insights from functional and phylogenetic diversity. Rev. Fish. Biol. Fisher 2022, 32, 623–644. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Peng, W.; Qu, X.; Zhang, Y.; Du, L.; Wu, N. Phylogenetic and functional diversity could be better indicators of macroinvertebrate community stability. Ecol. Indic. 2021, 129, 107892. [Google Scholar] [CrossRef]
- Teichert, N.; Lepage, M.; Chevillot, X.; Lobry, J. Environmental drivers of taxonomic, functional and phylogenetic diversity (alpha, beta and gamma components) in estuarine fish communities. J. Biogeogr. 2018, 45, 406–417. [Google Scholar] [CrossRef]
- Blanchet, F.G.; Legendre, P.; Borcard, D. Modelling directional spatial processes in ecological data. Ecol. Model. 2008, 215, 325–336. [Google Scholar] [CrossRef]
- Blanchet, F.G.; Legendre, P.; Maranger, R.; Monti, D.; Pepin, P. Modelling the effect of directional spatial ecological processes at different scales. Oecologia 2011, 166, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.J.; Heino, J.; Yu, F.D.; Xu, C.S.; Lin, P.C.; He, Y.F.; Liu, F.; Wang, J.W. Local environmental and spatial factors are associated with multiple facets of riverine fish-diversity across spatial scales and seasons. Freshw. Biol. 2023, 68, 2197–2212. [Google Scholar] [CrossRef]
- Dray, S.; Blanchet, G.; Borcard, D.; Clappe, S.; Jombart GG, T.; Larocque, G.; Wagner, H.H. adespatial: Multivariate Multiscale Spatial Analysis, R Package Version 0.3-23. 2023. Available online: https://CRAN.R-project.org/package=adespatial (accessed on 15 December 2023).
- Maloney, K.O.; Krause, K.P.; Buchanan, C.; Hay, L.E.; McCabe, G.J.; Smith, Z.M.; Sohl, T.L.; Young, J.A. Disentangling the potential effects of land-use and climate change on stream conditions. Global Change Biol. 2020, 26, 2251–2269. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Guo, F.; Gao, X.; Wang, Y.Q. Predicting the effect of land use and climate change on stream macroinvertebrates based on the linkage between structural equation modeling and ayesian network. Ecol. Indic. 2018, 85, 820–831. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Chen, J. The 30-m Land Cover Data of Tibetan Plateau (2010); A Big Earth Data Platform for Three Poles: Lanzhou, China, 2018. [Google Scholar]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. _vegan: Community Ecology Package_. Rpackage version 2.6-4. 2022. Available online: https://CRAN.R-project.org/package=vegan (accessed on 13 December 2023).
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef]
- Dengler, J. Which function describes the species-area relationship best? A review and empirical evaluation. J. Biogeogr. 2009, 36, 728–744. [Google Scholar] [CrossRef]
- He, F.L.; Legendre, P. Species diversity patterns derived from species-area models. Ecology 2002, 83, 1185–1198. [Google Scholar] [CrossRef]
- Fridley, J.D.; Peet, R.K.; Wentworth, T.R.; White, P.S. Connecting fine- and broad-scale species-area relationships of Southeastern US Flora. Ecology 2005, 86, 1172–1177. [Google Scholar] [CrossRef]
- Rosenzweig, M.L.; Rosenzweig, M.L. Species Diversity in Space and Time; Cambridge University Press: New York, NY, USA, 1995. [Google Scholar]
- Baselga, A.O.D.; Villeger, S.; De Bortoli, J.; Leprieur, F.; Logez, M.; Martinez-Santalla, S.; Martin-Devasa, R.; Gomez-Rodriguez, C.; Crujeiras, R. betapart: Partitioning Beta Diversity into Turnover and Nestedness Components, R Package Version 1.6. 2023. Available online: https://CRAN.R-project.org/package=betapart (accessed on 13 December 2023).
- Harrell, F., Jr. Hmisc: Harrell Miscellaneous_. R package version 5.1-1. 2023. Available online: https://CRAN.R-project.org/package=Hmisc (accessed on 13 December 2023).
- Mokany, K.; Ware, C.; Woolley, S.N.C.; Ferrier, S.; Fitzpatrick, M.C. A working guide to harnessing generalized dissimilarity modelling for biodiversity analysis and conservation assessment. Glob. Ecol. Biogeogr. 2022, 31, 802–821. [Google Scholar] [CrossRef]
- Dambros, C.S.; Morais, J.W.; Azevedo, R.A.; Gotelli, N.J. Isolation by distance, not rivers, control the distribution of termite species in the Amazonian rain forest. Ecography 2017, 40, 1242–1250. [Google Scholar] [CrossRef]
- Warren, D.L.; Cardillo, M.; Rosauer, D.F.; Bolnick, D.I. Mistaking geography for biology: Inferring processes from species distributions. Trends Ecol. Evol. 2014, 29, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Buckley, L.B.; Jetz, W. Linking global turnover of species and environments. Proc. Natl. Acad. Sci. USA 2008, 105, 17836–17841. [Google Scholar] [CrossRef] [PubMed]
- Fluck, I.E.; Cáceres, N.; Hendges, C.D.; Brum, M.D.; Dambros, C.S. Climate and geographic distance are more influential than rivers on the beta diversity of passerine birds in Amazonia. Ecography 2020, 43, 860–868. [Google Scholar] [CrossRef]
- Gautam, R.; Hsu, N.C.; Lau, K.M.; Tsay, S.C.; Kafatos, M. Enhanced pre-monsoon warming over the Himalayan-Gangetic region from 1979 to 2007. Geophys. Res. Lett. 2009, 36, L07704. [Google Scholar] [CrossRef]
- Wang, X.D.; Zhong, X.H.; Liu, S.Z.; Liu, J.G.; Wang, Z.Y.; Li, M.H. Regional assessment of environmental vulnerability in the Tibetan Plateau: Development and application of a new method. J. Arid. Environ. 2008, 72, 1929–1939. [Google Scholar] [CrossRef]
- Du, M.Y.; Kawashima, S.; Yonemura, S.; Zhang, X.Z.; Chen, S.B. Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Global Planet. Change 2004, 41, 241–249. [Google Scholar] [CrossRef]
- Yao, T.; Pu, J.; Lu, A.; Wang, Y.; Yu, W. Recent glacial retreat and its impact on hydrological processes on the tibetan plateau, China, and sorrounding regions. Arct. Antarct. Alp. Res. 2007, 39, 642–650. [Google Scholar] [CrossRef]
- Hotaling, S.; Finn, D.S.; Giersch, J.J.; Weisrock, D.W.; Jacobsen, D. Climate change and alpine stream biology: Progress, challenges, and opportunities for the future. Biol. Rev. 2017, 92, 2024–2045. [Google Scholar] [CrossRef] [PubMed]
- Milner, A.M.; Khamis, K.; Battin, T.J.; Brittain, J.E.; Barrand, N.E.; Füreder, L.; Cauvy-Fraunié, S.; Gíslason, G.M.; Jacobsen, D.; Hannah, D.M.; et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl. Acad. Sci. USA 2017, 114, 9770–9778. [Google Scholar] [CrossRef] [PubMed]
- Leprieur, F.; Tedesco, P.A.; Hugueny, B.; Beauchard, O.; Dürr, H.H.; Brosse, S.; Oberdorff, T. Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecol. Lett. 2011, 14, 325–334. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Xu, C.Y.; Hao, Z.C.; Zhang, L.L.; Ju, Q.; Lai, X.D. Variation of Melt Water and Rainfall Runoff and Their Impacts on Streamflow Changes during Recent Decades in Two Tibetan Plateau Basins. Water 2020, 12, 3112. [Google Scholar] [CrossRef]
- Xu, W.B.; Svenning, J.C.; Chen, G.K.; Zhang, M.G.; Huang, J.H.; Chen, B.; Ordonez, A.; Ma, K.P. Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China. Proc. Natl. Acad. Sci. USA 2019, 116, 26674–26681. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Li, Y.; Wang, X.G.; Li, H.Z.; Zheng, F.D.; Liao, Y.P.; Tang, N.B.; Chen, G.Y.; Yang, C. Assessment of river health based on a novel multidimensional similarity cloud model in the Lhasa River, Qinghai-Tibet Plateau. J. Hydrol. 2021, 603, 127100. [Google Scholar] [CrossRef]
- Heino, J.; Tolonen, K.T. Ecological drivers of multiple facets of beta diversity in a lentic macroinvertebrate metacommunity. Limnol. Oceanogr. 2017, 62, 2431–2444. [Google Scholar] [CrossRef]
- Weinstein, B.G.; Tinoco, B.; Parra, J.L.; Brown, L.M.; McGuire, J.A.; Stiles, F.G.; Graham, C.H. Taxonomic, Phylogenetic, and Trait Beta Diversity in South American Hummingbirds. Am. Nat. 2014, 184, 211–224. [Google Scholar] [CrossRef]
- Ptatscheck, C.; Gansfort, B.; Majdi, N.; Traunspurger, W. The influence of environmental and spatial factors on benthic invertebrate metacommunities differing in size and dispersal mode. Aquatic Ecol. 2020, 54, 447–461. [Google Scholar] [CrossRef]
- Ao, S.; Chiu, M.-C.; Li, X.; Tan, L.; Cai, Q.; Ye, L. Watershed farmland area and instream water quality co-determine the stream primary producer in the central Hengduan Mountains, southwestern China. Sci. Total Environ. 2021, 770, 145267. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Zhou, S.; Zhang, M.; Peng, W.; Guo, K.; Qu, X.; He, F. Spatial and local environmental factors outweigh geo-climatic gradients in structuring taxonomically and trait-based b-diversity of benthic algae. J. Biogeogr. 2021, 48, 1842–1857. [Google Scholar] [CrossRef]
- Schleuning, M.; Neuschulz, E.L.; Albrecht, J.; Bender, I.M.A.; Bowler, D.E.; Dehling, D.M.; Fritz, S.A.; Hof, C.; Mueller, T.; Nowak, L.; et al. Trait-Based Assessments of Climate-Change Impacts on Interacting Species. Trends Ecol. Evol. 2020, 35, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.D.; Ren, Z.; Zhang, M.; Liu, X.B.; Peng, W.Q. Sediment heavy metals and benthic diversities in Hun-Tai River, northeast of China. Environ. Sci. Pollut. Res. 2017, 24, 10662–10673. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.J.; Heino, J.; White, J.C.; Ryves, D.B.; Wood, P.J. Environmental factors are primary determinants of different facets of pond macroinvertebrate alpha and beta diversity in a human-modified landscape. Biol. Conserv. 2019, 237, 348–357. [Google Scholar] [CrossRef]
Lhasa River | Niyang River | |||
---|---|---|---|---|
Species | Phylogenetic | Species | Phylogenetic | |
Βsor | 0.784 (100%) | 0.587 (100%) | 0.599 (100%) | 0.499 (100%) |
Βsim | 0.688 (88%) | 0.443 (75%) | 0.534 (89%) | 0.423 (85%) |
Βsne | 0.096 (12%) | 0.144 (25%) | 0.065 (11%) | 0.076 (15%) |
Position | Metrics | Pure Spatial | Pure Climatic | Pure Land Cover | Shared |
---|---|---|---|---|---|
Lhasa River | Srβsor | 22.15 | 1.6 | 0 | 1.25 |
SRβsim | 23.99 | 1.76 | 0 | 1.16 | |
Srβsne | 1.71 | 2.79 | 3.21 | 2.52 | |
Pdβsor | 22.82 | 1.65 | 0.6 | 2.08 | |
Pdβsim | 20.69 | 1.58 | 0.05 | 1.58 | |
Pdβsne | 1.77 | 4.43 | 3.51 | 1.27 | |
Niyang River | Srβsor | 8.11 | 3.48 | 0.07 | 5.89 |
SRβsim | 9.17 | 1.86 | 0.41 | 6.85 | |
Srβsne | 10.62 | 2.2 | 1.09 | 0.24 | |
Pdβsor | 3.68 | 3.74 | 0.14 | 2.2 | |
Pdβsim | 4.95 | 4.22 | 0.15 | 3.35 | |
Pdβsne | 5.18 | 3.67 | 15.09 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Chiu, M.-C.; Lin, X.; Liu, C.; Tian, Z.; Cai, Q.; Resh, V.H. Environmental Factors Shape the Differences in Biodiversity-Area Relationships in Riverine Macroinvertebrates of Two Rivers in the Tibetan Plateau in China. Water 2024, 16, 882. https://doi.org/10.3390/w16060882
Li J, Chiu M-C, Lin X, Liu C, Tian Z, Cai Q, Resh VH. Environmental Factors Shape the Differences in Biodiversity-Area Relationships in Riverine Macroinvertebrates of Two Rivers in the Tibetan Plateau in China. Water. 2024; 16(6):882. https://doi.org/10.3390/w16060882
Chicago/Turabian StyleLi, Jingting, Ming-Chih Chiu, Xiaowei Lin, Chan Liu, Zhen Tian, Qinghua Cai, and Vincent H. Resh. 2024. "Environmental Factors Shape the Differences in Biodiversity-Area Relationships in Riverine Macroinvertebrates of Two Rivers in the Tibetan Plateau in China" Water 16, no. 6: 882. https://doi.org/10.3390/w16060882
APA StyleLi, J., Chiu, M. -C., Lin, X., Liu, C., Tian, Z., Cai, Q., & Resh, V. H. (2024). Environmental Factors Shape the Differences in Biodiversity-Area Relationships in Riverine Macroinvertebrates of Two Rivers in the Tibetan Plateau in China. Water, 16(6), 882. https://doi.org/10.3390/w16060882