Salinity-Induced Changes in Heavy Metal Behavior and Mobility in Semi-Arid Coastal Aquifers: A Comprehensive Review
Abstract
:1. Introduction
2. Heavy Metal Dynamics in Seawater-Induced Aquatic System
3. Metal Concentrations in Considered Coastal Aquifers
3.1. Metal Sources and Salinity-Induced Alteration in Coastal Aquifers
3.1.1. Zinc
3.1.2. Lead (Pb)
3.1.3. Cadmium (Cd)
3.1.4. Nickel (Ni)
3.1.5. Cppper (Cu)
3.1.6. Chromium (Cr)
4. Identified Controlling Mechanisms
5. Conclusions
- The reduced kinetic flux of groundwater into aquifers and transition zone shifts between the freshwater–seawater interface play an intricate role in changing pH conditions and controlling metal behavior in coastal aquifers.
- Ion exchange, absorption/desorption, and humic/organic ligands were found to control metal variation in aquifers.
- Reactive and labile substances exhibited a greater control over the distribution and absorption of Zn and Ni, where labile matter contributed towards higher bioavailability of Zn, and Ni-organic ligands controlled the toxicity, especially in low salinity conditions.
- Metals such as Ni, Cr and Pb associated with oxidation-sensitive Al/Fe hydroxide and carbonates mobilized metals under increasing alkaline conditions (pH > 8).
- Cu-complexes with Cl and SO4 were found to be stable under increasing alkaline conditions in aquifers where metals like Ni, Cd and Zn tend to be bioavailable with the introduction of saline water.
- Mobility and toxicity of Cr (VI) were found to be controlled by soil and Fe/Al hydroxide absorption under acidic conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morris, B.L.; Lawrence, A.R.; Chilton, P.J.; Adams, B.; Calow, R.C.; Klinck, B.A. Groundwater and its susceptibility to degradation: A global assessment of the problem and options for management. Environ. Int. 2003, 29, 545–557. [Google Scholar]
- Margat, J.; Van der Gun, J. Groundwater Around the World: A Geographic Synopsis; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Srivastava, R. Groundwater resources under a changing climate. J. Indian Inst. Sci. 2013, 93, 251–263. [Google Scholar]
- Chen, J.L.; Famiglietti, J.S.; Scanlon, B.R.; Rodell, M. Groundwater storage changes: Present status from GRACE observations. Surv. Geophys. 2016, 37, 397–417. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, Y.; Zhang, D.; Chen, X. Environmental groundwater depth for groundwater-dependent terrestrial ecosystems in arid/semiarid regions: A review. Int. J. Environ. Res. Public Health 2019, 16, 763. [Google Scholar] [CrossRef] [PubMed]
- Carrard, N.; Foster, T.; Willetts, J. Groundwater as a Source of Drinking Water in Southeast Asia and the Pacific: A Multi-Country Review of Current Reliance and Resource Concerns. Water 2019, 11, 1605. [Google Scholar] [CrossRef]
- Ali, A.R.; Lackner, J.; Cerdas, F.; Herrmann, C. Analysis of Nickel Sulphate Datasets Used in Lithium-Ion Batteries. Procedia CIRP 2023, 116, 348–353. [Google Scholar] [CrossRef]
- Eamus, D.; Froend, R.; Loomes, R.; Hose, G.; Murray, B. A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation. Aust. J. Bot. 2006, 54, 97–114. [Google Scholar] [CrossRef]
- Cui, Y.L.; Shao, J.L. The role of ground water in arid/semiarid ecosystems, Northwest China. Groundwater 2005, 43, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Scholes, R.J. The Future of Semi-Arid Regions: A Weak Fabric Unravels. Climate 2020, 8, 43. [Google Scholar] [CrossRef]
- Devendra, C. Rainfed Areas and Animal Agriculture in Asia: The Wanting Agenda for Transforming Productivity Growth and Rural Poverty. Asian-Australas. J. Anim. Sci. 2012, 25, 122. [Google Scholar] [CrossRef] [PubMed]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Chu, E.W.; Karr, J.R. Environmental Impact: Concept, Consequences, Measurement. Ref. Module Life Sci. 2017. [Google Scholar] [CrossRef]
- Cook, B.I.; Miller, R.L.; Seager, R. Amplification of the North American “Dust Bowl” Drought through Human-Induced Land Degradation. Proc. Natl. Acad. Sci. USA 2009, 106, 4997–5001. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Wang, S.; Liu, Y.; Liu, J.; Liang, W.; Miao, C. Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2022, 45, 223–243. [Google Scholar] [CrossRef]
- Chartres, C. Australia’s Land Resources at Risk; Cambridge University Press: Cambridge, UK, 1987; pp. 7–26. [Google Scholar]
- Hoffman, M.T.; Todd, S. A national review of land degradation in South Africa: The influence of biophysical and socio-economic factors. J. Southern Afr. Stud. 2000, 26, 743–758. [Google Scholar] [CrossRef]
- Stringer, L.C.; Mirzabaev, A.; Benjaminsen, T.A.; Harris, R.M.; Jafari, M.; Lissner, T.K.; Stevens, N.; Tirado-von Der Pahlen, C. Climate change impacts on water security in global drylands. One Eart. 2021, 4, 851–864. [Google Scholar] [CrossRef]
- Werner, A.D.; Bakker, M.; Post, V.E.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Barry, D.A. Seawater Intrusion Processes, Investigation, and Management: Recent Advances and Future Challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Brindha, K.; Paul, R.; Walter, J.; Tan, M.L.; Singh, M.K. Trace metals contamination in groundwater and implications on human health: Comprehensive assessment using hydrogeochemical and geostatistical methods. Environ. Geochem. Health 2020, 42, 3819–3839. [Google Scholar] [CrossRef]
- Shang, H.; Qi, X.; Zhang, M.; Li, H.; Li, G.; Yang, L. Characteristics, distribution, and source analysis of the main persistent toxic substances in karst groundwater at Jinan in North China. J. Chem. 2020, 28, 4217294. [Google Scholar] [CrossRef]
- Matta, G.; Kumar, A.; Nayak, A.; Kumar, P.; Pant, G. Pollution complexity quantification using NPI and HPI of River Ganga system in Himalayan Region. Proc. Indian Natl. Sci. Acad. 2022, 88, 651–663. [Google Scholar] [CrossRef]
- Kumar, A.; Mishra, S.; Pandey, R.; Zhiguo, Y. Microplastics in terrestrial ecosystems: Un-ignorable impacts on soil characterises, nutrient storage and its cycling. TrAC Trends Anal. Chem. 2023, 158, 116869. [Google Scholar] [CrossRef]
- Zhu, G.; Wu, X.; Ge, J.; Liu, F.; Zhao, W.; Wu, C. Influence of mining activities on groundwater hydrochemistry and heavy metal migration using a self-organizing map (SOM). J. Clean. Prod. 2020, 257, 120664. [Google Scholar] [CrossRef]
- ELHamidi, M.J.; Larabi, A.; Faouzi, M. Numerical Modeling of Saltwater Intrusion in the Rmel-Oulad Ogbane Coastal Aquifer (Larache, Morocco) in the Climate Change and Sea-Level Rise Context (2040). Water 2021, 13, 2167. [Google Scholar] [CrossRef]
- Hasan, M.; Shang, Y.; Jin, W.; Shao, P.; Yi, X.; Akhter, G. Geophysical Assessment of Seawater Intrusion into Coastal Aquifers of Bela Plain, Pakistan. Water 2020, 12, 3408. [Google Scholar] [CrossRef]
- Nikolaidis, N.P.; Bidoglio, G.; Bouraoui, F.; Cardoso, A.C. Water quality of the Mediterranean. In Comprehensive Water Quality and Purification. Ref. Module Earth Syst. Environ. Sci. 2014, 4, 230–250. [Google Scholar]
- Shevah, Y. Status and Trends of Water Quality Worldwide. In Comprehensive Water Quality and Purification; Elsevier: Amsterdam, The Netherlands, 2014; pp. 155–176. [Google Scholar]
- Luo, M.; Zhang, Y.; Li, H.; Hu, W.; Xiao, K.; Yu, S.; Wang, X. Pollution Assessment and Sources of Dissolved Heavy Metals in Coastal Water of a Highly Urbanized Coastal Area: The Role of Groundwater Discharge. Sci. Total Environ. 2022, 807, 151070. [Google Scholar] [CrossRef]
- Shi, X.; Wang, Y.; Jiao, J.J.; Zhong, J.; Wen, H.; Dong, R. Assessing Major Factors Affecting Shallow Groundwater Geochemical Evolution in a Highly Urbanized Coastal Area of Shenzhen City, China. J. Geochem. Explor. 2018, 184, 17–27. [Google Scholar] [CrossRef]
- Khublaryan, M.G.; Frolov, A.P.; Yushmanov, I.O. Seawater intrusion into coastal aquifers. Water Resour. 2008, 35, 274–286. [Google Scholar] [CrossRef]
- El Yaouti, F.; El Mandour, A.; Khattach, D.; Benavente, J.; Kaufmann, O. Salinization Processes in the Unconfined Aquifer of Bou-Areg (NE Morocco): A Geostatistical, Geochemical, and Tomographic Study. Appl. Geochem. 2009, 24, 16–31. [Google Scholar] [CrossRef]
- Geng, X.; Boufadel, M.C. The Influence of Evaporation and Rainfall on Supratidal Groundwater Dynamics and Salinity Structure in a Sandy Beach. Water Resour. Res. 2017, 53, 6218–6238. [Google Scholar] [CrossRef]
- Kammoun, S.; Re, V.; Trabelsi, R.; Zouari, K.; Salvatore, D. Assessing Seasonal Variations and Aquifer Vulnerability in Coastal Aquifers of Semi-Arid Regions Using a Multi-Tracer Isotopic Approach: The Case of Grombalia (Tunisia). Hydrogeol. J. 2018, 26, 2575–2594. [Google Scholar] [CrossRef]
- Ntanganedzeni, B.; Elumalai, V.; Rajmohan, N. Coastal Aquifer Contamination and Geochemical Processes Evaluation in Tugela Catchment, South Africa—Geochemical and Statistical Approaches. Water 2018, 10, 687. [Google Scholar] [CrossRef]
- Kammoun, S.; Trabelsi, R.; Re, V.; Zouari, K. Coastal Aquifer Salinization in Semi-Arid Regions: The Case of Grombalia (Tunisia). Water 2021, 13, 129. [Google Scholar] [CrossRef]
- Charfi, S.; Zouari, K.; Feki, S.; Mami, E. Study of Variation in Groundwater Quality in a Coastal Aquifer in North-Eastern Tunisia Using Multivariate Factor Analysis. Quat. Int. 2013, 302, 199–209. [Google Scholar] [CrossRef]
- Singurindy, O.; Berkowitz, B.; Lowell, R.P. Carbonate Dissolution and Precipitation in Coastal Environments: Laboratory Analysis and Theoretical Consideration. Water Resour. Res. 2004, 40, 2651. [Google Scholar] [CrossRef]
- Ouarani, M.; Brahim, Y.A.; Mulla, D.; Rafik, A.; Azennoud, K.; Bouchaou, L.; Chehbouni, A. A Comprehensive Overview of Groundwater Salinization and Recharge Processes in a Semi-Arid Coastal Aquifer (Essaouira, Morocco). J. Hydrol. Reg. Stud. 2023, 49, 101501. [Google Scholar] [CrossRef]
- Najib, S.; Fadili, A.; Mehdi, K.; Riss, J.; Makan, A. Contribution of Hydrochemical and Geoelectrical Approaches to Investigate Salinization Process and Seawater Intrusion in the Coastal Aquifers of Chaouia, Morocco. J. Contam. Hydrol. 2017, 198, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Kazakis, N.; Pavlou, A.; Vargemezis, G.; Voudouris, K.S.; Soulios, G.; Pliakas, F.; Tsokas, G. Seawater Intrusion Mapping Using Electrical Resistivity Tomography and Hydrochemical Data: An Application in the Coastal Area of Eastern Thermaikos Gulf, Greece. Sci. Total Environ. 2016, 543, 373–387. [Google Scholar] [CrossRef]
- Sous, D.; Lambert, A.; Rey, V.; Michallet, H. Swash–Groundwater Dynamics in a Sandy Beach Laboratory Experiment. Coast. Eng. 2013, 80, 122–136. [Google Scholar] [CrossRef]
- Akshitha, V.; Balakrishna, K.; Udayashankar, H.N. Assessment of Hydrogeochemical Characteristics and Saltwater Intrusion in Selected Coastal Aquifers of Southwestern India. Mar. Pollut. Bull. 2021, 173, 112989. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.S.; Abd-Elhamid, H.F.; Javadi, A.A.; Sherif, M.M. Management of Seawater Intrusion in Coastal Aquifers: A Review. Water 2019, 11, 2467. [Google Scholar] [CrossRef]
- Souid, F.; Agoubi, B.; Telahigue, F.; Chahlaoui, A.; Kharroubi, A. Groundwater Salinization and Seawater Intrusion Tracing Based on Lithium Concentration in the Shallow Aquifer of Jerba Island, Southeastern Tunisia. J. Afr. Earth Sci. 2018, 138, 233–246. [Google Scholar] [CrossRef]
- Abdoulhalik, A.; Ahmed, A.A. How Does Layered Heterogeneity Affect the Ability of Subsurface Dams to Clean up Coastal Aquifers Contaminated with Seawater Intrusion? J. Hydrol. 2017, 553, 708–721. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Guo, Y.; Yu, S.; Xiao, K.; Zhang, Y.; Wang, X. Seawater–Groundwater Interaction Governs Trace Metal Zonation in a Coastal Sandy Aquifer. Water Resour. Res. 2023, 59, e2022WR032828. [Google Scholar] [CrossRef]
- Kapoor, D.; Singh, M.P. Heavy metal contamination in water and its possible sources. Heavy Metals Environ. 2021, 179–189. [Google Scholar]
- Afzaal, M.; Hameed, S.; Liaqat, I.; Ali Khan, A.A.; Abdul Manan, H.; Shahid, R.; Altaf, M. Heavy Metals Contamination in Water, Sediments, and Fish of Freshwater Ecosystems in Pakistan. Water Pract. Technol. 2022, 17, 1253–1272. [Google Scholar] [CrossRef]
- Mthembu, P.P.; Elumalai, V.; Li, P.; Uthandi, S.; Rajmohan, N.; Chidambaram, S. Integration of Heavy Metal Pollution Indices and Health Risk Assessment of Groundwater in Semi-Arid Coastal Aquifers, South Africa. Expo. Health 2022, 14, 487–502. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A Review on Heavy Metal Pollution, Toxicity, and Remedial Measures: Current Trends and Future Perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Colver, A.; Longwell, S. New Understanding of Adolescent Brain Development: Relevance to Transitional Healthcare for Young People with Long Term Conditions. Arch. Dis. Child. 2022, 98, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, V.; Brindha, K.; Lakshmanan, E. Human Exposure Risk Assessment Due to Heavy Metals in Groundwater by Pollution Index and Multivariate Statistical Methods: A Case Study from South Africa. Water 2017, 9, 234. [Google Scholar] [CrossRef]
- Srivastava, A.; Peshin, S.S.; Kaleekal, T.; Gupta, S.K. An Epidemiological Study of Poisoning Cases Reported to the National Poisons Information Centre, All India Institute of Medical Sciences, New Delhi. Hum. Exp. Toxicol. 2005, 24, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Rajmohan, N.; Niyazi, B.A.; Masoud, M.H. Trace Metals Pollution, Distribution and Associated Health Risks in the Arid Coastal Aquifer, Hada Al-Sham and Its Vicinities, Saudi Arabia. Chemosphere 2022, 297, 134246. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Lu, J.; Wu, J.; Lin, Y.; Luo, Y. Influence of Coastal Groundwater Salinization on the Distribution and Risks of Heavy metals. Sci. Total Environ. 2019, 652, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Shravanraj, K.; Rejith, R.G.; Sundararajan, M. Evaluation of Heavy Metals in Coastal Aquifers and Seawater: An Appraisal of Geochemistry Using ICPMS and Remote Sensing. In Remote Sensing of Ocean and Coastal Environments; Elsevier: Amsterdam, The Netherlands, 2021; pp. 155–176. [Google Scholar]
- Basahi, J.M.; Masoud, M.H.; Rajmohan, N. Effect of Flash Flood on Trace Metal Pollution in the Groundwater-Wadi Baysh Basin, Western Saudi Arabia. J. Afr. Earth Sci. 2018, 147, 338–351. [Google Scholar] [CrossRef]
- Kumar, M.; Gogoi, A.; Kumari, D.; Borah, R.; Das, P.; Mazumder, P.; Tyagi, V.K. Review of Perspective, Problems, Challenges, and Future Scenario of Metal Contamination in the Urban Environment. J. Hazard. Toxic Radioact. Waste 2017, 21, 04017007. [Google Scholar] [CrossRef]
- Wang, Z.; Su, Q.; Wang, S.; Gao, Z.; Liu, J. Spatial Distribution and Health Risk Assessment of Dissolved Heavy Metals in Groundwater of Eastern China Coastal Zone. Environ. Pollut. 2021, 290, 118016. [Google Scholar] [CrossRef] [PubMed]
- El-Kholy, R.A.; Zaghlool, E.; Isawi, H.; Soliman, E.A.; Khalil, M.M.; El-Aassar, A.H.M.; Said, M.M. Groundwater Quality Assessment Using Water Quality Index and Multivariate Statistical Analysis: Case Study-East Matrouh, Northwestern Coast, Egypt. Environ. Sci. Pollut. Res. 2022, 29, 65699–65722. [Google Scholar] [CrossRef] [PubMed]
- Abdelfattah, M.; Abu-Bakr, H.A.A.; Mewafy, F.M.; Hassan, T.M.; Geriesh, M.H.; Saber, M.; Gaber, A. Hydrogeophysical and Hydrochemical Assessment of the Northeastern Coastal Aquifer of Egypt for Desalination Suitability. Water 2023, 15, 423. [Google Scholar] [CrossRef]
- Bhagat, C.; Kumar, M.; Mahlknecht, J.; Hdeib, R.; Mohapatra, P.K. Seawater Intrusion Decreases the Metal Toxicity but Increases the Ecological Risk and Degree of Treatment for Coastal Groundwater: An Indian Perspective. Environ. Pollut. 2022, 310, 119771. [Google Scholar] [CrossRef] [PubMed]
- Du Laing, G.; Rinklebe, J.; Vandecasteele, B.; Meers, E.; Tack, F.M. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Sci. Total Environ. 2009, 407, 3972–3985. [Google Scholar] [CrossRef] [PubMed]
- Doner, H.E. Chloride as a factor in mobilities of Ni (II), Cu (II), and Cd (II) in soil. Soil Sci. Soc. Am. J. 1978, 42, 882–885. [Google Scholar] [CrossRef]
- Gerringa, L.J.; De Baar, H.J.; Nolting, R.F.; Paucot, H. The influence of salinity on the solubility of Zn and Cd sulphides in the Scheldt estuary. J. Sea Res. 2001, 46, 201–211. [Google Scholar] [CrossRef]
- Khattak, R.A.; Page, A.L.; Jarrell, W.M. Mechanism of native manganese release in salt-treated soils. Soil Sci. Soc. Am. J. 1989, 53, 701–705. [Google Scholar] [CrossRef]
- Greger, M.; Kautsky, L.; Sandberg, T. A tentative model of Cd uptake in Potamogeton pectinatus in relation to salinity. Environ. Exp. Bot. 1995, 35, 215–225. [Google Scholar] [CrossRef]
- Hahne, H.C.; Kroontje, W. Significance of pH and chloride concentration on behavior of heavy metal pollutants: Mercury (II), cadmium (II), zinc (II), and lead (II). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. J. Environ. Qual. 1973, 2, 444–450. [Google Scholar] [CrossRef]
- Mantoura, R.F.; Dickson, A.; Riley, J.P. The complexation of metals with humic materials in natural waters. Estuar. Coast. Mar. Sci. 1978, 6, 387–408. [Google Scholar] [CrossRef]
- Manivannan, V.; Elango, L.; Narasimhan, C.L. Identification of seawater intrusion and submarine groundwater discharge zones: A case study along the coastal part of South Chennai. Int. Assoc. Hydrogeol. 2020, 7, 33–38. [Google Scholar]
- O’Connor, A.E.; Krask, J.L.; Canuel, E.A.; Beck, A.J. Seasonality of major redox constituents in a shallow subterranean estuary. Geochim. Cosmochim. Acta 2018, 224, 344–361. [Google Scholar] [CrossRef]
- Singh, S.K.; Subramanian, V.; Gibbs, R.J. Hydrous Fe and Mn oxides—Scavengers of heavy metals in the aquatic environment. Crit. Rev. Environ. Control. 1984, 14, 33–90. [Google Scholar] [CrossRef]
- Spiteri, C.; Slomp, C.P.; Charette, M.A.; Tuncay, K.; Meile, C. Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): Field data and reactive transport modeling. Geochim. Cosmochim. Acta 2008, 72, 3398–3412. [Google Scholar] [CrossRef]
- Rouxel, O.; Sholkovitz, E.; Charette, M.; Edwards, K.J. Iron isotope fractionation in subterranean estuaries. Geochim. Cosmochim. Acta 2008, 72, 3413–3430. [Google Scholar] [CrossRef]
- Linkhorst, A.; Dittmar, T.; Waska, H. Molecular fractionation of dissolved organic matter in a shallow subterranean estuary: The role of the iron curtain. Environ. Sci. Technol. 2017, 51, 1312–1320. [Google Scholar] [CrossRef] [PubMed]
- Thilagavathi, R.; Chidambaram, S.; Thivya, C.; Pandaa, B.; Ganesh, N. Assessment of Sources and Distribution of Metals in Groundwater of Pondicherry Region, India. Int. J. Civil Environ. Agric. Eng. 2020, 2, 33–53. [Google Scholar]
- Selvam, S.; Antony Ravindran, A.; Venkatramanan, S.; Singaraja, C. Assessment of Heavy Metal and Bacterial Pollution in Coastal Aquifers from SIPCOT Industrial Zones, Gulf of Mannar, South Coast of Tamil Nadu, India. Appl. Water Sci. 2017, 7, 897–913. [Google Scholar] [CrossRef]
- Rajmohan, N.; Masoud, M.H.; Niyazi, B.A.; Alqarawy, A.M. Appraisal of Trace Metals Pollution, Sources and Associated Health Risks Using the Geochemical and Multivariate Statistical Approach. Appl. Water Sci. 2023, 13, 113. [Google Scholar] [CrossRef]
- Khawla, K.; Mohamed, H. W Intensive Agricultural Areas in Coastal Zone of Tunisia: Case of Teboulba Region. Groundw. Sustain. Dev. 2020, 10, 100335. [Google Scholar] [CrossRef]
- WHO. World Health Organization Guidelines for Drinking Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Nriagu, J.O. Zinc in the Environment. Part I: Ecological Cycling; John Wiley & Sons: New York, NY, USA, 1980. [Google Scholar]
- Noulas, C.; Tziouvalekas, M.; Karyotis, T. Zinc in Soils, Water, and Food Crops. J. Trace Elem. Med. Biol. 2018, 49, 252–260. [Google Scholar] [CrossRef] [PubMed]
- WHO. Zinc in Drinking-Water; World Health Organization (WHO): Geneva, Switzerland, 2003. [Google Scholar]
- Bhagat, C.; Puri, M.; Mohapatra, P.K.; Kumar, M. Imprints of Seawater Intrusion on Groundwater Quality and Evolution in the Coastal Districts of South Gujarat, India. Case Stud. Chem. Environ. Eng. 2021, 3, 100101. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, X.; Zhang, J.; Liu, T.; Qiu, Y. Saltwater intrusion weakens Fe-(oxyhydr) oxide-mediated (im) mobilization of Ni and Zn in redox-fluctuating soil–groundwater system. Water Res. 2022, 221, 118799. [Google Scholar] [CrossRef]
- Domingos, R.F.; Gélabert, A.; Carreira, S.; Cordeiro, A.; Sivry, Y.; Benedetti, M.F. Metals in the Aquatic Environment—Interactions and Implications for the Speciation and Bioavailability: A Critical Overview. Aquat. Geochem. 2015, 21, 231–257. [Google Scholar] [CrossRef]
- Opfergelt, S.; Cornélis, J.T.; Houben, D.; Givron, C.; Burton, K.W.; Mattielli, N. The Influence of Weathering and Soil Organic Matter on Zn Isotopes in Soils. Chem. Geol. 2017, 466, 140–148. [Google Scholar] [CrossRef]
- Ye, Y.; Völker, C.; Gledhill, M. Exploring the Iron-Binding Potential of the Ocean Using a Combined pH and DOC Parameterization. Glob. Biogeochem. Cycles 2020, 34, e2019GB006425. [Google Scholar] [CrossRef]
- Bermin, J.; Vance, D.; Archer, C.; Statham, P.J. The Determination of the Isotopic Composition of Cu and Zn in Seawater. Chem. Geol. 2006, 226, 280–297. [Google Scholar] [CrossRef]
- Lead, J.R.; Wilkinson, K.J. Environmental Colloids and Particles: Current Knowledge and Future Developments; IUPAC Series on Analytical and Physical Chemistry of Environmental Systems; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 10, p. 1. [Google Scholar]
- Little, S.H.; Vance, D.; McManus, J.; Severmann, S. Key Role of Continental Margin Sediments in the Oceanic Mass Balance of Zn and Zn Isotopes. Geology 2016, 44, 207–210. [Google Scholar] [CrossRef]
- Acosta, J.A.; Jansen, B.; Kalbitz, K.; Faz, A.; Martínez-Martínez, S. Salinity Increases Mobility of Heavy Metals in Soils. Chemosphere 2011, 85, 1318–1324. [Google Scholar] [CrossRef] [PubMed]
- Alissa, E.M.; Ferns, G.A. Heavy Metal Poisoning and Cardiovascular Disease. J. Toxicol. 2011, 2011, 870125. [Google Scholar] [CrossRef] [PubMed]
- Duffus, J.H. “Heavy Metals”–A Meaningless Term. Chem. Int. Newsmag. IUPAC 2001, 23, 163–167. [Google Scholar]
- Ren, Y.S.; Ilyas, M.; Xu, R.Z.; Ahmad, W.; Wang, R. Concentrations of Lead in Groundwater and Human Blood in the Population of Palosai, a Rural Area in Pakistan: Human Exposure and Risk Assessment. Adsorpt. Sci. Technol. 2022, 2022, 8341279. [Google Scholar] [CrossRef]
- Triantafyllidou, S.; Burkhardt, J.; Tully, J.; Cahalan, K.; DeSantis, M.; Lytle, D.; Schock, M. Variability and Sampling of Lead (Pb) in Drinking Water: Assessing Potential Human Exposure Depends on the Sampling Protocol. Environ. Int. 2021, 146, 106259. [Google Scholar] [CrossRef] [PubMed]
- Esbaugh, A.J.; Brix, K.V.; Mager, E.M.; De Schamphelaere, K.; Grosell, M. Multi-Linear Regression Analysis, Preliminary Biotic Ligand Modeling, and Cross Species Comparison of the Effects of Water Chemistry on Chronic Lead Toxicity in Invertebrates. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2012, 155, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.J.; Margolis, S. Lead in Drinking Water and Human Blood Lead Levels in the United States. Morb. Mortal. Wkly. Rep. 2012, 61, 9. [Google Scholar]
- Islam, M.Z.; Mostafa, M.G. Iron, manganese, and lead contamination in groundwater of Bangladesh: A review. Water Pract. Technol. 2024, 19, wpt2024030. [Google Scholar] [CrossRef]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.S.; Swamiappan, S. Bioaccumulation of Lead (Pb) and Its Effects on Human: A Review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Larson, T.E.; Buswell, A.M.; Ludwig, H.F.; Langelier, W.F. Calcium Carbonate Saturation Index and Alkalinity Interpretations [with Discussion]. J. Am. Water Works Assoc. 1942, 34, 1667–1684. [Google Scholar] [CrossRef]
- Zhai, Y.; Cao, X.; Xia, X.; Wang, B.; Teng, Y.; Li, X. Elevated Fe and Mn Concentrations in Groundwater in the Songnen Plain, Northeast China, and the Factors and Mechanisms Involved. Agronomy 2022, 11, 2392. [Google Scholar] [CrossRef]
- Bilek, F.; Moritz, F.; Albinus, S. Iron-Hydroxide-Removal from Mining Affected Rivers. Mining Meets Water—Conflicts and Solutions. In Proceedings of the IMWA International Mine Water Association, Leipzig, Germany, 11–15 July 2016; pp. 151–158. [Google Scholar]
- Xaza, A.; Mapoma, H.W.T.; Abiye, T.A.; Clarke, S.; Kanyerere, T. Investigating Seawater Intrusion in Re-public of South Africa’s Heuningnes, Cape Agulhas Using Hydrogeochemistry and Seawater Fraction Tech-niques. Water 2023, 15, 2141. [Google Scholar] [CrossRef]
- Emmanuel, U.C.; Chukwudi, M.I.; Monday, S.S.; Anthony, A.I. Human Health Risk Assessment of Heavy Metals in Drinking Water Sources in Three Senatorial Districts of Anambra State, Nigeria. Toxicol. Rep. 2022, 9, 869–875. [Google Scholar] [CrossRef]
- Huff, J.; Lunn, R.M.; Waalkes, M.P.; Tomatis, L.; Infante, P.F. Cadmium-Induced Cancers in Animals and in Humans. Int. J. Occup. Environ. Health 2007, 13, 202–212. [Google Scholar] [CrossRef]
- Nies, D.H. Microbial Heavy-Metal Resistance. Appl. Microbiol. Biotechnol. 1999, 51, 730–750. [Google Scholar] [CrossRef] [PubMed]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in Soils and Groundwater: A Review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef] [PubMed]
- Ford, R.G.; Wilkin, R.T.; Puls, R.W. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water; Naiontal Risk Management Research Laboratory, US Environmental Protection Agency: Washington, DC, USA, 2007. [Google Scholar]
- Baun, D.L.; Christensen, T.H. Speciation of Heavy Metals in Landfill Leachate: A Review. Waste Manag. Res. 2004, 22, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Yahya, H.S.A.; Jilali, A.; Mostareh, M.M.M.; Chafik, Z.; Chafi, A. Microbiological, Physicochemical, and Heavy Metals Assessment of Groundwater Quality in the Triffa Plain (Eastern Morocco). Appl. Water Sci. 2017, 7, 4497–4512. [Google Scholar] [CrossRef]
- Gantayat, R.R.; Mohan Viswanathan, P.; Ramasamy, N.; Sabarathinam, C. Spatial and Temporal Variations of Geochemical Processes and Toxicity of Water, Sediments, and Suspended Solids in Sibuti River Estuary, NW Borneo. Environ. Sci. Pollut. Res. 2023, 30, 92692–92719. [Google Scholar] [CrossRef]
- Bigalke, M.; Ulrich, A.; Rehmus, A.; Keller, A. Accumulation of Cadmium and Uranium in Arable Soils in Switzerland. Environ. Pollut. 2021, 221, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Mirlean, N.; Roisenberg, A. The Effect of Emissions of Fertilizer Production on the Environment Contamina-tion by Cadmium and Arsenic in Southern Brazil. Environ. Pollut. 2006, 143, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Sprynskyy, M.; Kowalkowski, T.; Tutu, H.; Cozmuta, L.M.; Cukrowska, E.M.; Buszewski, B. The Adsorp-tion Properties of Agricultural and Forest Soils Towards Heavy Metal Ions (Ni, Cu, Zn, and Cd). Soil Sediment Contam. 2011, 20, 12–29. [Google Scholar] [CrossRef]
- Li, X.; Rubæk, G.H.; Sørensen, P. High Plant Availability of Phosphorus and Low Availability of Cadmium in Four Biomass Combustion Ashes. Sci. Total Environ. 2016, 557, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Perkiömäki, J.; Fritze, H. Cadmium in Upland Forests after Vitality Fertilization with Wood Ash—A Summary of Soil Microbiological Studies into the Potential Risk of Cadmium Release. Biol. Fertil. Soils 2005, 41, 75–84. [Google Scholar] [CrossRef]
- Azzi, V.; Kazpard, V.; Lartiges, B.; Kobeissi, A.; Kanso, A.; El Samrani, A.G. Trace Metals in Phosphate Fertilizers Used in Eastern Mediterranean Countries. CLEAN–Soil Air Water 2017, 45, 1. [Google Scholar] [CrossRef]
- Six, L.; Smolders, E. Future Trends in Soil Cadmium Concentration under Current Cadmium Fluxes to Euro-pean Agricultural Soils. Sci. Total Environ. 2014, 485, 319–328. [Google Scholar] [CrossRef]
- Affum, A.O.; Osae, S.D.; Nyarko, B.J.B.; Afful, S.; Fianko, J.R.; Akiti, T.T.; Affum, E.A. Total Coliforms, Ar-senic, and Cadmium Exposure through Drinking Water in the Western Region of Ghana: Application of Multi-variate Statistical Technique to Groundwater Quality. Environ. Monit. Assess. 2015, 187, 1. [Google Scholar] [CrossRef] [PubMed]
- Ololade, I.A.; Adewunmi, A.; Ologundudu, A.; Adeleye, A. Effects of Household Wastes on Surface and Un-derground Waters. Int. J. Phys. Sci. 2009, 4, 22–29. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. User’s Guide to PHREEQC (Version 2): A Computer Program for Specia-tion, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; Water-Resources Investigations Report 99-4259; U.S. Geological Survey: Reston, VA, USA, 1999; 312p. [Google Scholar]
- Anderson, P.R.; Christensen, T.H. Distribution Coefficients of Cd, Co, Ni, and Zn in Soils. J. Soil Sci. 1988, 39, 15–22. [Google Scholar] [CrossRef]
- Iyaka, Y.A. Nickel in Soils: A Review of Its Distribution and Impacts. Sci. Res. Essays 2011, 6, 6774–6777. [Google Scholar]
- Buxton, S.; Garman, E.; Heim, K.E.; Lyons-Darden, T.; Schlekat, C.E.; Taylor, M.D.; Oller, A.R. Concise Re-view of Nickel Human Health Toxicology and Ecotoxicology. Inorganics 2019, 7, 7–89. [Google Scholar] [CrossRef]
- McKeen, L.W. Fluorinated Coatings: Technology, History, and Applications. In Introduction to Fluoropolymers; William Andrew Publishing: Norwich, NY, USA, 2013; pp. 231–276. [Google Scholar]
- Wu, Q.; Chen, Q.; Huang, Z.; Gu, B.; Zhu, H.; Tian, L. Preparation and Characterization of Porous Ceramics from Nickel Smelting Slag and Metakaolin. Ceram. Int. 2020, 46, 4581–4586. [Google Scholar] [CrossRef]
- Harman, C.G.; King, B.W. Applications of Nickel Compounds in Ceramics. Ind. Eng. Chem. 1952, 44, 1015–1017. [Google Scholar] [CrossRef]
- Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M.H.; Bhattarai, A.; Saha, B. A Comprehensive Review on the Sources, Essentiality, and Toxicological Profile of Nickel. RSC Adv. 2022, 12, 9139–9153. [Google Scholar] [CrossRef] [PubMed]
- Denkhaus, E.; Salnikow, K. Nickel Essentiality, Toxicity, and Carcinogenicity. Crit. Rev. Oncol. Hematol. 2002, 42, 35–56. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. International Agency for Research on Cancer; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Tammaro, A.; Narcisi, A.; Persechino, S.; Caperchi, C.; Gaspari, A. Topical and Systemic Therapies for Nickel Allergy. DERM 2011, 22, 251–255. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. In Polychlorinated Dibenzo-Para-Dioxins and Polychlorinated Dibenzofurans; International Agency for Research on Cancer: Lyon, France, 1997. [Google Scholar]
- World Health Organization. Manganese in Drinking Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Elumalai, V.; Rajmohan, N.; Sithole, B.; Li, P.; Uthandi, S.; van Tol, J. Geochemical Evolution and the Processes Controlling Groundwater Chemistry Using Ionic Ratios, Geochemical Modeling, and Chemometric Analysis in uMhlathuze Catchment, KwaZulu-Natal, South Africa. Chemosphere 2023, 312, 137179. [Google Scholar] [CrossRef] [PubMed]
- Rajmohan, N.; Elango, L.J.E.G. Identification and Evolution of Hydrogeochemical Processes in the Groundwater Environment in an Area of the Palar and Cheyyar River Basins, Southern India. Environ. Geol. 2004, 46, 47–61. [Google Scholar] [CrossRef]
- Christensen, J.B.; Christensen, T.H. The effect of pH on the complexation of Cd, Ni and Zn by dissolved organic carbon from leachate-polluted groundwater. Water Res. 2000, 34, 3743–3754. [Google Scholar] [CrossRef]
- Mc Kenzie, R.M. Manganese oxides and hydroxides. Miner. Soil Environ. 1989, 1, 439–465. [Google Scholar]
- Abollino, O.; Aceto, M.; Malandrino, M.; Sarzanini, C.; Mentasti, E. Adsorption of Heavy Metals on Na-Montmorillonite: Effect of pH and Organic Substances. Water Res. 2003, 37, 1619–1627. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Septian, A.; Shin, W.S. Influence of Salinity on the Removal of Ni and Zn by Phosphate-Intercalated Nano Montmorillonite (PINM). Minerals 2020, 10, 980. [Google Scholar] [CrossRef]
- Rivas, B.L.; Quilodrán, B.; Quiroz, E. Removal Properties of Crosslinked Poly(2-Acrylamidoglycolic Acid) for Trace Heavy Metal Ions: Effect of pH, Temperature, Contact Time, and Salinity on the Adsorption Behavior. J. Appl. Polym. Sci. 2003, 88, 2614–2621. [Google Scholar] [CrossRef]
- Phillips, I.R.; Lamb, D.T.; Hawker, D.W.; Burton, E.D. Effects of pH and Salinity on Copper, Lead, and Zinc Sorption Rates in Sediments from Moreton Bay, Australia. Bull. Environ. Contam. Toxicol. 2004, 73, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Feng, C.; Chen, N.; Lu, W.; Wang, S. Preparation of Composite Hydrogel with High Mechanical Strength and Reusability for Removal of Cu (II) and Pb (II) from Water. Sep. Purif. Technol. 2022, 300, 121894. [Google Scholar] [CrossRef]
- Yan, C.; Qu, Z.; Wang, J.; Cao, L.; Han, Q. Microalgal Bioremediation of Heavy Metal Pollution in Water: Recent Advances, Challenges, and Prospects. Chemosphere 2022, 286, 131870. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.W.; Hu, Y.; Hu, J.H.; Su, J.X.; Yang, C.M.; Ye, Y.H.; Shen, R.Q. Template Synthesis of Copper Azide Primary Explosive through Cu2O@ HKUST-1 Core-Shell Composite Prepared Maby “Bottle around Ship” Method. Def. Technol. 2023, 25, 99–111. [Google Scholar] [CrossRef]
- Koga, T.; Nonaka, K.; Sakata, Y.; Terasaki, N. Electrochemical Formation and Accumulation of Cu(I) in Copper Sulfate Electroplating Solution. J. Electrochem. Soc. 2018, 165, D423. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, S.; Deng, L.; Zhong, D.; Li, K.; Liu, X.; Ma, J. Cu-Based Perovskite as a Novel CWPO Catalyst for Petroleum Refining Wastewater Treatment: Performance, Toxicity, and Mechanism. J. Hazard. Mater. 2023, 448, 130824. [Google Scholar] [CrossRef] [PubMed]
- Rejeki, S.; Susilowati, T.; Aryati, R.W. Application of Copper Oxide Paints as Prevention for Macrofouling Attachment on a Marine Floating Net Cage. J. Coast. Dev. 2010, 13, 166–178. [Google Scholar]
- Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public Health 2023, 20, 3885. [Google Scholar] [CrossRef] [PubMed]
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers; Pearson Education India: Bangalore, India, 2016. [Google Scholar]
- Daehn, K.E.; Cabrera Serrenho, A.; Allwood, J.M. How Will Copper Contamination Constrain Future Global Steel Recycling? Environ. Sci. Technol. 2017, 51, 6599–6606. [Google Scholar] [CrossRef] [PubMed]
- Cannon, H.L.; Connally, G.G.; Epstein, J.B.; Parker, J.G.; Thornton, I.; Wixson, G. Rocks: Geological Sources of Most Trace Elements. In Report to the Workshop at South Scas Plantation Captiva Island, FL, US. Geochem. Environ. 1978, 3, 17–31. [Google Scholar]
- Liu, Y.; Xiao, T.; Perkins, R.B.; Zhu, J.; Zhu, Z.; Xiong, Y.; Ning, Z. Geogenic Cadmium Pollution and Potential Health Risks, with Emphasis on Black Shale. J. Geochem. Explor. 2017, 176, 42–49. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, Q.; Yin, X.; Zeng, D. Trace amounts of aqueous copper (II) chloride complexes in hypersaline solutions: Spectrophotometric and thermodynamic studies. J. Solut. Chem. 2014, 43, 326–339. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Igarashi, T.; Villacorte-Tabelin, M.; Park, I.; Opiso, E.M.; Ito, M.; Hiroyoshi, N. Arsenic, Selenium, Boron, Lead, Cadmium, Copper, and Zinc in Naturally Contaminated Rocks: A Review of Their Sources, Modes of Enrichment, Mechanisms of Release, and Mitigation Strategies. Sci. Total Environ. 2018, 645, 1522–1553. [Google Scholar] [CrossRef] [PubMed]
- Perić, J.; Trgo, M.; Medvidović, N.V. Removal of Zinc, Copper and Lead by Natural Zeolite—A Comparison of Adsorption Isotherms. Water Res. 2004, 38, 1893–1899. [Google Scholar] [CrossRef] [PubMed]
- Veli, S.; Alyüz, B. Adsorption of Copper and Zinc from Aqueous Solutions by Using Natural Clay. J. Hazard. Mater. 2007, 149, 226–233. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Priority Pollutant List Priority; United States Environmental Protection Agency: Washington, DC, USA, 2014. [Google Scholar]
- Itankar, N.; Patil, Y. Management of Hexavalent Chromium from Industrial Waste Using Low-Cost Waste Biomass. Procedia-Social Behav. Sci. 2014, 133, 219–224. [Google Scholar] [CrossRef]
- Tang, Q.; Du, C.; Liu, J.; Fan, L.; Niu, J.; Miao, C.; Fu, B. The Retention and Speciation Transformation Mechanisms of Chromium During Bituminous Coal Combustion: Effects of Inorganic Minerals and Combustion Temperature. Fuel Process. Technol. 2022, 232, 107273. [Google Scholar] [CrossRef]
- Vogel, C.; Hoffmann, M.C.; Krüger, O.; Murzin, V.; Caliebe, W.; Adam, C. Chromium (VI) in Phosphorus Fertilizers Determined with the Diffusive Gradients in Thin-Films (DGT) Technique. Environ. Sci. Pollut. Res. 2020, 27, 24320–24328. [Google Scholar] [CrossRef] [PubMed]
- Perraki, M.; Vasileiou, E.; Bartzas, G. Tracing the Origin of Chromium in Groundwater: Current and New Perspectives. Curr. Opin. Environ. Sci. Health 2021, 22, 100267. [Google Scholar] [CrossRef]
- Oze, C.; Fendorf, S.; Bird, D.K.; Coleman, R.G. Chromium Geochemistry of Serpentine Soils. Int. Geol. Rev. 2004, 46, 97–126. [Google Scholar] [CrossRef]
- Tashakor, M.; Hochwimmer, B.; Brearley, F.Q. Geochemical Assessment of Metal Transfer from Rock and Soil to Water in Serpentine Areas of Sabah (Malaysia). Environ. Earth Sci. 2017, 76, 281. [Google Scholar] [CrossRef]
- Richard, F.C.; Bourg, A.C. Aqueous Geochemistry of Chromium: A Review. Water Res. 1991, 25, 807–816. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Fresco, L.O. Forum paper: The significance of soils and soil science towards realization of the UN sustainable development goals (SDGS). Soil Discuss. 2016, 2016, 1–28. [Google Scholar]
- Eliopoulos, I.-P.D.; Eliopoulos, G.D.; Economou-Eliopoulos, M. The Cr (Vi) stability in contaminated coastal groundwater: Salinity as a driving force. Minerals 2021, 11, 160. [Google Scholar] [CrossRef]
- Stewart, I.I.; Olesik, J.W. Investigation of Cr (III) hydrolytic polymerisation products by capillary electrophoresis–inductively coupled plasma-mass spectrometry. J. Chromatogr. A 2000, 872, 227–246. [Google Scholar] [CrossRef] [PubMed]
- Michalakis, I.B. Hydrogeological Research in the Industrial Plain of ELVAL Ltd (Oinofita, Viotia): Implication to the Contamination Source; Institute of Geology and Mineral Exploration (IGME): Athens, Greece, 2015; pp. 1–161. (In Greek) [Google Scholar]
- Liang, J.; Huang, X.; Yan, J.; Li, Y.; Zhao, Z.; Liu, Y.; Ye, J.; Wei, Y. A review of the formation of Cr (VI) via Cr (III) oxidation in soils and groundwater. Sci. Total Environ. 2021, 774, 145762. [Google Scholar] [CrossRef]
- Theopold, K.H. Chromium: Inorganic & Coordination Chemistry. In Encyclopedia of Inorganic Chemistry; Wiley: New York, NY, USA, 2006. [Google Scholar]
Metals | Cr | Cd | Ni | Cu | Zn | Pb | References | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Range | Average | Range | Average | Range | Average | Range | Average | Range | Average | Range | Average | |||
China | Jiangsu Aquifer (JA) | BDL-1.01 | 0.133 | BDL-77 | 1.31 | BDL-7.93 | 0.726 | BDL-110 | 4.8 | BDL-20 | 1.53 | BDL-10 | 0.3 | [60] |
Laizhou Bay (LB) | BDL-7.63 | 6.27 | BDL-0.26 | 0.03 | 2.05–32.12 | 8.03 | 0.22–6.04 | 1.15 | 0.35–195.30 | 17.16 | 0.06–14.52 | 0.65 | [56] | |
Egypt | East Matrouh (EM) | 10–37.1 | 15.1 | 0.6–9493 | 486.764 | 2–132.8 | 28.4 | 6–3369 | 200.8 | 11.3–256.7 | 72.1 | 8–117.1 | 49.4 | [61] |
NE-Nile Delta (NE-ND) | BDL-2 | 0.5 | 2–3 | 2 | 8–31 | 19 | 8–85 | 41 | NC | NC | BDL-7 | 0.1 | [62] | |
India | NW Coastal Aquifers (NW-C) | 8.67–292.88 | 102.94 | 1.23–63.23 | 12.94 | 6.36–237.95 | 40.6 | 3.1–297.8 | 56.3 | 11.15–29503 | 800 | 0.56–209.82 | 29.75 | [63] |
Pondicherry Region (PR) | NC | NC | NC | NC | NC | NC | BDL-46 | 13 | BDL-2290 | 133 | BDL-290 | 14 | [77] | |
Toothukudi Coastal Area (TCA) | 1.5–80 | 13.086 | 0.012–2.1 | 0.296 | 0.082–11 | 5.192 | 2.7–236.5 | 31.661 | 0.94–870 | 203.49 | 0.45–18 | 4.376 | [78] | |
Saudi Arabia | Hada Al-Sham (H AL-S) | 5–119 | 38 | NC | NC | 4–138 | 42 | 24–2320 | 643 | 1–366 | 53 | 7–673 | 169 | [55] |
Wadi Fatimah Basin (WFB) | 17–501 | 101 | NC | NC | 17–623 | 122 | BDL-2440 | 276 | 19–335 | 79 | 6–196 | 39 | [79] | |
South Africa | Maputaland Aquifer (MA) | BDL-8.4 | 3.4 | BDL-4.6 | 1.7 | BDL-9.3 | 2.1 | BDL-279.5 | 61.2 | 1.9–19964.5 | 499.9 | BDL-26 | 6.6 | [50] |
Umhlathuze Catchment (UmC) | 24–110 | 103 | 23–59 | 26 | 91–107 | 94 | 11–107 | 23 | 83–221 | 104 | 91–117 | 109 | [53] | |
Tunisia | Monastir Aquifer (MA) | 2–73 | 28 | 7–20 | 3 | BDL-80 | 31 | 1–90 | 3 | BDL-720 | 50 | NC | NC | [80] |
Permissible Limits | 50 | 3 | 70 | 2000 | 5000 | 10 | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gantayat, R.R.; Elumalai, V. Salinity-Induced Changes in Heavy Metal Behavior and Mobility in Semi-Arid Coastal Aquifers: A Comprehensive Review. Water 2024, 16, 1052. https://doi.org/10.3390/w16071052
Gantayat RR, Elumalai V. Salinity-Induced Changes in Heavy Metal Behavior and Mobility in Semi-Arid Coastal Aquifers: A Comprehensive Review. Water. 2024; 16(7):1052. https://doi.org/10.3390/w16071052
Chicago/Turabian StyleGantayat, Rakesh Roshan, and Vetrimurugan Elumalai. 2024. "Salinity-Induced Changes in Heavy Metal Behavior and Mobility in Semi-Arid Coastal Aquifers: A Comprehensive Review" Water 16, no. 7: 1052. https://doi.org/10.3390/w16071052
APA StyleGantayat, R. R., & Elumalai, V. (2024). Salinity-Induced Changes in Heavy Metal Behavior and Mobility in Semi-Arid Coastal Aquifers: A Comprehensive Review. Water, 16(7), 1052. https://doi.org/10.3390/w16071052