A Boatable Days Framework for Quantifying Whitewater Recreation—Insights from Three Appalachian Whitewater Rivers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Workflow, Data and Analysis
3. Results
3.1. Annual Boatable Days
3.2. Monthly Boatable Days
4. Discussion
4.1. Abundance and Hydrologic Drivers of Boatable Days
4.2. Sensitivity and Stability of Boatable Days and Insights for the Future
4.3. Qmean verses Qinst—Tradeoffs for Quantifying Boatable Days
4.4. Beyond Whitewater—Threshold-Based Applications to Larger Outdoor Economy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bureau of Economic Analysis. Outdoor Recreation Satellite Account; Bureau of Economic Analysis: Washington, DC, USA, 2023. [Google Scholar]
- Perkins, C. Rural Economic Development Toolkit; Outdoor Recreation Roundtable: Washington, DC, USA, 2024. [Google Scholar]
- Sausser, B.; Smith, J.W. Elevating Outdoor Recreation Together: Opportunities for Synergy between State Offices of Outdoor Recreation and Federal Land-Management Agencies, the Outdoor Recreation Industry, Non-Governmental Organizations, and Local Outdoor Recreation Providers; Institute for Outdoor Recreation and Tourism at Utah State University: Logan, UT, USA, 2018. [Google Scholar]
- Highfill, T.; Franks, C.; Georgi, P.; Howells, T. Introducing the outdoor recreation satellite account. Surv. Curr. Bus. 2018, 98, 315–317. [Google Scholar]
- Highfill, T.; Franks, C. Measuring the U.S. outdoor recreation economy, 2012–2016. J. Outdoor Recreat. Tour. 2019, 27, 100233. [Google Scholar] [CrossRef]
- Douglas, S.; Walker, A. Coal mining and the resource curse in the eastern United States. J. Reg. Sci. 2017, 57, 568–590. [Google Scholar] [CrossRef]
- Outdoor Industry Association. The Outdoor Recreation Economy; Outdoor Industry Association: Boulder, CO, USA, 2017. [Google Scholar]
- English, D.B.; Bowker, J. Economic Impacts of Guided Whitewater Rafting: A Study of Five Rivers 1. JAWRA J. Am. Water Resour. Assoc. 1996, 32, 1319–1328. [Google Scholar] [CrossRef]
- Mayfield, M. Streamflow duration and recreational flows on three southeastern streams. North Carol. Geogr. 2006, 14, 1–12. [Google Scholar]
- Maples, J.N.; Bradley, M.J. Economic Impact of Non- Commercial Paddling and Preliminary Economic Impact Estimates of Commercial Paddling in the Nantahala and Pisgah Nationals Forests; Outdoor Alliance: Washington, DC, USA, 2017. [Google Scholar]
- Maples, J.N.; Bradley, M.J. Economic Impact of Paddling in the Grand Mesa, Uncompahgre & Gunnison National Forests; Outdoor Alliance: Washington, DC, USA, 2018. [Google Scholar]
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43, 1–13. [Google Scholar] [CrossRef]
- Rood, S.B.; Tymensen, W.; Middleton, R. A comparison of methods for evaluating instream flow needs for recreation along rivers in southern Alberta, Canada. River Res. Appl. 2003, 19, 123–135. [Google Scholar] [CrossRef]
- Zinke, P.; Sandvik, D.; Nesheim, I.; Seifert-Dähnn, I. Comparing Three Approaches to Estimating Optimum White Water Kayak Flows in Western Norway. Water 2018, 10, 1761. [Google Scholar] [CrossRef]
- Yevjevich, V.M. An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts; Colorado State University: Fort Collins, CO, USA, 1967; Volume 23. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Spence, C. A Paradigm Shift in Hydrology: Storage Thresholds Across Scales Influence Catchment Runoff Generation. Geogr. Compass 2010, 4, 819–833. [Google Scholar] [CrossRef]
- Zegre, N.P.; Miller, A.J.; Maxwell, A.; Lamont, S.J. Multiscale Analysis of Hydrology in a Mountaintop Mine-Impacted Watershed. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 1257–1272. [Google Scholar] [CrossRef]
- Sivakumar, B. Hydrologic modeling and forecasting: Role of thresholds. Environ. Model. Softw. 2005, 20, 515–519. [Google Scholar] [CrossRef]
- Aguilar, C.; Polo, M.J. Assessing minimum environmental flows in nonpermanent rivers: The choice of thresholds. Environ. Model. Softw. 2016, 79, 120–134. [Google Scholar] [CrossRef]
- Ligare, S.T.; Viers, J.H.; Null, S.E.; Rheinheimer, D.E.; Mount, J.F. Non-Uniform Changes to Whitewater Recreation in California’s Sierra Nevada from Regional Climate Warming. River Res. Appl. 2012, 28, 1299–1311. [Google Scholar] [CrossRef]
- Stafford, E.; Fey, N.; Vaske, J.J. Quantifying Whitewater Recreation Opportunities in Cataract Canyon of the Colorado River, Utah: Aggregating Acceptable Flows and Hydrologic Data to Identify Boatable Days. River Res. Appl. 2017, 33, 162–169. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Fernon, B.A.; Marte, K.; Williamson, G.J. Analysis of seasonal and interannual river flows affecting whitewater rafting on the Franklin River in the Tasmanian Wilderness World Heritage Area. J. Outdoor Recreat. Tour. 2022, 37, 100481. [Google Scholar] [CrossRef]
- Gianfagna, C.C.; Johnson, C.E.; Chandler, D.G.; Hofmann, C. Watershed area ratio accurately predicts daily streamflow in nested catchments in the Catskills, New York. J. Hydrol. Reg. Stud. 2015, 4, 583–594. [Google Scholar] [CrossRef]
- Buckley, R. Perceived Resource Quality as a Framework to Analyze Impacts of Climate Change on Adventure Tourism: Snow, Surf, Wind, and Whitewater. Tour. Rev. Int. 2017, 21, 241–254. [Google Scholar] [CrossRef]
- Hand, M.; Smith, J.; Peterson, D.; Brunswick, N.; Brown, C. Effects of climate change on outdoor recreation Chapter 10. In Climate Change Vulnerability and Adaptation in the Intermountain Region Part 2; Halofsky, J.E., Peterson, D.L., Ho, J.J., Little, N.J., Joyce, L.A., Eds.; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2018; pp. 316–338. [Google Scholar]
- Pröbstl-Haider, U.; Hödl, C.; Ginner, K.; Borgwardt, F. Climate change: Impacts on outdoor activities in the summer and shoulder seasons. J. Outdoor Recreat. Tour. 2021, 34, 100344. [Google Scholar] [CrossRef]
- USGCRP. Fifth National Climate Assessment; Crimmins, A.R., Jay, A.K., Avery, C.W., Dahl, T.A., Dodder, R.S., Hamlington, B.D., Lustig, A.R., Marvel, K., Méndez-Lazaro, P.A., Osler, M.S., et al., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2023. [Google Scholar]
- Fish, M. 18 destinations within one day’s drive for 50% or more of Americans. In Tyler Morning Telegraph; Tyler Paper: Tyler, TX, USA, 2022. [Google Scholar]
- Lobao, L.; Zhou, M.; Partridge, M.; Betz, M. Poverty, Place, and Coal Employment across Appalachia and the United States in a New Economic Era. Rural. Sociol. 2016, 81, 343–386. [Google Scholar] [CrossRef]
- Schwartzman, G. After Coal: Power, Development, and Post-Coal Politics in Appalachia; University of Minnesota: Minneapolis, MN, USA, 2023; p. 234. [Google Scholar]
- WV Department of Tourism. 2023 Annual Report—State of the Tourism Industry. 2023. Available online: https://wvtourism.com/wp-content/uploads/2024/03/2023-Annual-Report_WV-Department-of-Tourism.pdf (accessed on 3 March 2024).
- Brooks, R.P.; Limpisathian, P.W.; Gould, T.; Mazurczyk, T.; Sava, E.; Mitsch, W.J. Does the Ohio River Flow All the Way to New Orleans? JAWRA J. Am. Water Resour. Assoc. 2018, 54, 752–756. [Google Scholar] [CrossRef]
- Young, D.; Zégre, N.; Edwards, P.; Fernandez, R. Assessing streamflow sensitivity of forested headwater catchments to disturbance and climate change in the central Appalachian Mountains region, USA. Sci. Total Environ. 2019, 694, 133382. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, R.; Zegre, N. Seasonal Changes in Water and Energy Balances over the Appalachian Region and Beyond throughout the Twenty-First Century. J. Appl. Meteorol. Climatol. 2019, 58, 1079–1102. [Google Scholar] [CrossRef]
- PRISM Climate Group. PRISM Climate Group. 2023. Available online: https://prism.oregonstate.edu (accessed on 12 December 2022).
- Smith, J.A.; Baeck, M.L.; Ntelekos, A.A.; Villarini, G.; Steiner, M. Extreme rainfall and flooding from orographic thunderstorms in the central Appalachians. Water Resour. Res. 2011, 47, W04514. [Google Scholar] [CrossRef]
- Ehlke, T.E.; Runner, G.S.; Downs, S.C. Hydrology of Area 9, Eastern Coal Province, West Virginia. United Stated Geological Survey Water Resopurces Investigations Open File Report 81-803; US Department of the Interior, Geological Survey: Charleston, WV, USA, 1982. [Google Scholar]
- Weedfall, R.O.; Dickerson, W.H. Climate of Canaan Valley and Blackwater Falls State Park, West Virginia; West Virginia University Agricultural Experiment Station: Morgantown, WV, USA, 1965. [Google Scholar]
- Adams, M.B.; Edwards, P.J.; Ford, W.M.; Schuler, T.M.; Gundy, M.T.-V.; Wood, F. Fernow Experimental Forest: Research History and Opportunities; USDA Forest Service: Washington, DC, USA, 2012; 26p. [Google Scholar]
- Davis, L. The River Gypsies’ Guide to North America: A Whitewater Travel Guide, 1st ed.; Brushy Mountain Publishing: Swannanoa, NC, USA, 2010. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- DeCicco, L.; Hirsch, R.; Lorenz, D.; Watkins, D.; Johnson, M. DataRetrieval: R Packages for Discovering and Retrieving Water Data Available from U.S. Federal Hydrologic Web Services. Available online: https://waterdata.usgs.gov/blog/dataretrieval/ (accessed on 15 November 2023).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation. 2023. Available online: https://www.scirp.org/reference/referencespapers?referenceid=3610085(accessed on 3 April 2024).
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; Elsevier: Amsterdam, The Netherlands, 1992; 522p. [Google Scholar]
- Ljung, G.; Box, G.E.P. On a Measure of Lack of Fit in Time Series Models. Biometrika 1978, 66, 67–72. [Google Scholar] [CrossRef]
- Pohlert, T. trend: Non-Parametric Trend Tests and Change-Point Detection. 2018. Available online: https://brieger.esalq.usp.br/CRAN/web/packages/trend/vignettes/trend.pdf (accessed on 3 April 2024).
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Miller, A.; Zégre, N. Mountaintop Removal Mining and Catchment Hydrology. Water 2014, 6, 472–499. [Google Scholar] [CrossRef]
- Chambers, D.B.; Wiley, J.B.; Kozar, M.D. Overview of Hydrologic and Geologic Investigations Conducted in Canaan Valley, West Virginia. Southeast. Nat. 2015, 14, 87–102. [Google Scholar] [CrossRef]
- Gaertner, B.A.; Zegre, N.; Warner, T.; Fernandez, R.; He, Y.; Merriam, E.R. Climate, forest growing season, and evapotranspiration changes in the central Appalachian Mountains, USA. Sci. Total Environ. 2019, 650, 1371–1381. [Google Scholar] [CrossRef]
- Archfield, S.A.; Vogel, R.M. Map correlation method: Selection of a reference streamgage to estimate daily streamflow at ungaged catchments. Water Resour. Res. 2010, 46, W10513. [Google Scholar] [CrossRef]
- Vose, J.M.; Ford, C.R.; Laseter, S.; Dymond, S.; Sun, G.; Adams, M.B.; Sebestyen, S.; Campbell, J.; Luce, C.; Amatya, D.; et al. Can forest watershed management mitigate climate change effects on water resources. IAHS 2012, 353, 12–25. [Google Scholar]
- Lins, H.F.; Slack, J.R. Streamflow trends in the United States. Geophys. Res. Lett. 1999, 26, 227–230. [Google Scholar] [CrossRef]
- McCabe, G.J.; Wolock, D.M. A step increase in streamflow in the conterminous United States. Geophys. Res. Lett. 2002, 29, 2185. [Google Scholar] [CrossRef]
- Dethier, E.N.; Sartain, S.L.; Renshaw, C.E.; Magilligan, F.J. Spatially coherent regional changes in seasonal extreme streamflow events in the United States and Canada since 1950. Sci. Adv. 2020, 6, eaba5939. [Google Scholar] [CrossRef]
- Karl, T.R.; Knight, R.W. Secular Trends of Precipitation Amount, Frequency, and Intensity in the United States. Bull. Am. Meteorol. Soc. 1998, 79, 231–241. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Fung, I. Mapping and attribution of change in streamflow in the conterminous United States. Hydrol. Earth Syst. Sci. 2008, 12, 1111–1120. [Google Scholar] [CrossRef]
- Hayhoe, K.; Wake, C.; Anderson, B.; Liang, X.-Z.; Maurer, E.; Zhu, J.; Bradbury, J.; DeGaetano, A.; Stoner, A.; Wuebbles, D. Regional climate change projections for the Northeast USA. Mitig. Adapt. Strateg. Glob. Change 2008, 13, 425–436. [Google Scholar] [CrossRef]
- Kutta, E.; Hubbart, J. Climatic Trends of West Virginia: A Representative Appalachian Microcosm. Water 2019, 11, 1117. [Google Scholar] [CrossRef]
- Gaertner, B.; Fernandez, R.; Zegre, N. Twenty-First Century Streamflow and Climate Change in Forest Catchments of the Central Appalachian Mountains Region, US. Water 2020, 12, 453. [Google Scholar] [CrossRef]
- Easterling, D.R.; Arnold, J.R.; Knutson, T.; Kunkel, K.E.; LeGrande, A.N.; Leung, L.R.; Vose, R.S.; Waliser, D.E.; Wehner, M.F. Precipitation change in the United States. Fourth Natl. Clim. Assess. 2017, 1, 1–24. [Google Scholar]
- Walsh, J. Our Changing Climate. In Climate Change Impacts in the United States; U.S. Global Change Research Program: Washington, DC, USA, 2014. [Google Scholar]
- Huang, H.; Winter, J.M.; Osterberg, E.C.; Horton, R.M.; Beckage, B. Total and Extreme Precipitation Changes over the Northeastern United States. J. Hydrometeorol. 2017, 18, 1783–1798. [Google Scholar] [CrossRef] [PubMed]
- Bales, R.C.; Molotch, N.P.; Painter, T.H.; Dettinger, M.D.; Rice, R.; Dozier, J. Mountain hydrology of the western United States. Water Resour. Res. 2006, 42, W08432. [Google Scholar] [CrossRef]
- Mickelson, K.E.; Hamlet, A.F. Effects of Climate Change on White-Water Recreation on the Salmon River, Idaho; C21C-0571; University of Washington: Seattle, WA, USA, 2008. [Google Scholar]
- Merriam, E.R.; Fernandez, R.; Petty, J.T.; Zegre, N. Can brook trout survive climate change in large rivers? If it rains. Sci. Total Environ. 2017, 607–608, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
- First Street Foundation. First Street Foundation’s 8th National Risk Assessment: The Precipitation Problem; First Street Foundation: Brooklyn, NY, USA, 2023. [Google Scholar]
- SafeWaters. Deep Creek, Maryland—Water Release Information. 2023. Available online: https://www.safewaters.com/facility/deep-creek (accessed on 5 January 2024).
- Young, M.K.; Isaak, D.J.; Spaulding, S.; Thomas, C.A.; Barndt, S.A.; Groce, M.C.; Horan, D.; Nagel, D.E. Effects of Climate Change on Cold-Water Fish in the Northern Rockies. In Climate Change and Rocky Mountain Ecosystems; Halofsky, J.E., Peterson, D.L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 37–58. [Google Scholar]
- Williams, J.E.; Isaak, D.J.; Imhof, J.; Hendrickson, D.A.; McMillan, J.R. Cold-Water Fishes and Climate Change in North America. In Encyclopedia of the Anthropocene; Dellasala, D.A., Goldstein, M.I., Eds.; Elsevier: Oxford, UK, 2018; pp. 103–111. [Google Scholar]
- Evju, M.; Hagen, D.; Jokerud, M.; Olsen, S.L.; Selvaag, S.K.; Vistad, O.I. Effects of mountain biking versus hiking on trails under different environmental conditions. J. Environ. Manag. 2021, 278, 111554. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.; Runer, A.; Neunhäuserer, D.; Frick, N.; Resch, H.; Moroder, P. A prospective study of downhill mountain biking injuries. Br. J. Sports Med. 2013, 47, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, C.; Arnberger, A. The Influence of the Weather upon Recreation Activities. In Proceedings of the First International Workshop on Climate, Tourism and Recreation, International Society of Biometeorology, Porto Carras, Halkidiki, Greece, 5–10 October 2001. [Google Scholar]
- Böcker, L.; Dijst, M.; Prillwitz, J. Impact of Everyday Weather on Individual Daily Travel Behaviours in Perspective: A Literature Review. Transp. Rev. 2013, 33, 71–91. [Google Scholar] [CrossRef]
- R.-Toubes, D.; Araújo-Vila, N.; Fraiz-Brea, J.A. Influence of Weather on the Behaviour of Tourists in a Beach Destination. Atmosphere 2020, 11, 121. [Google Scholar] [CrossRef]
Whitewater Section | USGS Stream Station | Latitude/Longitude | Gauge Elevation | Watershed Drainage Area | Mean Annual Air Temperature | Mean Annual Precipitation | Min. Annual Streamflow | Mean Annual Streamflow | Max. Annual Streamflow | Minimum Boatable Threshold |
---|---|---|---|---|---|---|---|---|---|---|
m | km2 | deg. C | mm | m3/s | m3/s | m3/s | m3/s | |||
Upper Blackwater | 3066000 | 39°07′37″/79°28′07″ | 932 | 223 | 9.3 | 1323 | 2.17 | 223 | 4000 | 7.08 |
Lower Big Sandy | 3070500 | 39°37′18″/79°42′16″ | 403 | 518 | 10.4 | 1188 | 2.82 | 436 | 10,500 | 7.28 |
Upper Yough | 3076500 | 39°39′13″/79°24′29″ | 453 | 764 | 9.3 | 1167 | 38.5 | 699 | 9560 | 12.74 |
Section | Time Period | Qmean | Qinst | ||
---|---|---|---|---|---|
Number of Boatable Days | Number of Days Missing Q | Number of Boatable Days | Number of Days Missing Q | ||
Days (%) | Days | Days (%) | Days (%) | ||
Upper Blackwater | 2001–2020 | 100 (27%) | 0 | 116 (32%) | 751 (10%) |
Lower Big Sandy | 2001–2020 | 179 (49%) | 0 | 180 (49%) | 828 (11%) |
Upper Yough | 2001–2020 | 171 (47%) | 0 | 256 (67%) | 417 (6%) |
Section | Qmean | Qinst | ||||
---|---|---|---|---|---|---|
p-Value | Slope | Total D | p-Value | Slope | Total D | |
- | Days/yr | Days | - | Days/yr | Days | |
Upper Blackwater | 0.70 | 0.41 | 8 | 0.57 | -0.74 | -15 |
Lower Big Sandy | 0.54 | 1.50 | 30 | 0.2 | 1.5 | 30 |
Upper Yough | 0.26 | 1.57 | 31 | 1.00 | -0.08 | -2 |
Month | Season | No. of Days | Upper Blackwater | Lower Big Sandy | Upper Yough | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Qmean Boat. Days | Qinst Boat. Days | Missing Days | % Missing Days | Qmean Boat. Days | Qinst Boat. Days | Missing Days | % Missing Days | Qmean Boat. Days | Qinst Boat. Days | Missing Days | % Missing Days | |||
Dec | Winter | 620 | 11 | 13 | 127 | 20 | 22 | 22 | 52 | 8 | 21 | 24 | 55 | 9 |
Jan | 621 | 11 | 12 | 277 | 45 | 21 | 20 | 188 | 30 | 21 | 19 | 163 | 26 | |
Feb | 565 | 12 | 12 | 187 | 33 | 22 | 19 | 154 | 27 | 24 | 20 | 133 | 24 | |
Mar | 620 | 15 | 16 | 55 | 9 | 26 | 25 | 50 | 8 | 21 | 25 | 20 | 3 | |
Apr | Spring | 600 | 14 | 16 | 1 | 0.2 | 24 | 25 | 5 | 1 | 19 | 24 | 16 | 3 |
May | 620 | 11 | 13 | 4 | 1 | 21 | 22 | 7 | 1 | 9 | 24 | 0 | 0 | |
Jun | 600 | 5 | 7 | 6 | 1 | 9 | 10 | 54 | 9 | 7 | 22 | 1 | 0 | |
Jul | Summer | 620 | 4 | 6 | 9 | 1 | 6 | 8 | 49 | 8 | 4 | 26 | 0 | 0 |
Aug | 620 | 2 | 3 | 14 | 2 | 4 | 6 | 102 | 16 | 4 | 22 | 1 | 0 | |
Sep | 600 | 3 | 3 | 19 | 3 | 3 | 4 | 68 | 11 | 7 | 17 | 2 | 0 | |
Oct | Fall | 620 | 4 | 5 | 15 | 2 | 7 | 8 | 67 | 11 | 12 | 15 | 6 | 1 |
Nov | 600 | 6 | 8 | 29 | 5 | 13 | 13 | 32 | 5 | 21 | 17 | 20 | 3 | |
Average | 8 | 10 | - | - | 15 | 15 | - | - | 14 | 21 | - | - |
Month | Season | Upper Blackwater | Lower Big Sandy | Upper Yough | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Qmean | Qinst | Qmean | Qinst | Qmean | Qinst | ||||||||||||||
p-Value | Slope | Total D | p-Value | Slope | Total D | p-Value | Slope | Total D | p-Value | Slope | Total D | p-Value | Slope | Total D | p-Value | Slope | Total D | ||
- | Days/Year | Days | - | Days/Year | Days | - | Days/Year | Days | - | Days/Year | Days | - | Days/Year | Days | - | Days/Year | Days | ||
Dec | winter | 0.14 | 0.35 | 7 | 0.25 | 0.19 | 4 | 0.92 | 0.00 | 0 | 0.77 | −0.09 | −2 | 0.62 | 0.1 | 2 | 0.27 | 0.3 | 5 |
Jan | 0.36 | 0.14 | 3 | 0.90 | 0.00 | 0 | 0.30 | 0.34 | 7 | 0.36 | 0.33 | 7 | 0.03 | 0.8 | 16 | 0.67 | 0.2 | 5 | |
Feb | 0.20 | 0.35 | 7 | 0.10 | 0.38 | 8 | 0.31 | 0.21 | 4 | 0.20 | 0.32 | 6 | 0.01 | 0.6 | 13 | 0.15 | 0.4 | 8 | |
Mar | spring | 0.63 | −0.25 | −5 | 0.28 | −0.32 | −6 | 0.74 | 0.00 | 0 | 0.92 | 0.00 | 0 | 0.84 | 0.0 | 0 | 0.25 | −0.3 | −6 |
Apr | 0.72 | −0.09 | −2 | 0.70 | −0.13 | −3 | 0.65 | 0.10 | 2 | 0.47 | 0.09 | 2 | 0.95 | 0.00 | 0 | 0.39 | −0.2 | −3 | |
May | 0.79 | −0.07 | −1 | 1.00 | 0.00 | 0 | 0.49 | 0.18 | 4 | 0.67 | 0.09 | 2 | 0.24 | 0.3 | 6 | 0.33 | 0.1 | 3 | |
Jun | summer | 0.74 | 0.00 | 0 | 0.56 | 0.12 | 2 | 0.58 | −0.21 | −4 | 0.53 | 0.17 | 3 | 1.00 | 0.0 | 0 | 0.58 | −0.1 | −1 |
Jul | 0.08 | −0.25 | −5 | 0.08 | −0.33 | −7 | 0.39 | 0.11 | 2 | 0.21 | 0.33 | 7 | 0.97 | 0.0 | 0 | 0.09 | 0.2 | 4 | |
Aug | 0.42 | 0.00 | 0 | 0.57 | 0.00 | 0 | 0.57 | 0.00 | 0 | 0.35 | 0.13 | 3 | 0.61 | 0.0 | 0 | 0.82 | 0.0 | 1 | |
Sep | 0.84 | 0.00 | 0 | 0.69 | 0.00 | 0 | 0.39 | 0.00 | 0 | 0.26 | 0.00 | 0 | 0.46 | 0.0 | 0 | 1.00 | 0.0 | 0 | |
Oct | fall | 0.95 | 0 | 0 | 0.87 | 0.00 | 0 | 0.97 | 0.00 | 0 | 0.90 | 0.00 | 0 | 0.89 | 0.0 | 0 | 0.84 | 0.0 | 0 |
Nov | 0.45 | −0.17 | −3 | 0.47 | −0.29 | −6 | 0.19 | −0.33 | −7 | 0.28 | −0.35 | −7 | 0.36 | −0.5 | −10 | 0.42 | −0.3 | −7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zegre, N.; Shafer, M.; Twilley, D.; Corio, G.; Strager, M.P.; Strager, J.M.; Kinder, P. A Boatable Days Framework for Quantifying Whitewater Recreation—Insights from Three Appalachian Whitewater Rivers. Water 2024, 16, 1060. https://doi.org/10.3390/w16071060
Zegre N, Shafer M, Twilley D, Corio G, Strager MP, Strager JM, Kinder P. A Boatable Days Framework for Quantifying Whitewater Recreation—Insights from Three Appalachian Whitewater Rivers. Water. 2024; 16(7):1060. https://doi.org/10.3390/w16071060
Chicago/Turabian StyleZegre, Nicolas, Melissa Shafer, Danny Twilley, Greg Corio, Michael P. Strager, Jacquelyn M. Strager, and Paul Kinder. 2024. "A Boatable Days Framework for Quantifying Whitewater Recreation—Insights from Three Appalachian Whitewater Rivers" Water 16, no. 7: 1060. https://doi.org/10.3390/w16071060
APA StyleZegre, N., Shafer, M., Twilley, D., Corio, G., Strager, M. P., Strager, J. M., & Kinder, P. (2024). A Boatable Days Framework for Quantifying Whitewater Recreation—Insights from Three Appalachian Whitewater Rivers. Water, 16(7), 1060. https://doi.org/10.3390/w16071060