Climate-Driven Dynamics of Runoff in the Dayekou Basin: A Comprehensive Analysis of Temperature, Precipitation, and Anthropogenic Influences over a 25-Year Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Source of Water Volume and Weather Data
2.3. Statistical Characteristics of the Runoff, Temperature, and Precipitation Series
2.4. Concentration Analysis
2.5. Linear Trend Analysis of Interannual Variability
2.6. Regression Analysis of Interannual Variation
2.7. Uncertainty Analysis in Methodological Approach
3. Results and Discussion
3.1. Temporal Analysis of Precipitation, Runoff, and Temperature (1994–2018)
3.1.1. Interannual Variation of Runoff, Precipitation, and Temperature
3.1.2. Runoff Concentration and Amplitude Analysis
3.1.3. Examination of Seasonal Patterns and Fluctuations
3.1.4. Temporal Dynamics of Seasonal Runoff Variations
3.2. Coupling Relationship among Runoff, Precipitation, and Temperature
3.3. Annual Regression Analysis of River Runoff, Precipitation, and Temperature
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; p. 184. [Google Scholar] [CrossRef]
- PAGES2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 2017, 4, 170088. [Google Scholar] [CrossRef]
- Martin, J.T.; Pederson, G.T.; Woodhouse, C.A.; Cook, E.R.; McCabe, G.J.; Anchukaitis, K.J.; Wise, E.K.; Erger, P.J.; Dolan, L.; McGuire, M.; et al. Increased drought severity tracks warming in the United States’ largest river basin. Sci. Data 2020, 117, 11328–11336. [Google Scholar] [CrossRef]
- Gu, L.; Chen, J.; Yin, J.; Xu, C.-Y.; Zhou, J. Responses of precipitation and runoff to climate warming and implications for future drought changes in China. Earth’s Future 2020, 8, e2020EF001718. [Google Scholar] [CrossRef]
- Thompson, R.J. Modelling the impacts of climate change on upland catchments in southwest Scotland using MIKE SHE and the UKCP09 probabilistic projections. Hydrol. Res. 2012, 43, 507–530. [Google Scholar] [CrossRef]
- Ashrafi, K.; Shafiepour, M.; Ghasemi, L.; Araabi, B. Prediction of climate change induced temperature rise in regional scale using neural network. Int. J. Environ. Res. 2012, 6, 677–688. [Google Scholar]
- Intergovernmental Panel on Climate Change-Working Group I. Contribution to the IPCC Fifth Assessment Report. Climate Change: The physical Science Basis: Summary for policymakers. 28 October 2013. Available online: https://www.cambridge.org/core/books/abs/climate-change-2013-the-physical-science-basis/summary-for-policymakers/356E277FD1FBC887845FB9E8CBC90CCD (accessed on 20 December 2023).
- Xu, X.Y.; Yang, D.W.; Yang, H.B.; Lei, H.M. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin. J. Hydrol. 2014, 510, 530–540. [Google Scholar] [CrossRef]
- Labat, D.; Goddéris, Y.; Probst, J.L.; Guyot, J.L. Evidence for global runoff increase related to climate warming. Adv. Water Resour. 2004, 27, 631–642. [Google Scholar] [CrossRef]
- Liu, G.; Chen, R.; Li, K. Glacial Change and Its Hydrological Response in Three Inland River Basins in the Qilian Mountains, Western China. Water 2021, 13, 2213. [Google Scholar] [CrossRef]
- Javadinejad, S.; Dara, R.; Jafary, F. Climate change scenarios and effects on snow-melt runoff. Civ. Eng. J. 2020, 6, 1715–1725. [Google Scholar] [CrossRef]
- Potter, N.J.; Chiew, F.H.S. An investigation into changes in climate characteristics causing the recent very low runoff in the southern Murray-Darling Basin using rainfall-runoff models. Water Resour. Res. 2011, 47, W00G10. [Google Scholar] [CrossRef]
- Pu, T.; He, Y.Q.; Zhu, G.F.; Xin, H.J.; Du, J.K.; Wang, S.X.; Wang, S.J. Hydrochemical characteristics of three rivers around Yu long Mountain in rainy season. Sci. Geogr. Sin. 2011, 31, 734–740. [Google Scholar]
- Resende, N.C.; Miranda, J.H.; Cooke, R.; Chu, M.L.; Chou, S.C. Impacts of regional climate change on the runoff and root water uptake in corn crops in Parana, Brazil. Agric. Water Manag. 2019, 221, 556–565. [Google Scholar] [CrossRef]
- Griggs, D.J.; Noguer, M. Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Weather 2002, 57, 267–269. [Google Scholar] [CrossRef]
- Wang, G.S.; Xia, J.; Chen, J. Quantification of effects of climate variations and human activities on runoff by a monthly water balance model: A case study of the Chaobai River basin in northern China. Water Resour. Res. 2009, 45, W00A11. [Google Scholar] [CrossRef]
- Song, X.Y.; Sun, W.Y.; Zhang, Y.Q.; Song, S.B.; Li, J.Y.; Gao, Y.J. Using hydrological modelling and data-driven approaches to quantify mining activities impacts on centennial streamflow. J. Hydrol. 2020, 585, 124764. [Google Scholar] [CrossRef]
- Karis, T.; Silvester, E.; Rees, G. Chemical regulation of alpine head water streams during a storm event (Bogong High Plains, Victoria, Australia). J. Hydrol. 2016, 542, 317–329. [Google Scholar] [CrossRef]
- Chang, Z.; Feng, Q.; Si, J.; Su, Y.; Xi, H.; Li, J. Analysis of the spatial and temporal changes in soil CO2 flux in alpine meadow of Qilian Mountain. Environ. Geol. 2009, 58, 483–490. [Google Scholar] [CrossRef]
- Shang, X.; Jiang, X.; Jia, R.; Wei, C. Land use and climate change effects on surface runoff variations in the upper Heihe River basin. Water 2019, 11, 344. [Google Scholar] [CrossRef]
- Fu, J.X.; Cao, G.C.; Guo, W.J. Land use change and its driving force on the southern slope of Qilian Mountains from 1980 to 2018. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2020, 31, 2699–2709. [Google Scholar]
- Wang, M.; Yang, M. Analysis of the Evolution of Land-Use Types in the Qilian Mountains from 1980 to 2020. Land 2023, 12, 287. [Google Scholar] [CrossRef]
- LY/T 1606-2003; Indicators System for Long-Term Observation of Forest Ecosystem. Standards Press of China: Beijing, China, 2003.
- LY/T 1721-2008; Specifications for Assessment of Forest Ecosystem Services in China. Standards Press of China: Beijing, China, 2008.
- Goddard, L.; Gershunov, A. Impact of El Niño on weather and climate extremes. In El Niño Southern Oscillation in a Changing Climate; American Geophysical Union: Washington, DC, USA, 2020; pp. 361–375. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R. Global Warming of 1.5 C: IPCC Special Report on Impacts of Global Warming of 1.5 C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- IPCC. ‘Special Report on the Ocean and Cryosphere in a Changing Climate’. 2019; p. 149, Chapter 2, p. 18. Available online: https://www.ipcc.ch/srocc/download-report/ (accessed on 1 December 2023).
- da Silva, G.C.X.; Medeiros de Abreu, C.H.; Ward, N.D.; Belúcio, L.P.; Brito, D.C.; Cunha, H.F.A.; da Cunha, A.C. Environmental impacts of dam reservoir filling in the East Amazon. Front. Water 2020, 2, 11. [Google Scholar] [CrossRef]
- Chen, J.; Wu, X.; Finlayson, B.L.; Webber, M.; Wei, T.; Li, M.; Chen, Z. Variability and trend in the hydrology of the Yangtze River, China: Annual precipitation and runoff. J. Hydrol. 2014, 513, 403–412. [Google Scholar] [CrossRef]
- Liu, J.; Long, A.; Deng, X.; Yin, Z.; Deng, M.; An, Q.; Gu, X.; Li, S.; Liu, G. The Impact of Climate Change on Hydrological Processes of the Glacierized Watershed and Projections. Remote Sens. 2022, 14, 1314. [Google Scholar] [CrossRef]
- Raimi, M.O.; Abiola, I.; Alima, O.; Omini, D.E. Exploring how human activities disturb the balance of biogeochemical cycles: Evidence from the carbon, nitrogen and hydrologic cycles. Res. World Agric. Econ. 2021, 2, 23–44. [Google Scholar] [CrossRef]
- Chen, L.; Yang, M.; Liu, X.; Lu, X. Attribution and Sensitivity Analysis of Runoff Variation in the Yellow River Basin under Climate Change. Sustainability 2022, 14, 14981. [Google Scholar] [CrossRef]
- Xia, C.; Liu, G.; Zhou, J.; Meng, Y.; Chen, K.; Gu, P.; Yang, M.; Huang, X.; Mei, J. Revealing the impact of water conservancy projects and urbanization on hydrological cycle based on the distribution of hydrogen and oxygen isotopes in water. Environ. Sci. Pollut. Res. 2021, 28, 40160–40177. [Google Scholar] [CrossRef]
- Chang, J.; Wang, Y.; Istanbulluoglu, E.; Bai, T.; Huang, Q.; Yang, D.; Huang, S. Impact of climate change and human activities on runoff in the Weihe River Basin, China. Quat. Int. 2015, 380, 169–179. [Google Scholar] [CrossRef]
- Yin, Z.; Xiao, H.; Zou, S.; Zhu, R.; Lu, Z.; Lan, Y.; Shen, Y. Simulation of hydrological processes of mountainous watersheds in inland river basins: Taking the Heihe Mainstream River as an example. J. Arid. Land 2014, 6, 16–26. [Google Scholar] [CrossRef]
- Sajikumar, N.; Remya, R.S. Impact of land cover and land use change on runoff characteristics. J. Environ. Manag. 2015, 161, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Laudon, H.; Sponseller, R.A. How landscape organization and scale shape catchment hydrology and biogeochemistry: Insights from a long-term catchment study. Wiley Interdiscip. Rev. Water 2018, 5, e1265. [Google Scholar] [CrossRef]
- Ali, G.; Tetzlaff, D.; McDonnell, J.J.; Soulsby, C.; Carey, S.; Laudon, H.; McGuire, K.; Buttle, J.; Seibert, J.; Shanley, J. Comparison of threshold hydrologic response across northern catchments. Hydrol. Process. 2015, 29, 3575–3591. [Google Scholar] [CrossRef]
- Allan, R.P.; Barlow, M.; Byrne, M.P.; Cherchi, A.; Douville, H.; Fowler, H.J.; Zolina, O. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 2020, 1472, 49–75. [Google Scholar] [CrossRef]
- Cantonati, M.; Poikane, S.; Pringle, C.M.; Stevens, L.E.; Turak, E.; Heino, J.; Richardson, J.S.; Bolpagni, R.; Borrini, A.; Cid, N.; et al. Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: Consequences for biodiversity conservation. Water 2020, 12, 260. [Google Scholar] [CrossRef]
- Qiao, C.; Wang, Y.; Liu, Y.; Li, J.; Zhang, H.; Lu, J. Study of Water Resources Optimal Operation Model of Multireservoir: A Case Study of Kuitun River Basin in Northwestern China. Wirel. Commun. Mob. Comput. 2022, 2022, 7715398. [Google Scholar] [CrossRef]
- Abbas, M.; Zhao, L.; Wang, Y. Perspective Impact on Water Environment and Hydrological Regime Owing to Climate Change: A Review. Hydrology 2022, 9, 203. [Google Scholar] [CrossRef]
- Wang, S.; Sun, M.; Wang, G.; Yao, X.; Wang, M.; Li, J.; Duan, H.; Xie, Z.; Fan, R.; Yang, Y. Simulation and Reconstruction of Runoff in the High-Cold Mountains Area Based on Multiple Machine Learning Models. Water 2023, 15, 3222. [Google Scholar] [CrossRef]
- Arab Amiri, M.; Mesgari, M.S. Modeling the spatial and temporal variability of precipitation in northwest Iran. Atmosphere 2017, 8, 254. [Google Scholar] [CrossRef]
- Dong, F.; Neumann, A.; Kim, D.K.; Huang, J.; Arhonditsis, G.B. A season-specific, multi-site calibration strategy to study the hydrological cycle and the impact of extreme-flow events along an urban-to-agricultural gradient. Ecol. Inform. 2019, 54, 100993. [Google Scholar] [CrossRef]
Time (Years) | Concentration Ratio (Cn) | Amplitude (∆R) | ||
---|---|---|---|---|
Ci/% | Vector Direction | Ck (Relative Amplitude) | δR (Absolute Amplitude) | |
1994–1998 | 61.125 | 231° | 22.367 | 1.221 |
1999–2003 | 58.637 | 231° | 26.167 | 1.118 |
2004–2008 | 58.214 | 231° | 17.533 | 1.013 |
2009–2013 | 58.361 | 228° | 14.415 | 1.228 |
2014–2018 | 57.148 | 228° | 10.049 | 1.875 |
Mean Value | 58.697 | 231° | 18.106 | 1.291 |
Time (Year) | Spring | Summer | Autumn | Winter |
---|---|---|---|---|
1994–1998 | 7.60 | 51.75 | 40.21 | 0.44 |
1999–2003 | 15.16 | 38.00 | 35.39 | 11.45 |
2004–2008 | 14.77 | 58.20 | 26.20 | 0.83 |
2009–2013 | 7.74 | 58.84 | 32.86 | 0.57 |
2014–2018 | 8.91 | 60.01 | 29.34 | 1.74 |
Mean value | 10.84 | 53.36 | 32.80 | 3.01 |
Annual Average Temperature | Annual Precipitation | Annual River Runoff | |
---|---|---|---|
Annual river runoff | 0.644 | 0.844 | 1.000 |
Annual precipitation | 0.167 | 1.000 | |
Annual average temperature | 1.000 |
Dependent Variable | Independent Variable | Regression Equation | R2 |
---|---|---|---|
Air temperature t | Month x | t = −0.7312x2 +17.123 − 23.519 | 0.9113 |
Precipitation p | Month x | p = 0.1034x4 − 4.0917x3 + 28.702x2 − 69.731x + 57.082 | 0.9285 |
Runoff volume R | Month x | R = 0.0693x4 − 1.5875x3 + 12.215x2 − 31.913x + 22.405 | 0.9643 |
Ranking | Month | Temperature Difference (%) | Month | Precipitation Difference (%) | Month | Riverrunoff Difference (%) |
---|---|---|---|---|---|---|
1 | 1 | 16.93 | 9 | 15.34 | 4 | 22.2 |
2 | 3 | 16.02 | 7 | 13.98 | 1 | 18.6 |
3 | 7 | 11.58 | 1 | 13.94 | 7 | 16.27 |
4 | 2 | 10.41 | 6 | 11.95 | 11 | 11.56 |
5 | 4 | 9.78 | 2 | 10.01 | 8 | 8.76 |
6 | 5 | 7.79 | 5 | 7.53 | 2 | 8.43 |
7 | 10 | 6.29 | 10 | 6.26 | 6 | 5.09 |
8 | 8 | 5.9 | 3 | 6.14 | 5 | 3.74 |
9 | 6 | 5.62 | 12 | 5.75 | 10 | 3.04 |
10 | 11 | 3.55 | 4 | 5.18 | 3 | 1.8 |
11 | 9 | 2.64 | 11 | 4.96 | 9 | 1.43 |
12 | 12 | 2.09 | 8 | 0.28 | 12 | 1.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, E.; Ren, X.; Amoah, I.D.; Mecha, C.A.; Scriber, K.E., II; Wang, R.; Zhao, J. Climate-Driven Dynamics of Runoff in the Dayekou Basin: A Comprehensive Analysis of Temperature, Precipitation, and Anthropogenic Influences over a 25-Year Period. Water 2024, 16, 919. https://doi.org/10.3390/w16070919
Xu E, Ren X, Amoah ID, Mecha CA, Scriber KE II, Wang R, Zhao J. Climate-Driven Dynamics of Runoff in the Dayekou Basin: A Comprehensive Analysis of Temperature, Precipitation, and Anthropogenic Influences over a 25-Year Period. Water. 2024; 16(7):919. https://doi.org/10.3390/w16070919
Chicago/Turabian StyleXu, Erwen, Xiaofeng Ren, Isaac Dennis Amoah, Cleophas Achisa Mecha, Kevin Emmanuel Scriber, II, Rongxin Wang, and Jingzhong Zhao. 2024. "Climate-Driven Dynamics of Runoff in the Dayekou Basin: A Comprehensive Analysis of Temperature, Precipitation, and Anthropogenic Influences over a 25-Year Period" Water 16, no. 7: 919. https://doi.org/10.3390/w16070919
APA StyleXu, E., Ren, X., Amoah, I. D., Mecha, C. A., Scriber, K. E., II, Wang, R., & Zhao, J. (2024). Climate-Driven Dynamics of Runoff in the Dayekou Basin: A Comprehensive Analysis of Temperature, Precipitation, and Anthropogenic Influences over a 25-Year Period. Water, 16(7), 919. https://doi.org/10.3390/w16070919