Are Non-Conventional Water Resources the Solution for the Structural Water Deficit in Mediterranean Agriculture? The Case of the Segura River Basin in Spain
Abstract
:1. Introduction
2. Non-Conventional Water Resources in Spain
2.1. Desalinated Water
2.2. Reclaimed Water
3. Non-Conventional Water Resources in the Segura River Basin
3.1. Background
3.2. The Present and Future of NCW in SRB
4. Material and Methods
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
List of abbreviations | |
ABA | Abarán |
ARG | Embalse de Argos |
CBL | Casablanca |
CC | Campo de Cartagena |
CTJ | Campotéjar |
DSEAR Plan | National Plan for Sanitation, Efficiency, Saving and Reuse of Wastewater |
DW | Desalinated water |
EU | European Union |
FENACORE | National Federation of Irrigation Communities of Spain |
GW | Groundwater |
HRMS | H.R. Molina de Segura |
IC | Irrigation community |
LIB | TTS Librilla |
LOR | Lorca |
MITECO | Ministry for the Ecological Transition and the Demographic Challenge |
NCW | Non-conventional water |
PC | Principal Component |
PCA | Principal Component Analysis |
PCV | Pantano de la Cierva |
PLG | Pliego |
PMI | Pozos Menorca e Ibiza |
RW | Reclaimed water |
SRB | Segura River Basin |
SW | Surface water |
SWDP | Seawater desalination plant |
TST | Tagus–Segura water transfer |
WFD | Water Framework Directive |
WWTP | Wastewater treatment plant |
ZVS | Zona V—Sector I y II |
References
- Velázquez, M.P.; Escriva-Bou, A.; Sorribes, H.M. Balance Hídrico Actual y Futuro en las Cuencas en España, Déficits Estructurales e Implicaciones Socioeconómicas. In Estudios Sobre la Economía Española—2020/38, FEDEA. 2020. Available online: https://documentos.fedea.net/pubs/eee/eee2020-38.pdf (accessed on 15 July 2023).
- Llop, M.; Ponce-Alifonso, X. Water and Agriculture in a Mediterranean Region: The Search for a Sustainable Water Policy Strategy. Water 2016, 8, 66. [Google Scholar] [CrossRef]
- Rupérez-Moreno, C.; Senent-Aparicio, J.; Martinez-Vicente, D.; García-Aróstegui, J.L.; Calvo-Rubio, F.C.; Pérez-Sánchez, J. Sustainability of irrigated agriculture with overexploited aquifers: The case of Segura basin (SE, Spain). Agric. Water Manag. 2017, 182, 67–76. [Google Scholar] [CrossRef]
- Varela-Ortega, C.; Hernández-Mora, N. Institutions and institutional reform in the Spanish water sector: A historical perspective. In Water Policy in Spain; Alberto, G., Ramón, L., Eds.; CRC Press: London, UK, 2009; pp. 117–131. [Google Scholar]
- Ibor, C.S.; Mollá, M.G.; Reus, L.A.; Genovés, J.C. Reaching the limits of water resources mobilisation: Irrigation development in the Segura River Basin, Spain. Water Altern. 2011, 4, 256–278. [Google Scholar]
- European Parliament and Council. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. L 2000, 327, 1–73. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj (accessed on 30 June 2023).
- Fornés, J.M.; López-Gunn, E.; Villarroya, F. Water in Spain: Paradigm changes in water policy. Hydrol. Sci. J. 2021, 66, 1113–1123. [Google Scholar] [CrossRef]
- European Commission. A Blueprint to Safeguard Europe’s Water Resources. 2012. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012DC0673 (accessed on 30 June 2023).
- Ricart, S.; Villar-Navascués, R.A.; Hernández-Hernández, M.; Rico-Amorós, A.M.; Olcina-Cantos, J.; Moltó-Mantero, E. Extending Natural Limits to Address Water Scarcity? The Role of Non-Conventional Water Fluxes in Climate Change Adaptation Capacity: A Review. Sustainability 2021, 13, 2473. [Google Scholar] [CrossRef]
- MITECO. Informe de Seguimiento de Planes Hidrológicos y Recursos Hídricos en España. Año 2021 (Avance); Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2022. Available online: https://www.miteco.gob.es/es/agua/temas/planificacion-hidrologica/planificacion-hidrologica/seguimientoplanes.html (accessed on 3 July 2023).
- Molle, F.; Wester, P.; Hirsch, P. River basin closure: Processes, implications and responses. Agric. Water Manag. 2010, 97, 569–577. [Google Scholar] [CrossRef]
- Maté-Sánchez-Val, M.; Aparicio-Serrano, G. The impact of marine pollution on the probability of business failure: A case study of the Mar Menor lagoon. J. Environ. Manag. 2023, 332, 117381. [Google Scholar] [CrossRef] [PubMed]
- Boix-Fayos, C.; de Vente, J. Challenges and potential pathways towards sustainable agriculture within the European Green Deal. Agric. Syst. 2023, 207, 103634. [Google Scholar] [CrossRef]
- Jiménez-Martínez, J.; García-Aróstegui, J.L.; Hunink, J.E.; Contreras, S.; Baudron, P.; Candela, L. The role of groundwater in highly human-modified hydrosystems: A review of impacts and mitigation options in the Campo de Cartagena-Mar Menor coastal plain (SE Spain). Environ. Rev. 2016, 24, 377–392. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.; Belmonte-Ureña, L.J.; Velasco-Muñoz, J.F.; Valera, D.L. Farmers’ profiles and behaviours toward desalinated seawater for irrigation: Insights from South-East Spain. J. Clean. Prod. 2021, 296, 126568. [Google Scholar] [CrossRef]
- Martínez-Alvarez, V.; Maestre-Valero, J.F.; González-Ortega, M.J.; Gallego-Elvira, B.; Martin-Gorriz, B. Characterization of the Agricultural Supply of Desalinated Seawater in Southeastern Spain. Water 2019, 11, 1233. [Google Scholar] [CrossRef]
- Morote, Á.F.; Olcina, J.; Hernández, M. The Use of Non-Conventional Water Resources as a Means of Adaptation to Drought and Climate Change in Semi-Arid Regions: South-Eastern Spain. Water 2019, 11, 93. [Google Scholar] [CrossRef]
- Ricart, S.; Villar-Navascués, R.; Reyes, M.; Rico-Amorós, A.M.; Hernández-Hernández, M.; Toth, E.; Bragalli, C.; Neri, M.; Amelung, B. Water–tourism nexus research in the Mediterranean in the past two decades: A systematic literature review. Int. J. Water Resour. Dev. 2024, 40, 57–83. [Google Scholar] [CrossRef]
- ACUAMED. Garantizar el Agua es Garantizar Nuestro Futuro. Memoria de Actividades; Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2020. [Google Scholar]
- Instituto Nacional de Estadística. Estadística Sobre el Suministro y Saneamiento del Agua. 2022. Available online: https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176834&menu=ultiDatos&idp=1254735976602 (accessed on 9 July 2023).
- March, H.; Saurí, D.; Rico-Amorós, A.M. The end of scarcity? Water desalination as the new cornucopia for Mediterranean Spain. J. Hydrol. 2014, 519, 2642–2651. [Google Scholar] [CrossRef]
- Zarzo, D.; Prats, D. Desalination and energy consumption. What can we expect in the near future? Desalination 2018, 427, 1–9. [Google Scholar] [CrossRef]
- Martínez-Granados, D.; Marín-Membrive, P.; Calatrava, J. Economic Assessment of Irrigation with Desalinated Seawater in Greenhouse Tomato Production in SE Spain. Agronomy 2022, 12, 1471. [Google Scholar] [CrossRef]
- Elsaid, K.; Kamil, M.; Sayed, E.T.; Abdelkareem, M.A.; Wilberforce, T.; Olabi, A. Environmental impact of desalination technologies: A review. Sci. Total Environ. 2020, 748, 141528. [Google Scholar] [CrossRef]
- BOE. Real Decreto Legislativo 1/2001, de 20 de Julio, Por el Que se Aprueba el Texto Refundido de la Ley de Aguas. Ministerio de Medio Ambiente. 2001. Available online: https://www.boe.es/eli/es/rdlg/2001/07/20/1/con (accessed on 14 June 2023).
- BOE. Real Decreto-Ley 6/2022, de 29 de Marzo, Por el Que se Adoptan Medidas Urgentes en el Marco del Plan Nacional de Respuesta a las Consecuencias Económicas y Sociales de la Guerra en Ucrania. Jefatura del Estado. 2022. Available online: https://www.boe.es/eli/es/rdl/2022/03/29/6/con (accessed on 14 June 2023).
- Jodar-Abellan, A.; López-Ortiz, M.I.; Melgarejo-Moreno, J. Wastewater Treatment and Water Reuse in Spain. Current Situation and Perspectives. Water 2019, 11, 1551. [Google Scholar] [CrossRef]
- Bolinches, A.; Blanco-Gutiérrez, I.; Zubelzu, S.; Esteve, P.; Gómez-Ramos, A. A method for the prioritization of water reuse projects in agriculture irrigation. Agric. Water Manag. 2022, 263, 107435. [Google Scholar] [CrossRef]
- MITECO. Fomento de la Reutilización de las Aguas Residuales—Informe Complementario; Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2020. Available online: https://www.miteco.gob.es/content/dam/miteco/es/agua/temas/concesiones-y-autorizaciones/6_ic_reutilizacion_1_tcm30-514162.pdf (accessed on 6 June 2023).
- Berbel, J.; Mesa-Pérez, E.; Simón, P. Challenges for Circular Economy under the EU 2020/741 Wastewater Reuse Regulation. Glob. Chall. 2023, 7, 2200232. [Google Scholar] [CrossRef] [PubMed]
- Berbel, J.; Borrego-Marin, M.M.; Exposito, A.; Giannoccaro, G.; Montilla-Lopez, N.M.; Roseta-Palma, C. Analysis of irrigation water tariffs and taxes in Europe. Water Policy 2019, 21, 806–825. [Google Scholar] [CrossRef]
- Council of the European Communities. Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Waste-Water Treatment. 1991. Available online: http://data.europa.eu/eli/dir/1991/271/oj (accessed on 13 May 2023).
- European Commission. Proposal for a Revised Urban Wastewater Treatment Directive. 2022. Available online: https://environment.ec.europa.eu/publications/proposal-revised-urban-wastewater-treatment-directive_en (accessed on 13 May 2023).
- European Commission. Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on Minimum Requirements for Water Reuse (Text with EEA Relevance). 2020. Available online: https://eur-lex.europa.eu/eli/reg/2020/741/oj (accessed on 13 May 2023).
- BOE. Orden TED/801/2021, de 14 de Julio, Por la Que se Aprueba el Plan Nacional de Depuración, Saneamiento, Eficiencia, Ahorro y Reutilización; Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2021; Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2021-12592 (accessed on 16 June 2023).
- BOE. Real Decreto-Ley 4/2023, de 11 de Mayo, por el que se Adoptan Medidas Urgentes en Materia Agraria y de Aguas en Respuesta a la Sequía y al Agravamiento de las Condiciones del Sector Primario Derivado del Conflicto Bélico en Ucrania y de las Condiciones cl. Jefatura del Estado. 2023. Available online: https://www.boe.es/eli/es/rdl/2023/05/11/4/con (accessed on 13 May 2023).
- Melgarejo, J.; Giménez, A.M. La Mancomunidad de los Canales del Taibilla en la Provincia de Alicante; Servicio de Publicaciones de la Universidad de Alicante: Alicante, Spain, 2017. [Google Scholar]
- CHS. Plan Hidrológico de la Demarcación del Segura 2022–2027. Confederación Hidrográfica del Segura, O.A. Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain. 2022. Available online: https://www.chsegura.es/es/cuenca/planificacion/planificacion-2022-2027/plan-hidrologico-2022-2027/ (accessed on 20 May 2023).
- García-López, M.; Montano, B.; Melgarejo, J. The Tariff Structure in the Tagus-Segura Water Transfer. Water 2022, 14, 413. [Google Scholar] [CrossRef]
- Orts, J.A.R.; Ortiz, M.I.L.; Moreno, J.M.; Aracil, P.F. Análisis y alternativas para paliar el déficit hídrico en la Demarcación Hidrográfica del Segura (2022–2027), sureste de España. Investig. Geográficas 2023, 79, 179–206. [Google Scholar] [CrossRef]
- González, E.S.M.; Iribas, B.L.; Hernández-Mora, N.; Bernad, M.S.G. La gestión insostenible del río Tajo. Biblio3W Rev. Bibliográfica Geogry Ciencias Soc. 2015, 20, 1–25. [Google Scholar] [CrossRef]
- Garrido, A.; Garrote, L. La adaptación al cambio climático: Los recursos hídricos en España. Un reto social, económico y territorial ante un escenario acelerado de cambio. In Informe España 2023; Blanco, A., Mora, S., López-Ruiz, J.A., Eds.; Cátedra José María Martín Patino de la Cultura del Encuentro, Universidad Pontificia Comillas: Madrid, Spain, 2023; pp. 445–508. [Google Scholar]
- CEDEX. Evaluación del Impacto del Cambio Climático en Los Recursos Hídricos y Sequías en España. Centro de Estudios y Experimentación de Obras Públicas; Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2017; Available online: https://ceh.cedex.es/web_ceh_2018/Evimpacambclim2017.htm (accessed on 25 June 2023).
- Pellicer-Martínez, F.; Martínez-Paz, J.M. Climate change effects on the hydrology of the headwaters of the Tagus River: Implications for the management of the Tagus–Segura transfer. Hydrol. Earth Syst. Sci. 2018, 22, 6473–6491. [Google Scholar] [CrossRef]
- Morote, Á.F.; Hernández, M.; Rico, A.M.; Eslamian, S. Interbasin water transfer conflicts. The case of the Tagus-Segura Aqueduct (Spain). Int. J. Hydrol. Sci. Technol. 2020, 10, 364. [Google Scholar] [CrossRef]
- CHS. Plan Hidrológico de la Demarcación Hidrográfica del Segura 2009–2015. Confederación Hidrográfica del Segura; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2013; Available online: https://www.chsegura.es/es/cuenca/planificacion/planificacion-2009-2015/plan-hidrologico-2009-2015/ (accessed on 20 June 2023).
- CHS. Plan Hidrológico de la Demarcación del Segura 2015–2021. Confederación Hidrográfica del Segura; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2015; Available online: https://www.chsegura.es/es/cuenca/planificacion/planificacion-2015-2021/plan-hidrologico-2015-2021/ (accessed on 20 June 2023).
- De Murcia, R.; II Plan de Saneamiento y Depuración de la Región de Murcia—Horizonte 2035. Región de Murcia. Consejería de Agua, Agricultura, Ganadería, Pesca y Medio Ambiente. Dirección General del Agua. 2023. Available online: https://transparencia.carm.es/wres/transparencia/doc/Planificacion_estrategica/II_Plan_Regional_Saneamiento_H_2035/II%20PSYD_DGA_FINAL.pdf (accessed on 20 May 2023).
- Ballesteros-Olza, M.; Blanco-Gutiérrez, I.; Esteve, P.; Gómez-Ramos, A.; Bolinches, A. Using reclaimed water to cope with water scarcity: An alternative for agricultural irrigation in Spain. Environ. Res. Lett. 2022, 17, 125002. [Google Scholar] [CrossRef]
- Gabriel, K.R. The Biplot Graphic Display of Matrices with Application to Principal Component Analysis. Biometrika 1971, 58, 453. [Google Scholar] [CrossRef]
- Navarro, T. Water reuse and desalination in Spain—challenges and opportunities. J. Water Reuse Desalin. 2018, 8, 153–168. [Google Scholar] [CrossRef]
- Ricart, S.; Villar-Navascués, R.; Gil-Guirado, S.; Rico-Amorós, A.M.; Arahuetes, A. How to Close the Gap of Desalinated Seawater for Agricultural Irrigation? Confronting Attitudes between Managers and Farmers in Alicante and Murcia (Spain). Water 2020, 12, 1132. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.; Belmonte-Ureña, L.; Valera, D. Perceptions and Acceptance of Desalinated Seawater for Irrigation: A Case Study in the Níjar District (Southeast Spain). Water 2017, 9, 408. [Google Scholar] [CrossRef]
- Hurlimann, A.; Dolnicar, S. Acceptance of water alternatives in Australia—2009. Water Sci. Technol. 2010, 61, 2137–2142. [Google Scholar] [CrossRef]
- Carr, G.; Potter, R.B.; Nortcliff, S. Water reuse for irrigation in Jordan: Perceptions of water quality among farmers. Agric. Water Manag. 2011, 98, 847–854. [Google Scholar] [CrossRef]
- Martínez-Álvarez, V.; Imbernón-Mulero, A.; Maestre-Valero, J.F.; Abdallah, S.B.; Gallego-Elvira, B. Agronomic Analysis of the Replacement of Conventional Agricultural Water Supply by Desalinated Seawater as an Adaptive Strategy to Water Scarcity in South-Eastern Spain. Agronomy 2023, 13, 2878. [Google Scholar] [CrossRef]
- Dolnicar, S.; Schäfer, A.I. Desalinated versus recycled water: Public perceptions and profiles of the accepters. J. Environ. Manag. 2009, 90, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Petousi, I.; Fountoulakis, M.; Saru, M.; Nikolaidis, N.; Fletcher, L.; Stentiford, E.; Manios, T. Effects of reclaimed wastewater irrigation on olive (Olea europaea L. cv. ‘Koroneiki’) trees. Agric. Water Manag. 2015, 160, 33–40. [Google Scholar] [CrossRef]
- Alcon, F.; García-Bastida, P.A.; Soto-García, M.; Martínez-Alvarez, V.; Martin-Gorriz, B.; Baille, A. Explaining the performance of irrigation communities in a water-scarce region. Irrig. Sci. 2017, 35, 193–203. [Google Scholar] [CrossRef]
- Cabrera, E.; Estrela, T.; Lora, J. Desalination in Spain. Past, present and future. La Houille Blanche 2019, 105, 85–92. [Google Scholar] [CrossRef]
- García-López, M.; Montano, B.; Melgarejo, J. The Influence of Photovoltaic Self-Consumption on Water Treatment Energy Costs: The Case of the Region of Valencia. Sustainability 2023, 15, 11508. [Google Scholar] [CrossRef]
- Nasrollahi, M.; Motevali, A.; Banakar, A.; Montazeri, M. Comparison of environmental impact on various desalination technologies. Desalination 2023, 547, 116253. [Google Scholar] [CrossRef]
- Bitaw, T.N.; Park, K.; Kim, J.; Chang, J.W.; Yang, D.R. Low-recovery, -energy-consumption, -emission hybrid systems of seawater desalination: Energy optimization and cost analysis. Desalination 2019, 468, 114085. [Google Scholar] [CrossRef]
- Alcon, F.; Zabala, J.A.; Martínez-García, V.; Albaladejo, J.A.; López-Becerra, E.I.; De-Miguel, M.D.; Martínez-Paz, J.M. The social wellbeing of irrigation water. A demand-side integrated valuation in a Mediterranean agroecosystem. Agric. Water Manag. 2022, 262, 107400. [Google Scholar] [CrossRef]
- Owusu, V.; Bakang, J.-E.A.; Abaidoo, R.C.; Kinane, M.L. Perception on untreated wastewater irrigation for vegetable production in Ghana. Environ. Dev. Sustain. 2012, 14, 135–150. [Google Scholar] [CrossRef]
Year | Surface Water 1 | Ground- Water | Non- Renewable Ground- Water | Water Transfers 2 | Reclaimed Water | Desalinated Water | Total Renewable Water Resources 3 | Total Water Demand | Deficit 4 |
---|---|---|---|---|---|---|---|---|---|
2010 | 518.6 | 281.1 | 273.8 | 337 | 135.4 | 82 | 1354.1 | 1873 | 245.1 |
2015 | 506 | 281 | 231 | 322 | 140 | 158 | 1407 | 1841 | 203 |
2021 | 509.4 | 255.3 | 214.1 | 312 | 141.7 | 301.5 | 1519.9 | 1830.6 | 311.3 |
2027 | 508.1 | 248 | 0 | 202 | 146 | 346.1 | 1450.2 | 1844.7 | 394.5 |
2039 | 500.7 | 224.8 | 0 | 202 | 159.8 | 361.8 | 1449.1 | 1858.8 | 409.7 |
Parameters | Desalinated Water | Reclaimed Water |
---|---|---|
Institution in charge of the construction of infrastructure and management | ACUAMED (National scope) | ESAMUR (Regional scope: Region of Murcia) |
Plants (No.) | 7 (3 public and 4 private) [16] | 162 (all built and financed by ESAMUR) |
Capacity (hm3 per year) | Total: 248 Irrigation: 49 [19] | Total treatment: 144 Directly to agriculture: 87 [16,48] |
Weight over total irrigation water use (%) | 15.6% SRB Management Plan 2022–2027 [38] | 9.5% SRB Management Plan 2022–2027 [38] |
Production cost (EUR/m3) 1 | 0.55–0.70 [16] | 0.44 |
The price paid by irrigators (EUR/m3) | 0.57 (private plants) 0.37 (public plant) [16] | 0.05–0.10 [48] |
New Parameters: Horizon (2023–2030) | Projected capacity: 346.1 hm3 (2027); 361.8 hm3 (2039) Projection for agricultural use: 257 hm3 (2027) Photovoltaic capacity: 2700 MW Objective: 25% electricity consumption from self-consumption New irrigation water tariff: 0.34 EUR/m3 (2023–2027) Regulation framework: Order TED 157/2023: Art 2 water Law photovoltaic self-consumption plants integrated with SWDPs. ACUAMED. Strategic Plans to acquire energy | Total reclaimed water: 146 hm3 (2027); 159.8 hm3 (2039) Direct reuse in agriculture: 91.2 hm3 (2027); 102.1 hm3 (2039) Installation of photovoltaic energy on pumping equipment for RW in ICs partially financed by ESAMUR. Regulation framework: Law 3/2000 on Sanitation and Wastewater Treatment; Second Plan for Sanitation, Purification and Reuse in the Region of Murcia (Horizon 2035) |
IC (Code) | Year of Establishment | Irrigators (No.) | Irrigated Surface (ha) | Main Crops (% Area) | Total Water Supplied (hm3) | Water Sources (% Volume) | Water Cost (EUR/m3) | Storage Capacity (hm3) | Energy Costs (k EUR/y) | Photovoltaic Energy |
---|---|---|---|---|---|---|---|---|---|---|
TTS Librilla (LIB) | 1979 | 1980 | 2500 | Citrus (90) Other (10) | 4.93 | SW (5.1) TST (65.9) RW (3.6) 1 DW (25.4) 2 | SW (0.06) TST (0.22) RW (0.20) DW (0.47) | 0.40 | 40 | Yes |
Casablanca (CBL) | 1985 | 300 | 838 | Fruit tree (85) Other (15) | 4.60 | GW (87) RW (13) 3 | GW (0.17) RW (0.26) | 0.14 | 650 | Projected |
Campotéjar (CTJ) | 1979 | 1049 | 3336 | Citrus (60) Fruit tree (40) | 9.50 | SW (52.6) TST (26.3) RW (15.8) 4 DW (5.3) 5 | SW (0.12) TST (0.30) RW (0.15) DW (0.70) | 0.50 | 700 | Yes |
Embalse de Argos (ARG) | 1976 | 1448 | 1084 | Vegetables (60) Olive (40) | 5.54 | SW (100) | SW (0.10) | 7.50 | 25 | No |
Lorca (LOR) | 1978 | 12,000 | 23,500 | Vegetables (80) Citrus (15) Olive (5) | 42.35 | SW (22.9) GW (4.2) TST (28.6) RW (5.3) 6 DW (29) 7 | SW (0.06) GW (0.20) TST (0.12) RW (0.11) DW (0.43) | 1.20 | 800 | Projected |
Campo de Cartagena (CC) | 1979 | 9699 | 42,255 | Vegetables (66) Citrus (22) Other (12) | 75.42 | SW (4.9) GW* (10.5) TST (71) RW (4.8) 8 DW (8.8) 9 | SW (0.03) GW (0.14) TST (0.16) RW (0.08) DW (0.58) | 2.50 | n.a. | Projected |
Pantano de la Cierva (PCV) | 1966 | 1700 | 2000 | Citrus (65) Fruit tree (35) | 1.00 | TST (100) | TST (0.32) | 0.50 | 250 | Projected |
Pozos Menorca e Ibiza (PMI) | 2001 | 315 | 2060 | Fruit tree (80) Citrus (15) Vineyard (5) | 3.00 | GW (100) | GW (0.53) | - | 800 | Yes |
Zona V—Sector I y II (ZVS) | 1997 | 600 | 1635 | Fruit tree (60) Citrus (40) | 4.30 | TST (81.4) RW (14) 10 DW (4.6) 11 | TST (0.17) RW (0.07) DW (0.42) | 0.40 | n.a. | No |
Pliego (PLG) | 1997 | 1450 | 818 | Fruit tree (75) Citrus (20) Olive (5) | 3.06 | GW (75.2) TST (19.6) RW (5.2) 12 | GW (0.14) TST (0.25) RW (0.10) | 0.64 | 500 | Yes |
H.R. Molina de Segura (HRMS) | 1607 | 3000 | 1884 | Fruit tree (46)Vegetables (34) Citrus (19) | 2.25 | SW (100) RW (0) 13 | n.a. | 0.75 | n.a. | Yes |
Abarán (ABA) | 1912 | 1200 | 1500 | Fruit tree (85) Citrus (15) | 4.80 | SW (77.9) TST (22.9) DW (4.2) 14 | SW (0.20) TST (0.20) DW (0.44) | 0.55 | 500 | Projected |
Water Source | Guarantee of Supply | Water Quality | Water Cost | Environmental Impact | Preference | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Surface water | 3.71 | (±1.38) | 4.38 | (±1.41) | 3.75 | (±1.75) | 3.83 | (±1.83) | 4.88 | (±0.35) |
Groundwater | 3.00 | (±1.67) | 2.29 | (±1.38) | 2.43 | (±1.40) | 3.50 | (±1.38) | 3.00 | (±1.41) |
TS Transfer | 1.43 | (±0.79) | 4.38 | (±1.19) | 3.38 | (±1.41) | 4.00 | (±1.53) | 3.75 | (±1.49) |
Desalinated water | 4.29 | (±1.50) | 2.14 | (±0.69) | 2.50 | (±2.07) | 2.43 | (±1.62) | 1.88 | (±0.83) |
Reclaimed water | 3.89 | (±1.27) | 2.80 | (±1.48) | 3.20 | (±1.48) | 3.30 | (±1.70) | 3.30 | (±1.57) |
Adaptation Strategies | D1 | D2 |
---|---|---|
Crop change | 17,973 | 10,163 |
Surface reduction | 0.2345 | 0.293 |
Storage cap increase | 0.0237 | −0.1978 |
Efficiency increase | −10,717 | −0.6716 |
Desalinated water increase | −0.8722 | 16,859 |
Reclaimed water increase | −0.6334 | 0.7528 |
Water rights acquisition | −15,626 | 0.4243 |
Attributes | Preference for Desalinated Water | Preference for Reclaimed Water | ||
---|---|---|---|---|
F | Sig | F | Sig | |
Group | 4 | 0.080 * | - | - |
Number of irrigators | 4.46 | 0.065 * | 10.945 | 0.012 * |
Total irrigation water supplied per irrigator per water supply | 9.605 | 0.014 * | 12.205 | 0.010 * |
Use of reclaimed water | 4.672 | 0.082 * | 5.987 | 0.058 * |
Use of desalinated water | 5.238 | 0.049 * | 6.739 | 0.033 * |
The price paid by desalinated water | 53.944 | 0.096 * | - | - |
Storage capacity | 45.522 | 0.001 ** | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Ramos, A.; Blanco-Gutiérrez, I.; Ballesteros-Olza, M.; Esteve, P. Are Non-Conventional Water Resources the Solution for the Structural Water Deficit in Mediterranean Agriculture? The Case of the Segura River Basin in Spain. Water 2024, 16, 929. https://doi.org/10.3390/w16070929
Gómez-Ramos A, Blanco-Gutiérrez I, Ballesteros-Olza M, Esteve P. Are Non-Conventional Water Resources the Solution for the Structural Water Deficit in Mediterranean Agriculture? The Case of the Segura River Basin in Spain. Water. 2024; 16(7):929. https://doi.org/10.3390/w16070929
Chicago/Turabian StyleGómez-Ramos, Almudena, Irene Blanco-Gutiérrez, Mario Ballesteros-Olza, and Paloma Esteve. 2024. "Are Non-Conventional Water Resources the Solution for the Structural Water Deficit in Mediterranean Agriculture? The Case of the Segura River Basin in Spain" Water 16, no. 7: 929. https://doi.org/10.3390/w16070929
APA StyleGómez-Ramos, A., Blanco-Gutiérrez, I., Ballesteros-Olza, M., & Esteve, P. (2024). Are Non-Conventional Water Resources the Solution for the Structural Water Deficit in Mediterranean Agriculture? The Case of the Segura River Basin in Spain. Water, 16(7), 929. https://doi.org/10.3390/w16070929