Multi-Objective Optimization Based on Simulation Integrated Pareto Analysis to Achieve Low-Carbon and Economical Operation of a Wastewater Treatment Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. A Multi-Objective Optimization Framework
2.2. Technological Process Modeling and Scenario Analysis
2.2.1. Construction of Process Model
2.2.2. Orthogonal Scenario Settings of Operational Variable
2.3. Calculation Method of Three Optimizable Objectives
2.3.1. Effluent Quality Index (EQI)
2.3.2. Operating Costs Index (OCI)
2.3.3. Greenhouse Gas (GHG)
2.4. Non-Dominated Sorting Method
3. Results and Discussion
3.1. Effect of Operational Parameters on Effluent Quality Index (EQI)
3.2. Effect of Operational Parameters on the Operation Cost Index (OCI)
3.3. Effect of Operational Parameters on Greenhouse Gas (GHG)
3.4. Multi-Objective Optimization of the Anaerobic-Anoxic-Oxic and Membrane Bioreactor (AAO-MBR) Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nguyen, D.H.; Chapman, A.; Tsuji, T. Assessing the Optimal Contributions of Renewables and Carbon Capture and Storage toward Carbon Neutrality by 2050. Sustainability 2023, 15, 13447. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, T.; Liu, J.; Sun, Y.; Liu, Y.; Zhao, Q.; Tian, T. The Comprehensive Measurement Method of Energy Conservation and Emission Reduction in the Whole Process of Urban Sewage Treatment Based on Carbon Emission. Environ. Sci. Pollut. Res. 2021, 28, 56727–56740. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Gao, X.; Guo, J.; Wang, H.; Zhang, L.; Fan, L.; Jia, F.; Guo, J.; Peng, Y. Contribution of Nitrous Oxide to the Carbon Footprint of Full-Scale Wastewater Treatment Plants and Mitigation Strategies—A Critical Review. Environ. Pollut. 2022, 314, 120295. [Google Scholar] [CrossRef] [PubMed]
- Ganora, D.; Hospido, A.; Husemann, J.; Krampe, J.; Loderer, C.; Longo, S.; Moragas Bouyat, L.; Obermaier, N.; Piraccini, E.; Stanev, S.; et al. Opportunities to Improve Energy Use in Urban Wastewater Treatment: A European-Scale Analysis. Environ. Res. Lett. 2019, 14, 044028. [Google Scholar] [CrossRef]
- Wu, X.; Yang, Y.; Wu, G.; Mao, J.; Zhou, T. Simulation and Optimization of a Coking Wastewater Biological Treatment Process by Activated Sludge Models (ASM). J. Environ. Manag. 2016, 165, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Yang, E.; Xu, C.; Zhang, T.; Xu, R.; Fu, B.; Feng, Q.; Fang, F.; Luo, J. Model-Based Strategy for Nitrogen Removal Enhancement in Full-Scale Wastewater Treatment Plants by GPS-X Integrated with Response Surface Methodology. Sci. Total Environ. 2021, 769, 144851. [Google Scholar] [CrossRef] [PubMed]
- Vega, P.; Revollar, S.; Francisco, M.; Martín, J.M. Integration of Set Point Optimization Techniques into Nonlinear MPC for Improving the Operation of WWTPs. Comput. Chem. Eng. 2014, 68, 78–95. [Google Scholar] [CrossRef]
- Zhang, R.; Xie, W.-M.; Yu, H.-Q.; Li, W.-W. Optimizing Municipal Wastewater Treatment Plants Using an Improved Multi-Objective Optimization Method. Bioresour. Technol. 2014, 157, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, J.; Guisasola, A.; Comas, J.; Rodríguez-Roda, I.; Baeza, J.A. Multi-Criteria Selection of Optimum WWTP Control Setpoints Based on Microbiology-Related Failures, Effluent Quality and Operating Costs. Chem. Eng. J. 2012, 188, 23–29. [Google Scholar] [CrossRef]
- Lu, H.; Wang, H.; Wu, Q.; Luo, H.; Zhao, Q.; Liu, B.; Si, Q.; Zheng, S.; Guo, W.; Ren, N. Automatic Control and Optimal Operation for Greenhouse Gas Mitigation in Sustainable Wastewater Treatment Plants: A Review. Sci. Total Environ. 2023, 855, 158849. [Google Scholar] [CrossRef] [PubMed]
- Flores-Alsina, X.; Arnell, M.; Amerlinck, Y.; Corominas, L.; Gernaey, K.V.; Guo, L.; Lindblom, E.; Nopens, I.; Porro, J.; Shaw, A.; et al. Balancing Effluent Quality, Economic Cost and Greenhouse Gas Emissions during the Evaluation of (Plant-Wide) Control/Operational Strategies in WWTPs. Sci. Total Environ. 2014, 466–467, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Sweetapple, C.; Fu, G.; Butler, D. Does Carbon Reduction Increase Sustainability? A Study in Wastewater Treatment. Water Res. 2015, 87, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Sharawat, I.; Dahiya, R.; Dahiya, R.P. Analysis of a Wastewater Treatment Plant for Energy Consumption and Greenhouse Gas Emissions. Int. J. Environ. Sci. Technol. 2020, 18, 871–884. [Google Scholar] [CrossRef]
- Chen, W.; Yao, C.; Lu, X. Optimal Design Activated Sludge Process by Means of Multi-Objective Optimization: Case Study in Benchmark Simulation Model 1 (BSM1). Water Sci. Technol. 2014, 69, 2052–2058. [Google Scholar] [CrossRef] [PubMed]
- Béraud, B.; Steyer, J.P.; Lemoine, C.; Latrille, E.; Manic, G.; Printemps-Vacquier, C. Towards a Global Multi Objective Optimization of Wastewater Treatment Plant Based on Modeling and Genetic Algorithms. Water Sci. Technol. 2007, 56, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Jasim, N.A.; Aziz, H.A. The Design for Wastewater Treatment Plant (WWTP) with GPS-X Modelling. Cogent Eng. 2020, 7, 1723782. [Google Scholar] [CrossRef]
- Pu, M.; Ailijiang, N.; Mamat, A.; Chang, J.; Zhang, Q.; Liu, Y.; Li, N. Occurrence of Antibiotics in the Different Biological Treatment Processes, Reclaimed Wastewater Treatment Plants and Effluent-Irrigated Soils. J. Environ. Chem. Eng. 2022, 10, 107715. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, X.C.; Zhang, Y.; Li, Y.; Chen, H.; Jin, P. Characteristics of an A2O–MBR System for Reclaimed Water Production under Constant Flux at Low TMP. J. Membr. Sci. 2013, 431, 156–162. [Google Scholar] [CrossRef]
- Le-Clech, P. Membrane Bioreactors and Their Uses in Wastewater Treatments. Appl. Microbiol. Biotechnol. 2010, 88, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zhou, Y.; Wang, T.; Min, H.; Lu, Z.; Jiao, H.; Chen, Q. Application of AAO + MBR Processes in Underground Wastewater Treatment Plant (UWWTP). In Water Purification Technology; Shanghai Science and Technology Association: Shanghai, China, 2022; Volume 41, pp. 140–145. (In Chinese) [Google Scholar]
- GB 18918-2002; Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant. State Environmental Protection Administration: Beijing, China, 2002.
- Ahmed, M.F.; Haider, M.Z.; Majid, H.; Hasan, S.M. Start-up and Operation of Novel EN-MBBR System for Sidestreams Treatment and Sensitivity Analysis Modeling Using GPS-X Simulation. Alex. Eng. J. 2022, 61, 10805–10818. [Google Scholar]
- Liwarska-Bizukojc, E.; Biernacki, R. Identification of the Most Sensitive Parameters in the Activated Sludge Model Implemented in BioWin Software. Bioresour. Technol. 2010, 101, 7278–7285. [Google Scholar] [CrossRef] [PubMed]
- Carnot, N.; Koen, V.; Tissot, B. Economic Forecasting and Policy; Palgrave Macmillan: London, UK, 2011. [Google Scholar]
- Jia, Y.; Zeng, W.; Fan, Z.; Meng, Q.; Liu, H.; Peng, Y. An Effective Titanium Salt Dosing Strategy for Phosphorus Removal from Wastewater: Synergistic Enhancement of Chemical and Biological Treatment. Sci. Total Environ. 2022, 842, 156960. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Bowen, J.D.; Kinnear, D. Comprehensive Numerical Modeling of Greenhouse Gas Emissions from Water Resource Recovery Facilities. Water Environ. Res. 2015, 87, 1955–1969. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Chen, W.; Peng, L.; Wang, X.; Lu, X. Modeling and Performance Improvement of an Anaerobic–Anoxic/Nitrifying-Induced Crystallization Process via the Multi-Objective Optimization Method. Environ. Sci. Pollut. Res. 2019, 26, 5083–5093. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Kim, J.H.; Behera, S.K.; Park, H.S. Influence of Dissolved Oxygen Concentration and Aeration Time on Nitrite Accumulation in Partial Nitrification Process. Int. J. Environ. Sci. Technol. 2008, 5, 527–534. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Guo, F.; Zhou, Z.; Jiang, J.; You, Z.; Wang, Q.; Wang, Z.; Wu, Z. Evaluation of Nutrient Removal Performance and Resource Recovery Potential of Anaerobic/Anoxic/Aerobic Membrane Bioreactor with Limited Aeration. Bioresour. Technol. 2021, 340, 125728. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Huo, M.; Li, Q.; Shi, X.; Ma, Y.; Yu, G.; Zhu, S.; Ai, S.; Wang, F.; Bian, D. Sewage Treatment Effect of AOA-SBR under Different C/P Value and Its Mechanism of Nitrogen and Phosphorus Removal. J. Water Process. Eng. 2022, 47, 102774. [Google Scholar] [CrossRef]
- Gou, J.; Hong, C.U.; Deng, M.; Chen, J.; Hou, J.; Li, D.; He, X. Effect of Carbon to Nitrogen Ratio on Water Quality and Community Structure Evolution in Suspended Growth Bioreactors through Biofloc Technology. Water 2019, 11, 1640. [Google Scholar] [CrossRef]
- Wang, B.; Li, W.; Liu, L.; Huang, G.H. Influence of Sludge Reflux Ratios on Biodegradation Performance in a Coupled Landfill Leachate Treatment Process Based on UASB and Submerged MBR. J. Environ. Sci. Health Part A 2016, 51, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Waqas, S.; Khan, J.A.; Rahman, S.; Kruszelnicka, I.; Ginter-Kramarczyk, D.; Legutko, S.; Ochowiak, M.; Włodarczak, S.; Czernek, K. Effect of Operating Parameters and Energy Expenditure on the Biological Performance of Rotating Biological Contactor for Wastewater Treatment. Energies 2022, 15, 3523. [Google Scholar] [CrossRef]
- Cao, Y.S.; Tang, J.G.; Henze, M.; Yang, X.P.; Gan, Y.P.; Li, J.; Kroiss, H.; van Loosdrecht, M.C.M.; Zhang, Y.; Daigger, G.T. The Leakage of Sewer Systems and the Impact on the ‘Black and Odorous Water Bodies’ and WWTPs in China. Water Sci. Technol. 2019, 79, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, J. Long-Term Low DO Enriches and Shifts Nitrifier Community in Activated Sludge. Environ. Sci. Technol. 2013, 47, 5109–5117. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liang, P.; Yan, X.; Zuo, K.; Xiao, K.; Xia, J.; Qiu, Y.; Wu, Q.; Wu, S.; Huang, X.; et al. Reducing Aeration Energy Consumption in a Large-Scale Membrane Bioreactor: Process Simulation and Engineering Application. Water Res. 2016, 93, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Mallu, L.L.; Sean, W.-Y.; Pacheco, M. Optimization of Air Flowrate under Different Control Strategies Focus on Biological Process in Wastewater Treatment Plant. In Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, FL, USA, 5–7 December 2021. [Google Scholar]
- Qambar, A.S.; Al Khalidy, M.M. Optimizing Dissolved Oxygen Requirement and Energy Consumption in Wastewater Treatment Plant Aeration Tanks Using Machine Learning. J. Water Process. Eng. 2022, 50, 103237. [Google Scholar] [CrossRef]
- Zuo, R.; Ren, D.; Deng, Y.; Song, C.; Yu, Y.; Lu, X.; Zan, F.; Wu, X. Employing Low Dissolved Oxygen Strategy to Simultaneously Improve Nutrient Removal, Mitigate Membrane Fouling, and Reduce Energy Consumption in an AAO-MBR System: Fine Bubble or Coarse Bubble? J. Water Process. Eng. 2024, 57, 104602. [Google Scholar] [CrossRef]
- Bagherzadeh, F.; Nouri, A.S.; Mehrani, M.-J.; Thennadil, S. Prediction of Energy Consumption and Evaluation of Affecting Factors in a Full-Scale WWTP Using a Machine Learning Approach. Chem. Eng. Res. Des. 2021, 154, 458–466. [Google Scholar] [CrossRef]
- Kim, D.; Bowen, J.D.; Ozelkan, E.C. Optimization of Wastewater Treatment Plant Operation for Greenhouse Gas Mitigation. J. Environ. Manag. 2015, 163, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Liu, D.; Xing, S.; Wu, D.; Wang, F.; Yang, J.; Wu, X.; Zhang, W.; Dai, X. The Effects of Aging for Improving Wastewater Sludge Electro-Dewatering Performances. J. Ind. Eng. Chem. 2019, 80, 647–655. [Google Scholar] [CrossRef]
- Yapıcıoğlu, P.; Demir, Ö. Minimizing Greenhouse Gas Emissions of an Industrial Wastewater Treatment Plant in Terms of Water–Energy Nexus. Appl. Water Sci. 2021, 11, 180. [Google Scholar] [CrossRef]
- Kyung, D.; Kim, M.; Chang, J.; Lee, W. Estimation of Greenhouse Gas Emissions from a Hybrid Wastewater Treatment Plant. J. Clean. Prod. 2015, 95, 117–123. [Google Scholar] [CrossRef]
- Huang, F.; Shen, W.; Zhang, X.; Seferlis, P. Impacts of Dissolved Oxygen Control on Different Greenhouse Gas Emission Sources in Wastewater Treatment Process. J. Clean. Prod. 2020, 274, 123233. [Google Scholar] [CrossRef]
- Flores-Alsina, X.; Corominas, L.; Snip, L.; Vanrolleghem, P.A. Including Greenhouse Gas Emissions during Benchmarking of Wastewater Treatment Plant Control Strategies. Water Res. 2011, 45, 4700–4710. [Google Scholar] [CrossRef] [PubMed]
- Kishida, N.; Kim, J.H.; Kimochi, Y.; Nishimura, O.; Sasaki, H.; Sudo, R. Effect of C/N Ratio on Nitrous Oxide Emission from Swine Wastewater Treatment Process. Water. Sci. Technol. 2004, 49, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zou, Z.; Wang, L. Analysis and Forecasting of the Energy Consumption in Wastewater Treatment Plant. Math. Probl. Eng. 2019, 2019, 8690898. [Google Scholar] [CrossRef]
- Hu, B.; Quan, J.; Huang, K.; Zhao, J.; Xing, G.; Wu, P.; Chen, Y.; Ding, X.; Hu, Y. Effects of C/N Ratio and Dissolved Oxygen on Aerobic Denitrification Process: A Mathematical Modeling Study. Chemosphere. 2021, 272, 129521. [Google Scholar] [CrossRef]
- He, Y.; Li, Y.; Li, X.; Liu, Y.; Wang, Y.; Guo, H.; Hou, J.; Zhu, T.; Liu, Y. Net-Zero Greenhouse Gas Emission from Wastewater Treatment: Mechanisms, Opportunities and Perspectives. Renew. Sustain. Energy Rev. 2023, 184, 113547. [Google Scholar] [CrossRef]
- Shrestha, A.; Bhattarai, T.N.; Ghimire, S.; Mainali, B.; Treichel, H.; Paudel, S.R. Estimation of Greenhouse Gases Emission from Domestic Wastewater in Nepal: A Scenario-Based Analysis Applicable for Developing Countries. Chemosphere 2022, 300, 134501. [Google Scholar] [CrossRef] [PubMed]
- Sweetapple, C.; Fu, G.; Butler, D. Multi-Objective Optimisation of Wastewater Treatment Plant Control to Reduce Greenhouse Gas Emissions. Water Res. 2014, 55, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Santín, I.; Barbu, M.; Pedret, C.; Vilanova, R. Fuzzy Logic for Plant-Wide Control of Biological Wastewater Treatment Process Including Greenhouse Gas Emissions. ISA Trans. 2018, 77, 146–166. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wang, R.; Yu, Y.; Zhang, W.; Tan, Z.; Zhou, H.; Wu, Y.; Chen, Y. Construction and Application of Effluent Quality Prediction Model with Insufficient Data Based on Transfer Learning Algorithm in Wastewater Treatment Plants. Biochem. Eng. J. 2023, 191, 108807. [Google Scholar] [CrossRef]
- Heo, S.; Liu, Y.-Q. Dependence of Poly-β-Hydroxybutyrate Accumulation in Sludge on Biomass Concentration in SBRs. Sci. Total Environ. 2021, 797, 149138. [Google Scholar] [CrossRef]
Serial Number | ATDO | MTDO | ECR | PAC | IRR | ERR | SD | EQI | OCI | GHG |
---|---|---|---|---|---|---|---|---|---|---|
mgO2/L | mgO2/L | m3/d | gAl/m3 | % | % | m3/d | kgCO2/m3 | Ұ/m3 | kg/m3 | |
251 | 0.1 | 4 | 0 | 2 | 50 | 100 | 1000 | 0.046 | 0.27 | 0.51 |
1501 | 0.1 | 4 | 0 | 2 | 100 | 100 | 1000 | 0.046 | 0.28 | 0.52 |
1511 | 0.1 | 5 | 0 | 2 | 100 | 100 | 1000 | 0.046 | 0.28 | 0.52 |
2751 | 0.1 | 4 | 0 | 2 | 200 | 100 | 1000 | 0.045 | 0.28 | 0.52 |
2761 | 0.1 | 5 | 0 | 2 | 200 | 100 | 1000 | 0.045 | 0.29 | 0.53 |
1521 | 0.1 | 6 | 0 | 2 | 100 | 100 | 1000 | 0.045 | 0.29 | 0.53 |
4001 | 0.1 | 4 | 0 | 2 | 300 | 100 | 1000 | 0.045 | 0.29 | 0.53 |
2771 | 0.1 | 6 | 0 | 2 | 200 | 100 | 1000 | 0.045 | 0.29 | 0.54 |
4011 | 0.1 | 5 | 0 | 2 | 300 | 100 | 1000 | 0.045 | 0.29 | 0.54 |
6501 | 0.1 | 4 | 0 | 2 | 100 | 200 | 1000 | 0.044 | 0.33 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, J.; Li, S.; Liu, Y.; Mao, S.; Tian, T.; Ma, X.; Li, B.; Qiu, Y. Multi-Objective Optimization Based on Simulation Integrated Pareto Analysis to Achieve Low-Carbon and Economical Operation of a Wastewater Treatment Plant. Water 2024, 16, 995. https://doi.org/10.3390/w16070995
Liao J, Li S, Liu Y, Mao S, Tian T, Ma X, Li B, Qiu Y. Multi-Objective Optimization Based on Simulation Integrated Pareto Analysis to Achieve Low-Carbon and Economical Operation of a Wastewater Treatment Plant. Water. 2024; 16(7):995. https://doi.org/10.3390/w16070995
Chicago/Turabian StyleLiao, Jianbo, Shuang Li, Yihong Liu, Siyuan Mao, Tuo Tian, Xueyan Ma, Bing Li, and Yong Qiu. 2024. "Multi-Objective Optimization Based on Simulation Integrated Pareto Analysis to Achieve Low-Carbon and Economical Operation of a Wastewater Treatment Plant" Water 16, no. 7: 995. https://doi.org/10.3390/w16070995
APA StyleLiao, J., Li, S., Liu, Y., Mao, S., Tian, T., Ma, X., Li, B., & Qiu, Y. (2024). Multi-Objective Optimization Based on Simulation Integrated Pareto Analysis to Achieve Low-Carbon and Economical Operation of a Wastewater Treatment Plant. Water, 16(7), 995. https://doi.org/10.3390/w16070995