A Multi-Approach Analysis for Monitoring Wave Energy Driven by Coastal Extremes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Power Spectral Density
3.2. Energy Dissipation
3.3. Frequency Components and Wavelet Analysis
3.4. MLP-Regressor Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erikson, L.; Morim, J.; Hemer, M.; Young, I.; Wang, X.L.; Mentaschi, L.; Mori, N.; Semedo, A.; Stopa, J.; Grigorieva, V.; et al. Global ocean wave fields show consistent regional trsends between 1980 and 2014 in a multi-product ensemble. Commun. Earth Environ. 2022, 3, 320. [Google Scholar] [CrossRef]
- Sweet, W.; Hamlington, B.; Kopp, R.E.; Weaver, C.; Barnard, P.L.; Bekaert, D.; Brooks, W.; Craghan, M.; Dusek, G.; Frederikse, T.; et al. Global and Regional Sea Level Rise Scenarios for the United States. Report. 2022. Available online: https://pubs.usgs.gov/publication/70229139 (accessed on 15 April 2024).
- Martello, M.V.; Whittle, A.J. Estimating coastal flood damage costs to transit infrastructure under future sea level rise. Commun Earth Environ. 2023, 4, 137. [Google Scholar] [CrossRef]
- Oppenheimer, M.; Alley, R.B. How high will the seas rise? Science 2016, 354, 1375–1377. [Google Scholar] [CrossRef] [PubMed]
- Petrova, P.; Guedes Soares, C. Maximum wave crest and height statistics of irregular and abnormal waves in an offshore basin. Appl. Ocean Res. 2008, 30, 144–152. [Google Scholar] [CrossRef]
- Abroug, I.; Abcha, N.; Dutykh, D.; Jarno, A.; Marin, F. Experimental and numerical study of the propagation of focused wave groups in the nearshore zone. Phys. Lett. A 2020, 384, 126144. [Google Scholar] [CrossRef]
- Abroug, I.; Abcha, N.; Jarno, A.; Marin, F. Laboratory study of non-linear wave–wave interactions of extreme focused waves in the nearshore zone. Nat. Hazards Earth Syst. Sci. 2020, 20, 3279–3291. [Google Scholar] [CrossRef]
- Onorato, M.; Residori, S.; Bortolozzo, U.; Montina, A.; Arecchi, F.T. Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 2013, 528, 47–89. [Google Scholar] [CrossRef]
- Kharif, C.; Pelinovsky, E. Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech.—B/Fluids 2003, 22, 603–634. [Google Scholar] [CrossRef]
- Whittaker, C.N.; Fitzgerald, C.J.; Raby, A.C.; Taylor, P.H.; Borthwick, A.G.L. Extreme coastal responses using focused wave groups: Overtopping and horizontal forces exerted on an inclined seawall. Coast. Eng. 2018, 140, 292–305. [Google Scholar] [CrossRef]
- Baldock, T.E.; Swan, C.; Taylor, P.H. A laboratory study of nonlinear surface waves on water. Phil. Trans. R. Soc. Lond. A 1996, 354, 649–676. [Google Scholar] [CrossRef]
- Rapp, R.J.; Melville, W.K. Laboratory measurements of deep-water breaking waves. Phil. Trans. R. Soc. Lond. A 1990, 331, 735–800. [Google Scholar] [CrossRef]
- Wu, C.H.; Nepf, H.M. Breaking criteria and energy losses for three-dimensional wave breaking. J. Geophys. Res. 2002, 107, 41-1–41-18. [Google Scholar] [CrossRef]
- Yao, A.; Wu, C.H. Spatial and Temporal Characteristics of Transient Extreme Wave Profiles on Depth-Varying Currents. J. Eng. Mech. 2006, 132, 1015–1025. [Google Scholar] [CrossRef]
- Dysthe, K.; Krogstad, H.E.; Müller, P. Oceanic Rogue Waves. Annu. Rev. Fluid Mech. 2008, 40, 287–310. [Google Scholar] [CrossRef]
- Zhang, J.; Benoit, M.; Kimmoun, O.; Chabchoub, A.; Hsu, H.-C. Statistics of Extreme Waves in Coastal Waters: Large Scale Experiments and Advanced Numerical Simulations. Fluids 2019, 4, 99. [Google Scholar] [CrossRef]
- Trulsen, K.; Zeng, H.; Gramstad, O. Laboratory evidence of freak waves provoked by non-uniform bathymetry. Phys. Fluids 2012, 24, 097101. [Google Scholar] [CrossRef]
- Kashima, H.; Hirayama, K.; Mori, N. Estimation of freak wave occurrence from deep to shallow water regions. In Proceedings of the 34th International Conference on Coastal Engineering (ICCE 2014), Seoul, Republic of Korea, 15–20 June 2014; Volume 1. [Google Scholar] [CrossRef]
- Massel, S.R. Wavelet analysis for processing of ocean surface wave records. Ocean Eng. 2001, 28, 957–987. [Google Scholar] [CrossRef]
- Fu, R.; Ma, Y.; Dong, G.; Perlin, M. A wavelet-based wave group detector and predictor of extreme events over unidirectional sloping bathymetry. Ocean Eng. 2021, 229, 108936. [Google Scholar] [CrossRef]
- Percival, D.B.; Walden, A.T. Wavelet Methods for Time Series Analysis; Cambridge University Press: Cambridge, UK, 2000; ISBN 978-0-511-84104-0. [Google Scholar]
- Cornish, C.R.; Bretherton, C.S.; Percival, D.B. Maximal Overlap Wavelet Statistical Analysis with Application to Atmospheric Turbulence. Bound.-Layer Meteorol. 2006, 119, 339–374. [Google Scholar] [CrossRef]
- Günaydın, K. The estimation of monthly mean significant wave heights by using artificial neural network and regression methods. Ocean Eng. 2008, 35, 1406–1415. [Google Scholar] [CrossRef]
- Malekmohamadi, I.; Bazargan-Lari, M.R.; Kerachian, R.; Nikoo, M.R.; Fallahnia, M. Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height prediction. Ocean Eng. 2011, 38, 487–497. [Google Scholar] [CrossRef]
- James, S.C.; Zhang, Y.; O’Donncha, F. A machine learning framework to forecast wave conditions. Coast. Eng. 2018, 137, 1–10. [Google Scholar] [CrossRef]
- Rynkiewicz, J. General bound of overfitting for MLP regression models. Neurocomputing 2012, 90, 106–110. [Google Scholar] [CrossRef]
- White, H. Artificial Neural Networks: Approximation and Learning Theory; Blackwell Publishers, Inc.: Malden, MA, USA, 1992; ISBN 1-55786-329-6. [Google Scholar]
- Akkaya, B.; Çolakoğlu, N. Comparison of Multi-Class Classification Algorithms on Early Diagnosis of Heart Diseases. In Proceedings of the y-BIS 2019 Conference: ISBIS Young Business and Industrial Statisticians Workshop on Recent Advances in Data Science and Business Analytics, Istanbul, Turkey, 25–28 September 2019. [Google Scholar]
- Dutt, M.I.; Saadeh, W. A Multilayer Perceptron (MLP) Regressor Network for Monitoring the Depth of Anesthesia. In Proceedings of the 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), Quebec City, QC, Canada, 19–22 June 2022; pp. 251–255. [Google Scholar]
- Abroug, I.; Matar, R.; Abcha, N. Spatial Evolution of Skewness and Kurtosis of Unidirectional Extreme Waves Propagating over a Sloping Beach. J. Mar. Sci. Eng. 2022, 10, 1475. [Google Scholar] [CrossRef]
- Xu, J.; Liu, S.; Li, J.; Jia, W. Experimental study of wave height, crest, and trough distributions of directional irregular waves on a slope. Ocean Eng. 2021, 242, 110136. [Google Scholar] [CrossRef]
- Adcock, T.A.A.; Taylor, P.H. Estimating ocean wave directional spreading from an Eulerian surface elevation time history. Proc. R. Soc. A 2009, 465, 3361–3381. [Google Scholar] [CrossRef]
- Tromans, P.; Anaturk, A.R.; Hagemeijer, P. A new model for the kinematics of large ocean waves-application as a design wave. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Edinburgh, UK, 11–16 August 1991; Volume 3. [Google Scholar]
- Whittaker, C.N.; Fitzgerald, C.J.; Raby, A.C.; Taylor, P.H.; Orszaghova, J.; Borthwick, A.G.L. Optimisation of focused wave group runup on a plane beach. Coast. Eng. 2017, 121, 44–55. [Google Scholar] [CrossRef]
- Beji, S. Note on a nonlinearity parameter of surface waves. Coast. Eng. 1995, 25, 81–85. [Google Scholar] [CrossRef]
- Pierson, W.J.; Moskowitz, L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res. 1964, 69, 5181–5190. [Google Scholar] [CrossRef]
- Hasselmann, K.; Barnett, T.; Bouws, E.; Carlson, H.; Cartwright, D.; Enke, K.; Ewing, J.; Gienapp, H.; Hasselmann, D.; Kruseman, P.; et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deut. Hydrogr. Z. 1973, 8, 1–95. [Google Scholar]
- Craciunescu, C.C.; Christou, M. Wave breaking energy dissipation in long-crested focused wave groups based on JONSWAP spectra. Appl. Ocean Res. 2020, 99, 102144. [Google Scholar] [CrossRef]
- Rezaie-balf, M.; Naganna, S.R.; Ghaemi, A.; Deka, P.C. Wavelet coupled MARS and M5 Model Tree approaches for groundwater level forecasting. J. Hydrol. 2017, 553, 356–373. [Google Scholar] [CrossRef]
- Mouatadid, S.; Adamowski, J.F.; Tiwari, M.K.; Quilty, J.M. Coupling the maximum overlap discrete wavelet transform and long short-term memory networks for irrigation flow forecasting. Agric. Water Manag. 2019, 219, 72–85. [Google Scholar] [CrossRef]
- Quilty, J.; Adamowski, J. Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework. J. Hydrol. 2018, 563, 336–353. [Google Scholar] [CrossRef]
- Massei, N.; Dieppois, B.; Hannah, D.M.; Lavers, D.A.; Fossa, M.; Laignel, B.; Debret, M. Multi-time-scale hydroclimate dynamics of a regional watershed and links to large-scale atmospheric circulation: Application to the Seine river catchment, France. J. Hydrol. 2017, 546, 262–275. [Google Scholar] [CrossRef]
- Turki, E.I.; Deloffre, J.; Lecoq, N.; Gilbert, R.; Mendoza, E.T.; Laignel, B.; Salameh, E.; Gutierrez Barcelo, A.D.; Fournier, M.; Massei, N. Multi-timescale dynamics of extreme river flood and storm surge interactions in relation with large-scale atmospheric circulation: Case of the Seine estuary. Estuar. Coast. Shelf Sci. 2023, 287, 108349. [Google Scholar] [CrossRef]
- Rahman, A.T.M.S.; Hosono, T.; Quilty, J.M.; Das, J.; Basak, A. Multiscale groundwater level forecasting: Coupling new machine learning approaches with wavelet transforms. Adv. Water Resour. 2020, 141, 103595. [Google Scholar] [CrossRef]
- Osborne, A.R. Harmonic Generation in Shallow-Water Waves. In International Geophysics; Elsevier: Amsterdam, The Netherlands, 2010; Volume 97, pp. 795–817. ISBN 978-0-12-528629-9. [Google Scholar]
- Wu, Q.; Feng, X.; Dong, Y.; Dias, F. On the behavior of higher harmonics in the evolution of nonlinear water waves in the presence of abrupt depth transitions. Phys. Fluids 2023, 35, 127102. [Google Scholar] [CrossRef]
- Zhang, S. Energy and momentum dissipation through wave breaking. J. Geophys. Res. 2005, 110, C09021. [Google Scholar] [CrossRef]
- Padilla, E.M.; Alsina, J.M. Transfer and dissipation of energy during wave group propagation on a gentle beach slope. JGR Ocean. 2017, 122, 6773–6794. [Google Scholar] [CrossRef]
- Qin, Y.; Li, C.; Shi, X.; Wang, W. MLP-Based Regression Prediction Model For Compound Bioactivity. Front. Bioeng. Biotechnol. 2022, 10, 946329. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, J.; Aggarwal, P.; Kaur, R.; Mittal, A.; Ganaie, I.A. Stock Prediction by Integrating Sentiment Scores of Financial News and MLP-Regressor: A Machine Learning Approach. Procedia Comput. Sci. 2023, 218, 1067–1078. [Google Scholar] [CrossRef]
- Domala, V.; Lee, W.; Kim, T. Wave data prediction with optimized machine learning and deep learning techniques. J. Comput. Des. Eng. 2022, 9, 1107–1122. [Google Scholar] [CrossRef]
- Durap, A. A comparative analysis of machine learning algorithms for predicting wave runup. Anthr. Coasts 2023, 6, 17. [Google Scholar] [CrossRef]
Spectrum | PIERSON–MOSKOWITZ | JONSWAP (γ = 3.3) | JONSWAP (γ = 7) |
---|---|---|---|
Peak frequency fp | 0.75 Hz | 0.75 Hz | 0.75 Hz |
0.16 | 0.20 | 0.24 | |
0.20 | 0.25 | 0.30 | |
0.23 | 0.30 | 0.36 | |
0.27 | 0.35 | 0.42 | |
0.31 | 0.40 | 0.47 | |
0.35 | 0.44 | 0.52 | |
0.39 | 0.47 | 0.57 | |
0.43 | 0.53 | - | |
0.47 | 0.57 | - | |
Number of trains | 1–3–6–9 | 1–3–6–9 | 1–3–6–9 |
WG positions | 51 | 51 | 51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matar, R.; Abcha, N.; Abroug, I.; Lecoq, N.; Turki, E.-I. A Multi-Approach Analysis for Monitoring Wave Energy Driven by Coastal Extremes. Water 2024, 16, 1145. https://doi.org/10.3390/w16081145
Matar R, Abcha N, Abroug I, Lecoq N, Turki E-I. A Multi-Approach Analysis for Monitoring Wave Energy Driven by Coastal Extremes. Water. 2024; 16(8):1145. https://doi.org/10.3390/w16081145
Chicago/Turabian StyleMatar, Reine, Nizar Abcha, Iskander Abroug, Nicolas Lecoq, and Emma-Imen Turki. 2024. "A Multi-Approach Analysis for Monitoring Wave Energy Driven by Coastal Extremes" Water 16, no. 8: 1145. https://doi.org/10.3390/w16081145
APA StyleMatar, R., Abcha, N., Abroug, I., Lecoq, N., & Turki, E. -I. (2024). A Multi-Approach Analysis for Monitoring Wave Energy Driven by Coastal Extremes. Water, 16(8), 1145. https://doi.org/10.3390/w16081145