Evaluating the Water Quality of the Keddara Dam (Algeria) Using Water Quality Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Analytical Techniques
2.3. Statistical Analysis of the Water Quality Parameters
Detection of Outlier and Normality Testing
- The Shapiro–Wilk test: If the p-value is greater than the chosen significance threshold (e.g., 0.05), the data are mostly consistent with a normal distribution, and the null hypothesis is still true. If the p-value is less than the significance level, on the other hand, it means that the data deviate significantly from normality, and the null hypothesis is rejected [29].
- Kolmogorov–Smirnov: By demonstrating that the sample did not originate from the selected distribution, the Kolmogorov–Smirnov test rejects the null hypothesis if the p-value is less than the set significance threshold, which is often 0.05 or 0.01. The null hypothesis cannot be ruled out if the p-value is greater than the significance level, and we may reasonably conclude that the sample may originate from the given distribution [29].
- Quantile regression approach: Using the quantile regression method, the graph of normal quantiles is produced. A regression model is created for a subset of the response variable’s limited distribution. The data have a normal distribution if a linear relation can be inferred from this graph. The closer the R2 is to 1, the better the data distribution [29].
2.4. Application of Water Quality Index (WQI)
Parameters | Standard Value |
---|---|
Temperature | 26.5 |
pH | 8.5 |
Conductivity | 1500 |
Turbidity | 5 |
Total soluble solids | 30 |
Total hardness | 50 |
Full alkalimetric title | 20 |
Nitrite ion | 3 |
Nitrate ion | 50 |
Ammonia | <0.5 |
Phosphate ion | 0.5 |
2.4.1. Canadian Council of Ministers of the Environment (CCME) WQI
Study | Method Used | Reference | |
---|---|---|---|
Country | Water Resource Type | ||
Puebla valley, Mexico | Groundwater | CCME-WQI | [15] |
Reghaia, Algeria | Surface Water | WAM-WQI | [36] |
Amman-Zaraq, Jordan | Ground Water | CCME-WQI | [37] |
Ohaozora, Nigeria | Ground Water | WAM-WQI | [38] |
WWTP of Oran City, Algeria | Wastewater | CCME-WQI WAM-WQI | [39] |
- i.
- The CCME WQI method follows the following steps for parameter selection
- ii.
- Sub-index calculation
- iii.
- Parameter Weightings
- iv.
- Aggregation
- Calculation of excursion: The number of times an individual concentration exceeds (or falls short of, if the target is at its lowest) the objective is known as the excursion.
- 2.
- Calculation of the Normalised Sum of Excursion (nse).
- 3.
- Calculation of F3
- 4.
- WQI evaluation
2.4.2. Weighted Arithmetic Method (WAM)
3. Results and Discussion
3.1. Descriptive Characteristics of the Keddara Dam
3.2. Outlier Detection Normality Testing
3.3. Assessment of the Keddara Dam’s Surface Water Using Water Quality Indices
4. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tay, C.K. Integrating water quality indices and multivariate statistical techniques for water pollution assessment of the Volta Lake, Ghana. Sustain. Water Resour. Manag. 2021, 7, 71. [Google Scholar] [CrossRef]
- Trach, R.; Trach, Y.; Kiersnowska, A.; Markiewicz, A.; Lendo-Siwicka, M.; Rusakov, K. A study of assessment and prediction of water quality index using fuzzy logic and ANN models. Sustainability 2022, 14, 5656. [Google Scholar] [CrossRef]
- Lazizi, A.; Laifa, A. Assessment of the Surface Water Quality: A Case of Wadi El-Kébir West Watershed, Skikda, North-East Algeria. Nat. Environ. Pollut. Technol. 2020, 19, 1977–1985. [Google Scholar] [CrossRef]
- Ahmed, I.; Summers, J.K. (Eds.) Promising Techniques for Wastewater Treatment and Water Quality Assessment; BoD–Books on Demand: Schleswig-Holstein, Germany, 2021. [Google Scholar]
- Nadir, M.; Boualem, R. Study of Beni Haroun dam pollution (Algeria). Desalination Water Treat. 2016, 57, 2766–2774. [Google Scholar] [CrossRef]
- Hamlat, A.; Guidoum, A.; Koulala, I. Status and trends of water quality in the Tafna catchment: A comparative study using water quality indices. J. Water Reuse Desalination 2017, 7, 228–245. [Google Scholar] [CrossRef]
- Sadigov, R. Rapid growth of the world population and its socioeconomic results. Sci. World J. 2022, 2022, 8110229. [Google Scholar] [CrossRef] [PubMed]
- Djelita, B.; Bouzid-Lagha, S.; Nehar, K.C. Spatial and temporal patterns of the water quality in the Hammam Boughrara Reservoir in Algeria. In Energy, Transportation and Global Warming; Grammelis, P., Ed.; Springer International Publishing: Cham, Germany, 2016; pp. 635–653. [Google Scholar]
- Guettaf, M.; Maoui, A.; Ihdene, Z. Assessment of water quality: A case study of the Seybouse River (North East of Algeria). Appl. Water Sci. 2017, 7, 295–307. [Google Scholar] [CrossRef]
- Hadji, R.; Limani, Y.; Baghem, M.; Demdoum, A. Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: A case study of Souk Ahras region, NE Algeria. Quat. Int. 2013, 302, 224–237. [Google Scholar] [CrossRef]
- Boudoukha, A.; Boulaarak, M. Waters pollution of Hammam Grouz Dam by nutrients (East of Algeria). Bull Serv. Geol. 2013, 24, 23–34. [Google Scholar]
- Demdoum, A.; Hamed, Y.; Feki, M.; Hadji, R.; Djebbar, M. Multi-tracer investigation of groundwater in El Eulma Basin (Northwestern Algeria), North Africa. Arab. J. Geosci. 2015, 8, 3321–3333. [Google Scholar] [CrossRef]
- Hamad, A.; Baali, F.; Hadji, R.; Zerrouki, H.; Besser, H.; Mokadem, N.; Legrioui, R.; Hamed, Y. Hydrogeochemical characterization of water mineralization in Tebessa-Kasserine karst system (Tuniso-Algerian Transboundry basin). Euro-Mediterr. J. Environ. Integr. 2018, 3, 1–15. [Google Scholar] [CrossRef]
- Hamed, Y.; Redhaounia, B.; Sâad, A.; Hadji, R.; Zahri, F.; Zighmi, K. Hydrothermal waters from karst aquifer: Case study of the Trozza basin (Central Tunisia). J. Tethys 2017, 5, 33–44. [Google Scholar]
- Ferahtia, A.; Halilat, M.T.; Mimeche, F.; Bensaci, E. Surface water quality assessment in semi-arid region (El hodna watershed, Algeria) based on water quality index (WQI). Stud. Univ. Babes-Bolyai Chem. 2021, 66, 127–142. [Google Scholar] [CrossRef]
- Iqbal, M.M.; Shoaib, M.; Farid, H.U.; Lee, J.L. Assessment of Water Quality Profle Using Numerical Modeling Approach in Major Climate Classes of Asia. Int. J. Environ. Res. Public Health 2018, 15, 2258. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Olbert, A.I. A review of water quality index models and their use for assessing surface water quality. Ecol. Indic. 2021, 122, 107218. [Google Scholar] [CrossRef]
- Zandagba, J.E.B.; Adandedji, F.M.; Lokonon, B.E.; Chabi, A.; Dan, O.; Mama, D. Application use of Water Quality Index (WQI) and multivariate analysis for Nokoué lake water quality assessment. Am. J. Environ. Sci. Eng. 2017, 1, 117–127. [Google Scholar]
- Egun, N.K.; Oboh, I.P. Surface Water Quality Evaluation of Ikpoba Reservoir, Edo State, Nigeria. Int. J. Energy Water Resour. 2022, 6, 509–519. [Google Scholar] [CrossRef]
- Şener, Ş.; Şener, E.; Davraz, A. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Ammari, A. Vulnérabilité à l’Envasement des Barrages (cas du Bassin Hydrographique des Côtiers Algérois). Thèse de Doctorat en Sciences en Hydraulique. Ph.D Thesis, Université Mohamed Khider, Biskra, Algérie, 2012. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; Rice, E.W., Baird, R.B., Eaton, A.D., Clesceri, L.S., Eds.; American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF): Washington, DC, USA, 2012. [Google Scholar]
- Doherty, E.; McNamara, G.; Fitzsimons, L.; Clifford, E. Design and implementation of a performance assessment methodology cognisant of data accuracy for Irish wastewater treatment plants. J. Clean. Prod. 2017, 165, 1529–1541. [Google Scholar] [CrossRef]
- Hoffman, J.I. Chapter 9-Outliers and Extreme Values. Basic Biostat. Med. Biomed. Pract. 2019, 2, 149–155. [Google Scholar]
- Chantarangkul, V.; Peyvandi, F.; Tripodi, A.; Group, I. Effect of different methods for outlier detection and rejection when calculating cut off values for diagnosis of lupus anticoagulants. Thromb. Res. 2020, 190, 20–25. [Google Scholar] [CrossRef]
- Tukey, J.W. Exploratory Data Analysis; Springer: Berlin/Heidelberg, Germany, 1977; Volume 2, pp. 131–160. [Google Scholar]
- Le Guen, M. TUKEY’s boxplot, a tool for learning about statistics. Stat. Your-SFDS 2001, 4, 1–3. [Google Scholar]
- Berenguer-Rico, V.; Nielsen, B. Normality testing after outlier removal. Econom. Stat. 2023. [Google Scholar] [CrossRef]
- Razali, N.M.; Wah, Y.B. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. J. Stat. Model. Anal. 2011, 2, 21–33. [Google Scholar]
- World Health Organization. Nitrate and Nitrite in Drinking-Water. Background Document for Development of WHO Guidelines for Drinking-Water Quality. Available online: https://www.who.int/docs/default-source/wash-documents/wash-chemicals/nitrate-nitrite-background-document.pdf (accessed on 10 July 2023).
- Shaibur, M.R.; Hossain, M.S.; Sony, S.J. Drinking water quality of hand tube well water at sub-urban areas of Jashore Municipality, Bangladesh. J. Jessore Univ. Sci. Technol. 2019, 4, 11–22. [Google Scholar]
- Edori, O.S.; Nna, P.J. Determination of physicochemical parameters of effluents at discharge points into the New Calabar River along Rumuolumeni axis, Niger Delta, Nigeria. J. Environ. Anal. Toxicol. 2018, 8, 2161-0525. [Google Scholar]
- Jehan, S.; Ullah, I.; Khan, S.; Muhammad, S.; Khattak, S.A.; Khan, T. Evaluation of the Swat River, Northern Pakistan, water quality using multivariate statistical techniques and water quality index (WQI) model. Environ. Sci. Pollut. Res. 2020, 27, 38545–38558. [Google Scholar] [CrossRef]
- Mohammed, A.Q.; Mouhcine, E.Q.; Nabil Darwesh, M.S.; Hamdaoui, F.; Kherrati, I.; El Kharrim, K.; Belghyti, D. Hydrogeochemical study of groundwater quality in the west of Sidi Allal Tazi, Gharb area, Morocco. J. Mater. Environ. Sci. 2017, 9, 293–304. [Google Scholar]
- CCME (Canadian Council of Ministers of the Environment). Canadian Environmental Quality Guidelines for the Protection of Aquatic Life, CCME Water Quality Index: Technical Report, Canadian Council of Ministers of the Environment: Winnipeg, Manitoba, 2001.
- Bouhezila, F.; Hacene, H.; Aichouni, M. Water quality assessment in Reghaia (North of Algeria) lake basin by using traditional approach and water quality indices. Kuwait J. Sci. 2020, 47, 57–71. [Google Scholar]
- Fathi, P.; Ebrahimi Dorche, E.; Zare Shahraki, M.; Stribling, J.; Beyraghdar Kashkooli, O.; Esmaeili Ofogh, A.; Bruder, A. Revised Iranian Water Quality Index (RIWQI): A tool for the assessment and management of water quality in Iran. Environ. Monit. Assess. 2022, 194, 504. [Google Scholar] [CrossRef]
- Ojukwu, C.K.; Okeah, G.O.C.; Mmom, P.C. A Comparative Analysis of the Weighted Arithmetic and Canadian Council of Ministers of the Environment Water Quality Indices for Water Sources in Ohaozara, Ebonyi State, Nigeria. Int. J. Eng. Res. Technol. (IJERT) 2021, 10, 498–506. [Google Scholar]
- Bessedik, M.; Abdelbaki, C.; Badr, N.; Tiar, S.M.; Megnounif, A. Application of water quality indices for assessment of influent and effluent wastewater from wastewater treatment plant of Oran City, Algeria. Desalination Water Treat. 2021, 236, 306–317. [Google Scholar] [CrossRef]
- Zahedi, S. Modification of expected conflicts between drinking water quality index and irrigation water quality index in water quality ranking of shared extraction wells using multi criteria decision making techniques. Ecol. Indic. 2017, 83, 368–379. [Google Scholar] [CrossRef]
- Varol, M.; Gökot, B.; Bekleyen, A.; Şen, B. Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena 2012, 92, 11–21. [Google Scholar] [CrossRef]
- Sawyer, C.N.; McCarty, P.L.; Parkin, G.F. Chemistry for Environmental and Engineering Science, 5th ed.; McGraw Hill Inc.: New York, NY, USA, 2003; pp. 587–590. [Google Scholar]
- Ireland-EPA. Parameters of Water Quality—Interpretation and Standards; Environmental Protection Agency: Wexford, Republic of Ireland, 2001. [Google Scholar]
- Karakaya, N.; Evrendilek, F. Water quality time series for Big Melen stream (Turkey): Its decomposition analysis and comparison to upstream. Environ. Monit. Assess. 2010, 165, 125–136. [Google Scholar] [CrossRef]
- People’s Democratic Republic of Algeria. Law No. 83-03 of February 5, 1983 Relating to Environmental Protection. Official Journal of the Democratic and Popular Algerian Republic No. 6, February 8, 1983, p. 250.(pdf). (This Document Is in French). Available online: https://leap.unep.org/en/countries/dz/national-legislation/loi-n-83-03-relative-la-protection-de-lenvironnement (accessed on 15 March 2024).
- Ghemmit-Doulache, N.; Ouslimani, N. Water Quality Control of Three Sites At Kedarra Barrage. J. Fundam. Appl. Sci. 2021, 13, 965–981. [Google Scholar]
- Guettache, A.; Bettayeb, S.; Ililes, M. Caractérisation et Étude D’efficacité du Système de Traitement de l’eau de Barrage Keddara. Available online: http://dspace.univ-bouira.dz:8080/jspui/handle/123456789/11443 (accessed on 15 March 2024).
- Soltani, A.A.; Bermad, A.; Boutaghane, H.; Oukil, A.; Abdalla, O.; Hasbaia, M.; Oulebsir, R.; Zeroual, S.; Lefkir, A. An integrated approach for assessing surface water quality: Case of Beni Haroun dam (Northeast Algeria). Environ. Monit. Assess. 2020, 192, 1–17. [Google Scholar] [CrossRef]
- Arab, S.; Bouchelouche, D.; Hamil, S.; Arab, A. Application of water quality index for surface water quality assessment Boukourdane Dam, Algeria. In Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources, Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia, 2018; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 385–387. [Google Scholar]
- Hamlat, A.; Tidjani, A.E.B.; Yebdri, D.; Errih, M.; Guidoum, A. Water quality analysis of reservoirs within Western Algeria catchment areas using water quality index CCME WQI. J. Water Supply Res. Technol.—AQUA 2014, 63, 311–332. [Google Scholar] [CrossRef]
CCME WQIs | Quality Range | Water Categories |
---|---|---|
95–100 | Excellent | Natural water quality |
80–94 | Good | Water quality is departed from natural or desirable levels |
65–79 | Fair | Water quality condition sometimes departs from natural or desirable levels. |
45–64 | Marginal | Water quality is frequently threatened or impaired; conditions often depart from natural or desirable level |
0–44 | Poor | Water quality is not suitable for use purposes at any level. |
WQI Value | Rating of Water Quality | Grading |
---|---|---|
0–25 | Excellent water quality | A |
26–50 | Good water quality | B |
51–75 | Poor water quality | C |
76–100 | Very poor water quality | D |
>100 | Unsuitable for drinking | E |
Parameters | Temp. °C | pH | EC μS/cm | Turb. NTU | TSS mg/L | TH F0 | TAC F0 | NO2− mg/L | NO3− mg/L | NH4+ mg/L | PO43− mg/L |
---|---|---|---|---|---|---|---|---|---|---|---|
Minimum | 11.70 | 7.5 | 988 | 1.30 | 1.30 | 29.0 | 15.60 | 0.00 | 2.27 | 0.00 | 0.015 |
Q1 | 14.50 | 7.82 | 1147 | 3.68 | 3.59 | 39.0 | 17.20 | 0.02 | 3.96 | 0.015 | 0.015 |
Median | 16.90 | 7.96 | 1231 | 5.90 | 6.40 | 42.8 | 17.80 | 0.02 | 6.31 | 0.015 | 0.015 |
Mean (Q2) | 17.74 | 7.93 | 1243 | 6.72 | 6.68 | 42.18 | 17.57 | 0.03 | 6.68 | 0.023 | 0.025 |
Q3 | 20.90 | 8.04 | 1358 | 9.08 | 8.86 | 45.40 | 18.00 | 0.03 | 5.85 | 0.019 | 0.032 |
Max (Q4) | 25.30 | 8.32 | 1525 | 23.70 | 22.00 | 50.60 | 20.80 | 0.22 | 10.00 | 0.23 | 0.095 |
Min outlier | 4.9 | 7.49 | 830.5 | −4.42 | −4.32 | 29.4 | 16 | 0.003 | −0.97 | 0.01 | 0.011 |
Maj outlier | 30.5 | 8.37 | 1674.5 | 17.18 | 16.77 | 55 | 19.2 | 0.049 | 12.18 | 0.025 | 0.058 |
Permissible limit (WHO) | 26.5 | 8.5 | 1500 | 5 | 30 | 50 | 20 | 3 | 50 | ≤0.5 | 0.5 |
Water Parameters | Sample Size | Shapiro–Wilk Test | Kolmogorov Test | R² |
---|---|---|---|---|
Temperature | 309 | 1.12 × 10−10 | 0.8681 | 0.94 |
pH | 309 | 4.853 × 10−6 | 0.9982 | 0.97 |
Conductivity | 309 | 6.243 × 10−6 | 0.4846 | 0.98 |
Turbidity | 309 | 2.877 × 10−9 | 0.9826 | 0.95 |
Total dissolved solids (TSS) | 55 | 0.1075 | 0.7854 | 0.98 |
Hydrometric title (TH) | 24 | 0.1599 | 0.6574 | 0.95 |
Full alkalimetric title (TAC) | 23 | 0.3749 | 0.83 | 0.96 |
Nitrogen oxide (NO2−) | 104 | <2.2 × 10−16 | 0.4472 | 0.29 |
Nitrate (NO3−) | 28 | 0.2789 | 0.9841 | 0.97 |
Ammonia (NH4+) | 110 | <2.2 × 10−16 | 0.4472 | 0.34 |
Phosphate ion (PO43−) | 104 | 1.325 × 10−14 | 0.4472 | 0.63 |
Years | 29 December 2018–29 March 2019 | 3 April 2019–28 September 2019 | 2 October 2019–31 March 2020 | 4 April 2020–29 September 2020 | 2 October 2020–31 March 2021 | 3 April 2021–3 June 2021 | |
---|---|---|---|---|---|---|---|
Season | Wet | Dry | Wet | Dry | Wet | Dry | |
CCME WQI | Total number of tests | 177 | 383 | 383 | 297 | 348 | 96 |
Number of field parameters | 1 | 1 | 1 | 1 | 1 | 2 | |
Number of failed tests | 31 | 76 | 43 | 21 | 63 | 20 | |
F1 | 9.09 | 9.09 | 9.09 | 9.09 | 9.09 | 18.18 | |
F2 | 7.51 | 7.15 | 11.23 | 7.07 | 18.10 | 20.83 | |
F3 | 12.69 | 2.54 | 3.19 | 2.06 | 16.99 | 14.68 | |
WQI | 86.45 | 93.16 | 91.46 | 95.09 | 88.34 | 81.92 | |
Quality range | Good | Good | Good | Excellent | Good | Good | |
WAM WQI | WQI | 14.68 | 9.52 | 11.23 | 12.45 | 17.77 | 15.99 |
Quality range | Excellent | Excellent | Excellent | Excellent | Excellent | Excellent |
Study | Method Used | Water Quality | Reference | |
---|---|---|---|---|
Case Study | Lambert Coordinates | |||
Keddara Dam | 36°39′03″ N, 3°24′59″ E | CCME-WQI | Acceptable to excellent | This study |
WAM-WQI | Excellent | |||
Reghaia lake | 36°46′17″ N, 3°20′38″ E | CCME-WQI | Unsuitable | [36] |
WAM-WQI | Poor | |||
Beni Haroun Dam | 36°33′19″ N, 6°16′11″ E | CCME-WQI | Poor | [48] |
Boukourdane Dam | 36°31′40″ N, 2°18′14″ E | NSF-WQI | impaired | [49] |
Hammam Boughrara Dam | 34°53′03″ N, 1°38′51″ W | CCME-WQI | Poor | [50] |
Sikkak Dam | 35°02′42″ N, 1°20′27″ W | CCME-WQI | Marginal | [50] |
Cheurfa Dam | 35°24′11″ N, 0°15′14″ W | CCME-WQI | Marginal | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fashagba, T.S.; Bessedik, M.; ElSayed, N.B.; Abdelbaki, C.; Kumar, N. Evaluating the Water Quality of the Keddara Dam (Algeria) Using Water Quality Indices. Water 2024, 16, 1291. https://doi.org/10.3390/w16091291
Fashagba TS, Bessedik M, ElSayed NB, Abdelbaki C, Kumar N. Evaluating the Water Quality of the Keddara Dam (Algeria) Using Water Quality Indices. Water. 2024; 16(9):1291. https://doi.org/10.3390/w16091291
Chicago/Turabian StyleFashagba, Tosin Sarah, Madani Bessedik, Nadia Badr ElSayed, Chérifa Abdelbaki, and Navneet Kumar. 2024. "Evaluating the Water Quality of the Keddara Dam (Algeria) Using Water Quality Indices" Water 16, no. 9: 1291. https://doi.org/10.3390/w16091291
APA StyleFashagba, T. S., Bessedik, M., ElSayed, N. B., Abdelbaki, C., & Kumar, N. (2024). Evaluating the Water Quality of the Keddara Dam (Algeria) Using Water Quality Indices. Water, 16(9), 1291. https://doi.org/10.3390/w16091291