Sorbents Based on Polyacrylonitrile Fiber for Complex Recovery of Artificial 137Cs and Natural Radionuclides from Natural Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods for Preparing the Support and Obtaining Sorbents
2.3. Study of the Sorbent’s Structure
2.4. Study of Sorbent Selectivity Under Static Conditions
2.5. Study of Elements’ Sorption from Various Natural Solutions Under Static Conditions
2.6. Evaluation of the Sorption Efficiency for Large Volumes of Natural Waters Under Dynamic Conditions
2.7. Determination of Radionuclide Activity in Sorbent Samples
3. Results and Discussion
3.1. X-Ray Diffraction Analysis
- −
- Sorption of 137Cs:2nCs+ + MeIIMeII[Fe(CN)6] = nMe2+ + MeII1–nCs2nMeII[Fe(CN)6],3nCs+ + MeIII0.8MeII0.8[Fe(CN)6] = nMe3+ + MeIII0.8–nCs3nMeII[Fe(CN)6],
- −
- Sorption of radium isotopes (for CoMn-PAN, FeMn-PAN sorbents):nRa2+ + K1.33Mn8O16 = 2nK+ + K1.33–2nRanMn8O16,
- −
- Sorption of phosphorus isotopes (for CoFe-PAN sorbent):nPO43- + Fe(OH)3 = 3nOH- + Fe(OH)3–3n nPO4
3.2. Energy-Dispersive Analysis
3.3. Sorption Selectivity
3.4. Study of Sorption from Various Natural Solutions
3.5. Testing of the Obtained Sorbents on Large Volumes of Natural Media
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lomas, M.W.; Burke, A.L.; Lomas, D.A.; Bell, D.W.; Shen, C.; Dyhrman, S.T.; Ammerman, J.W. Sargasso Sea phosphorus biogeochemistry. An important role for dissolved organic phosphorus (DOP). Biogeosciences 2010, 7, 695–710. [Google Scholar] [CrossRef]
- Benitez-Nelson, C.R.; Buesseler, K.O. Temporal variability of inorganic and organic phosphorus in the coastal ocean. Nature 1999, 398, 502–505. [Google Scholar] [CrossRef]
- Benitez-Nelson, C.R.; Charmasson, S.; Buesseler, K.; Dai, M.; Aoyama, M.; Casacuberta, N.; Godoy, J.M.; Johnson, A.; Maderich, V.; Masqué, P.; et al. Radioactivity in the Marine Environment: Understanding the Basics of Radioecology. Limnol. Oceanogr. e-Lect. 2018, 8, 170–228. [Google Scholar] [CrossRef]
- Matishov, D.G.; Matishov, G.G. Radioecology in Northern European Seas; Springer Verlag: Berlin, Germany, 2004. [Google Scholar]
- Novikov, A.P. Migration and concentration of artificial radionuclides in environmental objects. Geochem. Int. 2010, 48, 1263–1387. [Google Scholar] [CrossRef]
- Verdeny, E.; Masqué, P.; Garcia-Orellana, J.; Hanfland, C.; Cochran, J.K.; Stewart, G.M. POC export from ocean surface waters by means of 234Th/238U and 210Po/210Pb disequilibria: A review of the use of two radiotracer pairs. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 1502–1518. [Google Scholar] [CrossRef]
- Rodellas, V.; Garcia-Orellana, J.; Trezzi, G.; Masqué, P.; Stieglitz, T.C.; Bokuniewicz, H.; Cochran, J.K.; Berdalet, E. Using the radium quartet to quantify submarine groundwaterdischarge and porewater exchange. Geochim. Cosmochim. Acta 2017, 196, 58–73. [Google Scholar] [CrossRef]
- Kremenchutskii, D.A.; Dymova, O.A.; Batrakov, G.F.; Konovalov, S.K. Numerical simulation of the intra-annual evolution of beryllium-7 (7Be) in the surface layer of the Black Sea. Environ. Sci. Pollut. Res. 2018, 11, 11120–11127. [Google Scholar] [CrossRef]
- Buesseler, K.; Aoyama, M.; Fukasawa, M. Impacts of the Fukushima nuclear power plants on marine radioactivity. Environ. Sci. Technol. 2011, 45, 9931–9935. [Google Scholar] [CrossRef]
- Gulin, S.B.; Egorov, V.N.; Duka, M.S.; Sidorov, I.G.; Proskurnin, V.Y.; Mirzoyeva, N.Y.; Bey, O.N.; Gulina, L.V. Deep-water profiling of 137Cs and 90Sr in the Black Sea. A further insight into dynamics of the post-Chernobyl radioactive contamination. J. Radioanal. Nucl. Chem. 2015, 304, 779–783. [Google Scholar] [CrossRef]
- Haskell, W.Z.; Kadko, D.; Hammond, D.E.; Knapp, A.N.; Prokopenko, M.G.; Berelson, W.M.; Capone, D.G. Upwelling velocity and eddy diffusivity from 7Be measurements used to compare vertical nutrient flux to export POC flux in the Eastern Tropical South Pacific. Mar. Chem. 2015, 168, 140–150. [Google Scholar] [CrossRef]
- Kremenchutskii, D.A. Distribution of beryllium-7 (7Be) in the Black Sea in the summer of 2016. Environ. Sci. Pollut. Res. 2018, 31, 31569–31578. [Google Scholar] [CrossRef] [PubMed]
- Lal, D. An overview of five decades of studies of cosmic ray produced nuclides in oceans. Sci. Total Environ. 1999, 237, 3–13. [Google Scholar] [CrossRef]
- Benitez-Nelson, C.R. The biogeochemical cycling of phosphorus in marine systems. Earth-Sci. Rev. 2000, 51, 109–135. [Google Scholar] [CrossRef]
- Rodellas, V.; Garcia-Orellana, J.; Masqué, P.; Feldman, M.; Weinstein, Y. Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proc. Natl. Acad. Sci. USA 2015, 112, 3926–3930. [Google Scholar] [CrossRef]
- Zektser, I.S.; Dzhamalov, R.G. Submarine Groundwater; Everett, L.G., Ed.; CRC Press, Taylor & Francis Group: New York, NY, USA, 2007. [Google Scholar]
- Buesseler, K.O.; Benitez-Nelson, C.R.; Moran, S.B.; Burd, A.; Charette, M.; Cochran, J.K.; Coppola, L.; Fisher, N.S.; Fowler, S.W.; Gardner, W.D.; et al. An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy. Mar. Chem. 2006, 100, 213–233. [Google Scholar] [CrossRef]
- Villa-Alfageme, M.; Mas, J.L.; Hurtado-Bermudez, S.; Masqué, P. Rapid determination of 210Pb and 210Po in water and application to marine samples. Talanta 2016, 160, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Myasoedov, B.F. Radioactive contamination of the environment and the possibilities of modern radiochemistry in the field of monitoring. Radiat. Saf. Issues 1997, 1, 3–4. (In Russian) [Google Scholar]
- Bezhin, N.A.; Shibetskaia, I.G.; Kozlovskaia, O.N.; Slizchenko, E.V.; Tananaev, I.G. 7Be Recovery from Seawater by Sorbents of Various Types. Materials 2023, 16, 4088. [Google Scholar] [CrossRef] [PubMed]
- Myasoedova, G.V.; Nikashina, V.A. Sorption materials for radionuclides extraction from aqueous media. Rus. Chem. J. 2006, L, 55–63. (In Russian) [Google Scholar]
- Galamboš, M.; Suchánek, P.; Rosskopfová, O. Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. J. Radioanal. Nucl. Chem. 2012, 293, 613–633. [Google Scholar] [CrossRef]
- Modi, M.K.; Pattanaik, P.; Dash, N.; Subramanian, S. Sorption of Radionuclides. Int. J. Pharm. Sci. Rev. Res. 2015, 34, 122–130. [Google Scholar]
- Maamoun, I.; Eljamal, R.; Falyouna, O.; Bensaida, K.; Idham, M.F.; Sugihara, Y.; Eljamal, O. Radionuclides Removal from Aqueous Solutions: A Mini Review on Using Different Sorbents. Proc. Int. Exch. Innov. Conf. Eng. Sci. (IEICES) 2021, 7, 170–177. [Google Scholar] [CrossRef]
- Egorin, A.M.; Sokolnitskaya, T.A.; Matveikin, M.Y.; Avramenko, V.A.; Tutov, M.V.; Tokar’, E.A. Composite selective sorbents for sea water decontamination from cesium and strontium radionuclides. Dokl. Phys. Chem. 2015, 460, 10–14. [Google Scholar] [CrossRef]
- Grushicheva, E.A.; Bogdanovich, N.G.; Emelianov, V.P.; Petrukhina, G.N.; Starkov, O.V. Inorganic sorbents: Sorption properties of natural silicates. Sorpt. Chromatogr. Proc. 2006, 6, 922–927. (In Russian) [Google Scholar]
- Bogdanovich, N.G.; Grushicheva, E.A.; Mishevets, T.O.; Skomorokhova, S.N.; Trifanova, E.M.; Emel’Yanov, V.P.; Petrukhina, G.N.; Starkov, O.V. Recovery of 137Cs and 90Sr from wastewater by sorption on finely dispersed minerals under static conditions. Radiochemistry 2008, 50, 395–401. [Google Scholar] [CrossRef]
- Nikiforov, A.F.; Sviridov, A.V.; Lobukhina, T.V.; Sarapulova, T.V.; Zavarzin, A.M. Concentration of radionuclides from natural waters by finely dispersed aluminosilicate sorbents. Water Manag. Rus. Probl. Technol. Manag. 2008, 3, 71–80. (In Russian) [Google Scholar]
- Pshinko, G.N.; Puzyrnaya, L.N.; Shunkov, V.S.; Kosorukov, A.A.; Demchenko, V.Y. Removal of cesium and strontium radionuclides from aqueous media by sorption onto magnetic potassium zinc hexacyanoferrate(II). Radiochemistry 2016, 58, 491–497. [Google Scholar] [CrossRef]
- Korneikov, R.I.; Ivanenko, V.I. Extraction of Cesium and Strontium Cations from Solutions by Titanium(IV) Phosphate-Based Ion Exchangers. Inorg. Mater. 2020, 56, 502–506. [Google Scholar] [CrossRef]
- Kuznetsov, A.Y.; Yanchenko, S.S.; Lysenko, A.A. Sorption of strontium and cesium radionuclides from aqueous media by polymer sorbents. Ind. Proc. Technol. 2022, 5, 23–28. (In Russian) [Google Scholar] [CrossRef]
- Makarov, A.V.; Zharkova, V.O.; Ershova, Y.Y.; Tyupina, E.A.; Krupskaya, V.V. Sorption of Sr-90 and Cs-137 on monocationic forms of bentonite from the Taganskoe deposit. Adv. Chem. Chem. Technol. 2017, 31, 16–18. (In Russian) [Google Scholar]
- Efimova, N.V.; Krasnopyorova, A.P.; Yuhno, G.D.; Sofronov, D.S.; Rucki, M. Uptake of Radionuclides 60Co, 137Cs, and 90Sr with α-Fe2O3 and Fe3O4 Particles from Aqueous Environment. Materials 2021, 14, 2899. [Google Scholar] [CrossRef] [PubMed]
- Kitikova, N.V.; Ivanets, A.I.; Shashkova, I.L.; Radkevich, A.V.; Shemet, L.V.; Zarubo, A.M. Dolomite-based phosphate sorbents for the extraction of cobalt and strontium radionuclides from model seawater solutions. Trans. Kola Sci. Center. Chem. Mater. Sci. 2018, 9, 279–285. (In Russian) [Google Scholar] [CrossRef]
- Avrorin, E.N.; Bamburov, V.G.; Barysheva, N.M.; Ivanov, I.I.; Mikhailov, G.G.; Pashkeev, I.Y.; Polyakov, E.V.; Ovchinnikov, N.A.; Tsvetokhin, A.G.; Shveikin, G.P. Method for extracting radionuclides from aqueous solutions. Russian Federal Nuclear Center—Zababakhin All-Russia Research Institute of technical Physics. Patent 2330340 Russian Federation, IPC G21F 9/12, 27 September 2007. [Google Scholar]
- Samonin, V.V.; Podvyaznikov, M.L.; Spiridonova, E.A.; Kiseleva, V.L.; Nikonova, V.Y.; Boytsova, T.A.; Schmidt, O.V.; Isakov, G.I.; Isakova, V.G. Extraction of radionuclides from waters by fullerene-modified ion-exchange materials in order to ensure radioactive safety of water bodies. Altern. Energy Ecol. 2012, 10, 50–54. (In Russian) [Google Scholar]
- Dulaiova, H.; Burnett, W.C. An efficient method for γ-spectrometric determination of radium-226,228 via manganese fibers. Limnol. Oceanogr. Methods 2004, 2, 256–261. [Google Scholar] [CrossRef]
- Henderson, P.B.; Morris, P.J.; Moore, W.S.; Charette, M.A. Methodological advances for measuring low-level radium isotopes in seawater. J. Radioanal. Nucl. Chem. 2013, 296, 357–362. [Google Scholar] [CrossRef]
- Dovhyi, I.I.; Kremenchutskii, D.A.; Bezhin, N.A.; Shibetskaya, Y.G.; Tovarchii, Y.Y.; Egorin, A.M.; Tokar, E.A.; Tananaev, I.G. MnO2 fiber as a sorbent in oceanographic investigations. J. Radioanal. Nucl. Chem. 2020, 323, 539–547. [Google Scholar] [CrossRef]
- Hartman, M.C.; Buesseler, K.O. Adsorbers for In-Situ Collection and At-Sea Gamma Analysis of Dissolved Thorium-234 in Seawater; Technical Report; Woods Hole Oceanographic Institution: Woods Hole, MA, USA, 1994. [Google Scholar] [CrossRef]
- Colley, S.; Thomson, J. Particulate/solution analysis of 226Ra, 230Th and 210Pb in sea water sampled by in-situ large volume filtration and sorption by manganese oxyhydroxide. Sci. Tot. Environ. 1994, 155, 273–283. [Google Scholar] [CrossRef]
- Towler, P.H.; Smith, J.D.; Dixon, D.R. Magnetic recovery of radium, lead and polonium from seawater samples after preconcentration on a magnetic adsorbent of manganese dioxide coated magnetite. Anal. Chim. Acta 1996, 328, 53–59. [Google Scholar] [CrossRef]
- Athon, M.T.; Fryxell, G.E.; Chuang, C.-Y.; Santschi, P.H. Sorption of selected radionuclides on different MnO2 phases. Environ. Chem. 2017, 14, 207–214. [Google Scholar] [CrossRef]
- Avramenko, V.A.; Zheleznov, V.V.; Kaplun, E.V.; Sokol’nitskaya, T.A.; Yukhkam, A.A. Sorption Recovery of Strontium from Seawater. Radiochemistry 2001, 43, 433–436. [Google Scholar] [CrossRef]
- Nekrasova, N.A.; Milyutin, V.V.; Kaptakov, V.O.; Kozlitin, E.A. Inorganic Sorbents for Wastewater Treatment from Radioactive Contaminants. Inorganics 2023, 11, 126. [Google Scholar] [CrossRef]
- Egorin, A.; Sokolnitskaya, T.; Azarova, Y.; Portnyagin, A.; Balanov, M.; Misko, D.; Shelestyuk, E.; Kalashnikova, A.; Tokar, E.; Tananaev, I.; et al. Investigation of Sr uptake by birnessite-type sorbents from seawater. J. Radioanal. Nucl. Chem. 2018, 317, 243–251. [Google Scholar] [CrossRef]
- Voronina, A.V.; Noskova, A.Y.; Semenishchev, V.S.; Gupta, D.K. Decontamination of seawater from 137Cs and 90Sr radionuclides using inorganic sorbents. J. Environ. Radioact. 2020, 217, 106210. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Barg, E.; Lal, D. Studies of vertical mixing in the Southern California Bight with cosmogenic radionuclides 32P and 7Be. Limnol. Oceanogr. 1991, 36, 1044–1053. [Google Scholar] [CrossRef]
- Bezhin, N.A.; Frolova, M.A.; Dovhyi, I.I.; Kozlovskaia, O.N.; Slizchenko, E.V.; Shibetskaia, I.G.; Khlystov, V.A.; Tokar’, E.A.; Tananaev, I.G. The Sorbents Based on Acrylic Fiber Impregnated by Iron Hydroxide (III): Production Methods, Properties, Application in Oceanographic Research. Water 2022, 14, 2303. [Google Scholar] [CrossRef]
- Suriyanarayanan, S.; Brahmanandhan, G.M.; Samivel, K.; Ravikumar, S.; Shahul Hameed, P. Assessment of 210Po and 210Pb in marine biota of the Mallipattinam ecosystem of Tamil Nadu, India. J. Environ. Radioact. 2010, 101, 1007–1010. [Google Scholar] [CrossRef]
- Kadko, D.; Olson, D. Beryllium-7 as a tracer of surface water subduction and mixed-layer history. Deep Sea Res. Part I Oceanogr. Res. Pap. 1996, 43, 86–116. [Google Scholar] [CrossRef]
- Kadko, D. Upwelling and primary production during the US GEOTRACES East Pacific Zonal Transect. Glob. Biogeochem. Cycles 2017, 31, 218–232. [Google Scholar] [CrossRef]
- Nakanishi, T.; Kusakabe, M.; Aono, T.; Yamada, M. Simultaneous measurements of cosmogenic radionuclides 32P, 33P and 7Be in dissolved and particulate forms in the upper ocean. J. Radioanal. Nucl. Chem. 2009, 279, 769–776. [Google Scholar] [CrossRef]
- Dovhyi, I.I.; Bezhin, N.A.; Tananaev, I.G. Sorption methods in marine radiochemistry. Russ. Chem. Rev. 2021, 90, 1544–1565. [Google Scholar] [CrossRef]
- Shibetskaia, I.G.; Razina, V.A.; Bezhin, N.A.; Tokar’, E.A.; Milyutin, V.V.; Nekrasova, N.A.; Yankovskaya, V.S.; Tananaev, I.G. New Sorbents Based on Polyacrylonitrile Fiber and Transition Metal Ferrocyanides for 137Cs Recovery from Various Composition Solutions. Appl. Sci. 2024, 14, 627. [Google Scholar] [CrossRef]
- Shibetskaia, I.G.; Bezhin, N.A.; Razina, V.A.; Kozlovskaia, O.N.; Turyanskiy, V.A.; Tananaev, I.G. Regularities of cesium sorption by fibrous sorbents based on transition metal ferrocyanides. J. Radioanal. Nucl. Chem. 2024. [Google Scholar] [CrossRef]
- Anfilatova, O.V. Register of Certified Reference Materials of the Substances and Materials Composition and Properties of the States Parties to the Agreement. Certif. Ref. Mater. 2009, 4, 70–84. (In Russian) [Google Scholar]
- Al-Ghamdi, A.A.; Galhoum, A.A.; Alshahrie, A.; Al-Turki, Y.A.; Al-Amri, A.M.; Wageh, S. Mesoporous Magnetic Cysteine Functionalized Chitosan Nanocomposite for Selective Uranyl Ions Sorption: Experimental, Structural Characterization, and Mechanistic Studies. Polymers 2022, 14, 2568. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, M.; Zhang, L.; Lu, Y.; Di, B.; Shi, K.; Hou, X. Investigation on the thermal stability of cesium in soil pretreatment and its separation using AMP-PAN resin. J. Radioanal. Nucl. Chem. 2023, 332, 877–885. [Google Scholar] [CrossRef]
- Novikov, D.A.; Kopylova, Y.G.; Chernykh, A.V.; Dultsev, F.F.; Pyryaev, A.N.; Khvashchevskaya, A.A.; Nichkova, L.A.; Sigora, G.A.; Yakhin, T.A. New Data on Hydrogeochemical and Isotopic Composition of Natural Waters of the Baidar Valley (Crimean Peninsula). Russ. Geol. Geophys. 2021, 62, 1401–1421. [Google Scholar] [CrossRef]
- Sorokin, Y.I. Black Sea: Nature, Resources; Nauka: Moscow, Russia, 1982. (In Russian) [Google Scholar]
- Simonov, A.I.; Ryabinin, A.I.; Gershanovich, D.E. (Eds.) Project "Seas of the USSR". Hydrometeorology and Hydrochemistry of the Seas of the USSR. Volume IV. Black Sea. Issue 2. Hydrochemical Conditions and Oceanographic Bases for the Formation of Biological Productivity; Gidrometeoizdat: St. Petersburg, Russia, 1992; 272p. (In Russian) [Google Scholar]
- Pushnina, Y.Y.; Kiryakov, M.S.; Bezkhmilnitsyn, N.A.; Golubtsova, O.A. Determination of some hydrochemical indicators in the waters of the Pacific Ocean and the Sea of Okhotsk in 2021. Actual Probl. Aviat. Cosmonaut. Sect. Environ. Saf. 2022, 2, 661–663. (In Russian) [Google Scholar]
- Korshenko, A.N. (Ed.) Quality of Sea Waters by Hydrochemical Indicators. Yearbook 2012; Nauka: Moscow, Russia, 2013. (In Russian) [Google Scholar]
- Welz, B.; Sperling, M. Atomic Absorption Spectrometry; WILEY-VCH Verlag: Weinheim, Germany; New York, NY, USA; Chichester, UK; Toronto, ON, Canada; Brisbane, Australia; Singapore, 2008. [Google Scholar]
- Grasshoff, K.; Kremling, K.; Ehrhardt, M. (Eds.) Methods of Seawater Analysis, 3rd ed.; WILEY-VCH Verlag: Weinheim, Germany, 2007. [Google Scholar]
- Korostelev, P.P. Photometric and Complexometric Analysis in Metallurgy; Metallurgy: Moscow, Russia, 1984. (In Russian) [Google Scholar]
- Mann, D.R.; Casso, S.A. In situ chemisorption of radiocesium from seawater. Mar. Chem. 1984, 14, 307–318. [Google Scholar] [CrossRef]
- Bezhin, N.A.; Kremenchukskiy, D.A.; Slizchenko, E.V.; Kozlovskaia, O.N.; Milyutin, V.V.; Tananaev, I.G. Investigation of 137Cs distribution in the surface layer of the Black Sea using various types of sorbents. Processes 2023, 11, 603. [Google Scholar] [CrossRef]
- Moore, W.S. Sampling 228Ra in the deep ocean. Deep Sea Res. Oceanogr. Abstr. 1976, 23, 647–651. [Google Scholar] [CrossRef]
- Xu, W.; Lan, H.; Wang, H.; Liu, H.; Qu, J. Comparing the adsorption behaviors of Cd, Cu and Pb from water onto Fe-Mn binary oxide, MnO2 and FeOOH. Front. Environ. Sci. Eng. 2015, 9, 385–393. [Google Scholar] [CrossRef]
- Martemyanova, I.V.; Plotnikov, E.V.; Martemyanov, D.V. Catalytic Sorbent for Purification of Aqueous Media. Patent 2617492 Russian Federation, IPC B01J 20/18, B01J 20/06, 25 April 2017. [Google Scholar]
- Markov, V.F.; Formazyuk, N.I.; Maskaeva, L.N.; Makurin, Y.N.; Stepanovskikh, E.I. Extraction of copper(II) from industrial wastewater using a composite sorbent strongly acidic cation exchanger—Iron hydroxide. Altern. Energy Ecol. 2007, 3, 144–149. (In Russian) [Google Scholar]
- Holgersson, S.; Kumar, P. A literature review on thermodynamic sorption models of radionuclides with some selected granitic minerals. Front. Nucl. Eng. 2023, 2, 1227170. [Google Scholar] [CrossRef]
- Yücel, M.; Moore, W.S.; Butler, I.B.; Boyce, A.; Luther, G.W. Recent sedimentation in the Black Sea: New insights from radionuclide distributions and sulfur isotopes. Deep Sea Res. Part I Oceanogr. Res. Pap. 2012, 66, 103. [Google Scholar] [CrossRef]
- Aliev, R.A.; Sapozhnikov, Y.A. Determination of 210Pb and 137Cs in Sediments of Dnieper-Bug Bay. Mosc. Univ. Chem. Bull. 2000, 41, 264–265. [Google Scholar]
- Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A.H. The Nubase evaluation of nuclear and decay propertie. Nucl. Phys. A 2003, 729, 3–128. [Google Scholar] [CrossRef]
- Gulin, S.B. Seasonal changes of 234Th scavenging in surface water across the western Black Sea. An implication of the cyclonic circulation patterns. J. Environ. Radioact. 2000, 51, 335–347. [Google Scholar] [CrossRef]
- Kenyon, J.A.; Buesseler, K.O.; Casacuberta, N.; Castrillejo, M.; Otosaka, S.; Masqué, P.; Drysdale, J.A.; Pike, S.M.; Sanial, V. Distribution and Evolution of Fukushima Dai-ichi derived 137Cs, 90Sr, and 129I in Surface Seawater off the Coast of Japan Click to copy article link. Environ. Sci. Technol. 2020, 54, 15066–15075. [Google Scholar] [CrossRef]
- Inoue, M.; Yoshida, K.; Minakawa, M.; Kofuji, H.; Nagao, S.; Hamajima, Y.; Yamamoto, M. Spatial variations of 226Ra, 228Ra, 137Cs, and 228Th activities in the southwestern Okhotsk Sea. J. Environ. Radioact. 2012, 104, 75–80. [Google Scholar] [CrossRef]
- Silker, W.B.; Robertson, D.E.; Rieck, H.G.; Perkins, R.W.; Prospero, J.M. Beryllium-7 in Ocean Water. Science 1968, 161, 879–880. [Google Scholar] [CrossRef]
- Zhong, Q.; Yu, T.; Lin, H.; Lin, J.; Ji, J.; Ni, J.; Du, J.; Huang, D. 210Po–210Pb Disequilibrium in the Western North Pacific Ocean: Particle Cycling and POC Export. Front. Mar. Sci. 2021, 8, 700524. [Google Scholar] [CrossRef]
- Seo, H.; Joung, D.; Kim, G. Contrasting Behaviors of 210Pb and 210Po in the Productive Shelf Water Versus the Oligotrophic Water. Front. Mar. Sci. 2021, 8, 701441. [Google Scholar] [CrossRef]
- Nozaki, Y.; Kasemsupaya, V.; Tsubota, H. The distribution of 228Ra and 226Ra in the surface waters of the northern North Pacific. Geochem. J. 1990, 24, 1–6. [Google Scholar] [CrossRef]
- Moore, W.S.; Charette, M.A.; Henderson, P.B.; Hammond, D.E.; Kemnitz, N.; Le Roy, E.; Young Kwon, E.; Hult, M. Enriched regions of 228Ra along the U.S. GEOTRACES Pacific Meridional Transect (GP15). J. Geophys. Res. Ocean. 2024, 129, e2023JC020564. [Google Scholar] [CrossRef]
- Charette, M.A.; Bradley Moran, S.; Bishop, J.K.B. 234Th as a tracer of particulate organic carbon export in the subarctic northeast Pacific Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 1999, 46, 2833–2861. [Google Scholar] [CrossRef]
- Gulin, S.B.; Egorov, V.N. Radioactive Tracers in the Black Sea: A Tool for Environmental Assessment and Ecological Regulation. In Genetics, Evolution and Radiation; Korogodina, V., Mothersill, C., Inge-Vechtomov, S., Seymour, C., Eds.; Springer: Cham, Switzerland, 2016; pp. 303–313. [Google Scholar] [CrossRef]
- Zhabin, I.A.; Lukyanova, N.B. Results of monitoring oceanographic conditions off the east coast of Japan in March–April 2011 after the accident at the Fukushima-1 NPP. Bull. FEB RAS 2011, 6, 48–53. (In Russian) [Google Scholar]
Ion | Concentration, mg/L | ||
---|---|---|---|
Black River [60] | Black Sea [61,62] | Pacific Ocean [63,64] | |
Cl– | 5.1–6.2 | 8790–10,600 | 19,350–25,160 |
HCO3− | 157–186 | 139–202 | 36–147 |
CO32− | 0.2–20 | 73.2–88.2 | 10–96 |
SO42− | 8.6–9.3 | 1290–2140 | 2700–5580 |
MoO42− | (0.01–0.97) × 10−3 | (1–3.4) × 10−3 | (1–4.8) × 10−3 |
K+ | 0.54–0.82 | 139–287 | 298–586 |
Na+ | 4–4.5 | 4990–6900 | 10,700–14,100 |
Ca2+ | 51–58.3 | 217–269 | 408–754 |
Mg2+ | 3.2–7.9 | 592–756 | 1290–3070 |
Sr2+ | 0.13–0.15 | 4.46–6.05 | 6–14 |
Co2+ | (0.02–0.23) × 10−3 | (0.2–1.6) × 10−3 | (0.1–6.4) × 10−3 |
Cu2+ | (0.55–1.14) × 10−3 | (1–7) × 10−3 | (0.6–18) × 10−3 |
Hg2+ | (0–0.04) × 10−3 | (0.3–0.4) × 10−3 | (0.01–1.42) × 10−3 |
Fe2+ + Fe3+ | (42.7–90) × 10−3 | (5–40) × 10−3 | (3–164) × 10−3 |
Mn2+ | (4.7–170) × 10−3 | (4–40) × 10−3 | (0.1–111) × 10−3 |
Ni2+ | (0.23–0.64) × 10−3 | (0.5–3) × 10−3 | (0.3–5.4) × 10−3 |
Average salinity, ‰ | 0.4 | 18.4 | 33.8 |
Sorbent | Fe, % | Mn, % | Co, % | K, % | C, % | O, % | N, % |
---|---|---|---|---|---|---|---|
CoFe-PAN | 26.75 ± 4.20 | − | 5.44 ± 0.88 | 3.54 ± 0.47 | 28.86 ± 5.13 | 17.24 ± 3.92 | 18.17 ± 3.05 |
CoMn-PAN | 7.55 ± 1.21 | 15.23 ± 2.44 | 4.89 ± 0.65 | 4.01 ± 0.68 | 32.97 ± 5.34 | 15.32 ± 2.63 | 20.03 ± 2.91 |
FeMn-PAN | 9.68 ± 1.17 | 33.37 ± 6.02 | − | 4.41 ± 0.47 | 32.38 ± 5.46 | 8.63 ± 1.37 | 11.53 ± 1.41 |
Elements | CoFe-PAN | CoMn-PAN | FeMn-PAN | |
---|---|---|---|---|
alkaline | Li | ˂1 | ˂1 | ˂1 |
Na | ˂1 | ˂1 | ˂1 | |
K | ˂1 | ˂1 | ˂1 | |
Rb | 13.1 ± 2.7 | 3.11 ± 0.96 | 3.12 ± 0.87 | |
Cs | (1.8 ± 0.4) × 105 | (1.3 ± 0.3) × 105 | (9.5 ± 0.7) × 104 | |
alkaline earth | Mg | ˂1 | ˂1 | ˂1 |
Ca | ˂1 | ˂1 | ˂1 | |
Sr | ˂1 | 163 ± 24 | 159 ± 18 | |
Ba | 23.0 ± 4.5 | 592 ± 45 | 561 ± 62 | |
p-elements | Al | ˂1 | 18.2 ± 3.6 | 4.46 ±1.22 |
Pb | (6.4 ± 0.9) × 103 | (9.4 ± 0.3) × 103 | (9.1 ± 0.4) × 103 | |
Bi | (7.9 ± 0.8) × 103 | (9.2 ± 0.4) × 103 | (9.3 ± 0.2) × 103 | |
d-elements | Cr | 16.6 ± 3.1 | 18.4 ± 0.9 | 25.6 ± 4.3 |
Mn | ˂1 | ˂1 | ˂1 | |
Fe | 82.8 ± 7.9 | 189 ± 7 | 353 ± 38 | |
Co | ˂1 | ˂1 | 19.6 ± 1.0 | |
Ni | 2.50 ± 0.51 | 13.8 ± 1.5 | 26.0 ± 1.5 | |
Cu | 76.7 ± 9.6 | 124 ± 26 | 210 ± 22 | |
Zn | 4.09 ± 1.12 | 6.65 ± 0.88 | 6.07 ± 1.96 | |
Cd | 2.65 ± 0.73 | 4.35 ± 1.02 | 6.48 ± 2.32 |
Sorbent | Recovered Element | Natural Solutions (Salinity, ‰) | ||
---|---|---|---|---|
Black River (0.4) | Black Sea (18.4) | Pacific Ocean (33.8) | ||
CoFe-PAN | Cs | (2.4 ± 0.5) × 105 | (5.6 ± 0.7) × 105 | (2.8 ± 0.2) × 105 |
Be | (1.0 ± 0.2) × 103 | (1.2 ± 0.2) × 103 | 950 ± 79 | |
P | (5.3 ± 0.6) × 103 | (1.1 ± 0.2) × 104 | (8.1 ± 0.4) × 103 | |
Ba | 31.0 ± 3.8 | 10.1 ± 2.4 | ˂1 | |
CoMn-PAN | Cs | (1.8 ± 0.4) × 105 | (1.8 ± 0.3) × 104 | (1.5 ± 0.1) × 104 |
Be | 916 ± 98 | (1.4 ± 0.1) × 103 | (1.1 ± 0.2) × 103 | |
P | ˂1 | ˂1 | ˂1 | |
Ba | 745 ± 80 | 521 ± 57 | 479 ± 52 | |
FeMn-PAN | Cs | (1.3 ± 0.2) × 105 | (1.5 ± 0.2) × 105 | (1.2 ± 0.2) × 105 |
Be | 853 ± 57 | (1.3 ± 0.2) × 103 | 982 ± 48 | |
P | ˂1 | ˂1 | ˂1 | |
Ba | 684 ± 75 | 507 ± 64 | 452 ± 47 |
Seawater (Salinity, ‰) | Sorbent | Sorption Efficiency, % | ||||||
---|---|---|---|---|---|---|---|---|
137Cs | 7Be | 210Pb | 210Po | 226Ra | 228Ra | 234Th | ||
Black Sea (18.4) | CoFe-PAN | 94.0 ± 2.1 | 73.7 ± 1.6 | 89.7 ± 2.0 | 84.4 ± 1.9 | – | – | 98.5 ± 2.2 |
CoMn-PAN | 80.1 ± 1.8 | 63.6 ± 1.4 | 94.7 ± 2.1 | 90.9 ± 2.0 | 96.1 ± 2.1 | 98.1 ± 2.2 | 100 | |
FeMn-PAN | 90.8 ± 2.0 | 62.7 ± 1.4 | 92.8 ± 2.0 | 87.7 ± 1.9 | 93.2 ± 2.1 | 95.3 ± 2.1 | 100 | |
Pacific Ocean (33.8) | CoFe-PAN | 93.5 ± 2.1 | 70.9 ± 1.6 | 85.3 ± 1.9 | 82.1 ± 1.8 | – | – | 95.5 ± 2.1 |
CoMn-PAN | 77.4 ± 1.7 | 58.4 ± 1.3 | 95.0 ± 2.1 | 88.9 ± 2.0 | 95.4 ± 2.1 | 97.1 ± 2.1 | 100 | |
FeMn-PAN | 85.5 ± 1.9 | 63.2 ± 1.4 | 90.1 ± 2.0 | 84.2 ± 1.9 | 92.3 ± 2.0 | 94.2 ± 2.1 | 97.2 ± 2.1 |
Station Number | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
Black Sea (spring 2023) | |||||||
Sorbent | FeMn-PAN | CoFe-PAN | CoMn-PAN | FeMn-PAN | CoFe-PAN | CoMn-PAN | |
Coordinates | North Latitude | 44.64538 | 44.54168 | 44.33689 | 44.24846 | 44.22053 | 44.39808 |
East Longitude | 34.44425 | 34.53295 | 34.27128 | 33.99762 | 33.66563 | 33.67864 | |
Activity, Bq/m3 | 137Cs | 8.54 ± 0.80 | 9.34 ± 0.87 | 9.23 ± 0.91 | 9.20 ± 0.95 | 9.04 ± 0.85 | 8.68 ± 0.87 |
7Be | – * | – * | 4.81 ± 0.75 | 6.02 ± 0.83 | 5.64 ± 0.71 | 4.05 ± 0.64 | |
210Pb | 1.22 ± 0.12 | 1.51 ± 0.15 | 1.18 ± 0.12 | 1.39 ± 0.14 | 1.54 ± 0.15 | 1.87 ± 0.19 | |
210Po | 0.37 ± 0.04 | 0.62 ± 0.06 | 0.40 ± 0.04 | 0.58 ± 0.06 | 0.72 ± 0.07 | 0.87 ± 0.09 | |
226Ra | 1.14 ± 0.11 | – | 0.75 ± 0.08 | 1.10 ± 0.11 | – | 0.88 ± 0.09 | |
228Ra | 0.75 ± 0.08 | – | 0.52 ± 0.05 | 0.75 ± 0.08 | – | 0.67 ± 0.07 | |
234Th | – * | – * | 12.4 ± 1.3 | 12.6 ± 1.1 | 13.2 ± 1.0 | 10.1 ± 1.1 | |
Pacific Ocean (summer 2024) | |||||||
Sorbent | CoMn-PAN | FeMn-PAN | CoFe-PAN | CoFe-PAN | CoMn-PAN | FeMn-PAN | |
Coordinates | North Latitude | 145.51447 | 149.73365 | 149.77839 | 149.47866 | 148.79276 | 146.44370 |
East Longitude | 46.84548 | 34.50422 | 36.66245 | 41.49080 | 43.01880 | 44.32272 | |
Activity, Bq/m3 | 137Cs | 1.05 ± 0.14 | 1.61 ± 0.16 | 1.53 ± 0.16 | 1.13 ± 0.13 | 1.18 ± 0.15 | 1.40 ± 0.14 |
7Be | – * | – * | – * | 4.32 ± 0.68 | 3.85 ± 0.81 | 3.32 ± 0.74 | |
210Pb | 0.72 ± 0.07 | 2.52 ± 0.25 | 2.21 ± 0.22 | 1.87 ± 0.19 | 1.66 ± 0.17 | 1.02 ± 0.10 | |
210Po | 0.33 ± 0.03 | 1.16 ± 0.11 | 1.05 ± 0.08 | 0.84 ± 0.08 | 0.80 ± 0.08 | 0.45 ± 0.05 | |
226Ra | 1.46 ± 0.15 | 1.82 ± 0.18 | – | – | 2.02 ± 0.20 | 2.14 ± 0.21 | |
228Ra | 0.54 ± 0.05 | 0.24 ± 0.03 | – | – | 0.31 ± 0.03 | 0.68 ± 0.07 | |
234Th | – * | – * | – * | 21.1 ± 3.2 | 20.2 ± 2.5 | 17.0 ± 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shibetskaia, I.G.; Razina, V.A.; Bezhin, N.A.; Tokar’, E.A.; Turyanskiy, V.A.; Zarubina, N.V.; Shichalin, O.O.; Yarusova, S.B.; Tananaev, I.G. Sorbents Based on Polyacrylonitrile Fiber for Complex Recovery of Artificial 137Cs and Natural Radionuclides from Natural Media. Water 2025, 17, 147. https://doi.org/10.3390/w17020147
Shibetskaia IG, Razina VA, Bezhin NA, Tokar’ EA, Turyanskiy VA, Zarubina NV, Shichalin OO, Yarusova SB, Tananaev IG. Sorbents Based on Polyacrylonitrile Fiber for Complex Recovery of Artificial 137Cs and Natural Radionuclides from Natural Media. Water. 2025; 17(2):147. https://doi.org/10.3390/w17020147
Chicago/Turabian StyleShibetskaia, Iuliia G., Viktoriia A. Razina, Nikolay A. Bezhin, Eduard A. Tokar’, Vladislav A. Turyanskiy, Natalia V. Zarubina, Oleg O. Shichalin, Sofia B. Yarusova, and Ivan G. Tananaev. 2025. "Sorbents Based on Polyacrylonitrile Fiber for Complex Recovery of Artificial 137Cs and Natural Radionuclides from Natural Media" Water 17, no. 2: 147. https://doi.org/10.3390/w17020147
APA StyleShibetskaia, I. G., Razina, V. A., Bezhin, N. A., Tokar’, E. A., Turyanskiy, V. A., Zarubina, N. V., Shichalin, O. O., Yarusova, S. B., & Tananaev, I. G. (2025). Sorbents Based on Polyacrylonitrile Fiber for Complex Recovery of Artificial 137Cs and Natural Radionuclides from Natural Media. Water, 17(2), 147. https://doi.org/10.3390/w17020147