Effects of Drying Operation on the Mn2+ Removal Activity of MnOx: Performance and Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of MnOx
2.2. Characterization of MnOx
2.3. Evaluation of Removal Capacity and Mechanism
2.3.1. Adsorption Models
2.3.2. Stability and Applicability Experiments
2.3.3. Effects of Oxygen
2.4. Analytical Methods
3. Results and Discussion
3.1. Removal Performance of Mn2+
3.2. Adsorption Kinetics
3.3. Adsorption Isotherms
3.4. Stability and Applicability Analysis of MnOx for Mn2+ Removal
3.5. Effects of Drying Conditions on the Structural Characterization of MnOx
3.5.1. Effects on Morphology
3.5.2. Thermogravimetric Analysis
3.5.3. FTIR and XRD Analysis
3.5.4. XPS Spectra Analysis
3.6. Analysis of the Mechanism
3.6.1. The Removal Pathway of Mn2+
3.6.2. XPS Spectra After the Reaction
3.6.3. Summary of the Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, Y.; Xiong, W.; Huang, T.; Wen, G. Study on the preparation of manganese oxide filter media for catalytic oxidation removal of ammonium and manganese in high alkalinity groundwater: The effect of copper and cobalt doping. J. Clean. Prod. 2022, 366, 132815. [Google Scholar] [CrossRef]
- Fang, K.; Wang, X.; Peng, Z.; Dong, J.; Du, X.; Luo, Y. Gravity driven ceramic membrane loaded birnessite functional layer for manganese removal from groundwater: The significance of disinfection on biofilm. Sep. Purif. Technol. 2024, 332, 125735. [Google Scholar] [CrossRef]
- Shrestha, A.M.; Kazama, S.; Sawangjang, B.; Takizawa, S. Improvement of Removal Rates for Iron and Manganese in Groundwater Using Dual-Media Filters Filled with Manganese-Oxide-Coated Sand and Ceramic in Nepal. Water 2024, 16, 2450. [Google Scholar] [CrossRef]
- Yang, H.; Yan, Z.; Du, X.; Bai, L.; Yu, H.; Ding, A.; Li, G.; Liang, H.; Aminabhavi, T.M. Removal of manganese from groundwater in the ripened sand filtration: Biological oxidation versus chemical auto-catalytic oxidation. Chem. Eng. J. 2020, 382, 123033. [Google Scholar] [CrossRef]
- Ghosh, S.; Mohanty, S.; Akcil, A.; Sukla, L.B.; Das, A.P. A greener approach for resource recycling: Manganese bioleaching. Chemosphere 2016, 154, 628–639. [Google Scholar] [CrossRef] [PubMed]
- Jerroumi, S.; Amarine, M.; Gourich, B. Technological trends in manganese removal from groundwater: A review. J. Water Process Eng. 2023, 56, 104365. [Google Scholar] [CrossRef]
- Dey, S.; Tripathy, B.; Kumar, M.S.; Das, A.P. Ecotoxicological consequences of manganese mining pollutants and their biological remediation. Environ. Chem. Ecotoxicol. 2023, 5, 55–61. [Google Scholar] [CrossRef]
- Mishra, P.; Kaur, L.; Patel, R.; Mishra, R.K.; Verma, D.K.; Daoudi, W. Synthesis and characterization of halloysite-cerium nanocomposite for removal of manganese. J. Environ. Chem. Eng. 2024, 12, 114611. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Y.; Xiong, W.; Huang, T. Simultaneous removal of tetracycline and manganese (II) ions from groundwater using manganese oxide filters: Efficiency and mechanisms. J. Water Process Eng. 2021, 42, 102158. [Google Scholar] [CrossRef]
- Yang, H.; Tang, X.; Luo, X.; Li, G.; Liang, H.; Snyder, S. Oxidants-assisted sand filter to enhance the simultaneous removals of manganese, iron and ammonia from groundwater: Formation of active MnOx and involved mechanisms. J. Hazard. Mater. 2021, 415, 125707. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhang, Y.; Chang, H.; Lin, C.; Hu, Y.; Wang, H.; Wang, Y.; Tang, X. Manganese Oxide Enhanced Gravity-Driven Membrane (GDM) Filtration in Treating Iron- and Manganese-Containing Surface Water. Water 2024, 16, 2374. [Google Scholar] [CrossRef]
- Lee, W.S.; Aziz, H.A.; Akbar, N.A.; Wang, M.-H.S.; Wang, L.K. Removal of Fe and Mn from Groundwater. In Industrial Waste Engineering; Springer International Publishing: New York, NY, USA, 2023; pp. 135–170. [Google Scholar]
- Ducret, J.; Barbeau, B. Modeling Mn(II) autocatalytic sorption on MnOx-coated filtration media. J. Water Process Eng. 2024, 62, 105408. [Google Scholar] [CrossRef]
- Taffarel, S.R.; Rubio, J. Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite. Miner. Eng. 2010, 23, 1131–1138. [Google Scholar] [CrossRef]
- Jin, X.; Fu, J.; Yu, P.; Luo, D. Characterization and properties of manganese oxide film coated clinoptilolite as filter material in fixed-bed columns for removal of Mn(II) from aqueous solution. Sci. Rep. 2023, 13, 17440. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Xie, H.; Zhang, H.; Huang, M.; Liu, X.; Zhou, G.; Jiang, Y. Insight into the effects of oxygen vacancy on the toluene oxidation over α-MnO2 catalyst. Chemosphere 2022, 291, 132890. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yin, H.; Zhu, T.; Zhuang, W. Understanding the role of manganese oxides in retaining harmful metals: Insights into oxidation and adsorption mechanisms at microstructure level. Eco-Environ. Health 2024, 3, 89–106. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Li, X.; Xue, C.; Dang, Z.; Zhang, L.; Yi, X. Effects of synthesis temperature on ε-MnO2 microstructures and performance: Selective adsorption of heavy metals and the mechanism onto (100) facet compared with (001). Environ. Pollut. 2022, 315, 120218. [Google Scholar] [CrossRef]
- Cheng, Y.; Huang, T.L.; Sun, Y.K.; Shi, X.X. Catalytic oxidation removal of ammonium from groundwater by manganese oxides filter: Performance and mechanisms. Chem. Eng. J. 2017, 322, 82–89. [Google Scholar] [CrossRef]
- Xie, X.; Lu, C.; Xu, R.; Yang, X.; Yan, L.; Su, C. Arsenic removal by manganese-doped mesoporous iron oxides from groundwater: Performance and mechanism. Sci. Total Environ. 2022, 806, 150615. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Song, Y.; Jin, X.; Fu, J.; Zhang, S. Study on the efficiency of manganese oxide-bearing manganese sand for removing Mn2+ from aqueous solution. Microporous Mesoporous Mater. 2024, 364, 112859. [Google Scholar] [CrossRef]
- Junta, J.L.; Hochella, M.F. Manganese (II) oxidation at mineral surfaces: A microscopic and spectroscopic study. Geochim. Cosmochim. Acta 1994, 58, 4985–4999. [Google Scholar] [CrossRef]
- Scheitenberger, P.; Euchner, H.; Lindén, M. The hidden impact of structural water—How interlayer water largely controls the Raman spectroscopic response of birnessite-type manganese oxide. J. Mater. Chem. A 2021, 9, 18466–18476. [Google Scholar] [CrossRef]
- Feng, X.; Cox, D.F. Oxidation of MnO(100) and NaMnO2 formation: Characterization of Mn2+ and Mn3+ surfaces via XPS and water TPD. Surf. Sci. 2018, 675, 47–53. [Google Scholar] [CrossRef]
- Cai, T.; Liu, Z.; Yuan, J.; Xu, P.; Zhao, K.; Tong, Q.; Lu, W.; He, D. The structural evolution of MnOx with calcination temperature and their catalytic performance for propane total oxidation. Appl. Surf. Sci. 2021, 565, 150596. [Google Scholar] [CrossRef]
- Zaharieva, I.; Chernev, P.; Risch, M.; Klingan, K.; Kohlhoff, M.; Fischer, A.; Dau, H. Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide. Energy Environ. Sci. 2012, 5, 7081–7089. [Google Scholar] [CrossRef]
- Cheng, Y.; Xiong, W.; Huang, T. Mechanistic insights into effect of storage conditions of Fe-Mn co-oxide filter media on their catalytic properties in ammonium-nitrogen and manganese oxidative removal. Sep. Purif. Technol. 2021, 259, 118102. [Google Scholar] [CrossRef]
- Chaudhry, S.A.; Khan, T.A.; Ali, I. Adsorptive removal of Pb(II) and Zn(II) from water onto manganese oxide-coated sand: Isotherm, thermodynamic and kinetic studies. Egypt. J. Basic Appl. Sci. 2019, 3, 287–300. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Dutta, D.; Borah, J.P.; Puzari, A.; Valencia, S. Adsorption of Mn2+ from Aqueous Solution Using Manganese Oxide-Coated Hollow Polymethylmethacrylate Microspheres (MHPM). Adsorpt. Sci. Technol. 2021, 2021, 10. [Google Scholar] [CrossRef]
- Tang, N.; Niu, C.-G.; Li, X.-T.; Liang, C.; Guo, H.; Lin, L.-S.; Zheng, C.-W.; Zeng, G.-M. Efficient removal of Cd2+ and Pb2+ from aqueous solution with amino- and thiol-functionalized activated carbon: Isotherm and kinetics modeling. Sci. Total Environ. 2018, 635, 1331–1344. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, S. Rapid start-up and pollutant removal mechanism of MnOx filter for simultaneous removal of manganese and ammonium. China Environ. Sci. 2023, 43, 197–205. [Google Scholar]
- Lan, S.; Wang, X.; Xiang, Q.; Yin, H.; Tan, W.; Qiu, G.; Liu, F.; Zhang, J.; Feng, X. Mechanisms of Mn(II) catalytic oxidation on ferrihydrite surfaces and the formation of manganese (oxyhydr)oxides. Geochim. Cosmochim. Acta 2017, 211, 79–96. [Google Scholar] [CrossRef]
- Zhou, F.; Izgorodin, A.; Hocking, R.K.; Armel, V.; Spiccia, L.; MacFarlane, D.R. Improvement of Catalytic Water Oxidation on MnOx Films by Heat Treatment. ChemSusChem 2013, 6, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Dose, W.M.; Donne, S.W. Manganese dioxide structural effects on its thermal decomposition. Mater. Sci. Eng. B 2011, 176, 1169–1177. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J. A general kinetic model for adsorption: Theoretical analysis and modeling. J. Mol. Liq. 2019, 288, 111100. [Google Scholar] [CrossRef]
- Peng, X.; Hu, F.; Huang, J.; Wang, Y.; Dai, H.; Liu, Z. Preparation of a graphitic ordered mesoporous carbon and its application in sorption of ciprofloxacin: Kinetics, isotherm, adsorption mechanisms studies. Microporous Mesoporous Mater. 2016, 228, 196–206. [Google Scholar] [CrossRef]
- Pickles, C.A.; Marzoughi, O. Thermodynamic modelling of decomposition processes in the Mn-O and Mn-O-H systems. Can. Metall. Q. 2022, 62, 151–170. [Google Scholar] [CrossRef]
- Duan, J.; Feng, S.; He, W.; Li, R.; Zhang, P.; Zhang, Y. TG-FTIR and Py-GC/MS combined with kinetic model to study the pyrolysis characteristics of electrolytic manganese residue. J. Anal. Appl. Pyrolysis 2021, 159, 105203. [Google Scholar] [CrossRef]
- Ramarajan, D.; Sivagurunathan, P.; Yan, Q. Synthesis and characterization of sol-processed α-MnO2 nanostructures. Mater. Sci. Semicond. Process. 2012, 15, 559–563. [Google Scholar] [CrossRef]
- Frey, C.E.; Kurz, P. Water Oxidation Catalysis by Synthetic Manganese Oxides with Different Structural Motifs: A Comparative Study. Chem.—A Eur. J. 2015, 21, 14958–14968. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yang, S.; Dong, C.; Qiao, Y.; Zhang, J.; Guo, Y. Synthesized akhtenskites remove ammonium and manganese from aqueous solution: Removal mechanism and the effect of structural cations. RSC Adv. 2021, 11, 33798–33808. [Google Scholar] [CrossRef] [PubMed]
- Hu, E.; Zhang, Y.; Wu, S.; Wu, J.; Liang, L.; He, F. Role of dissolved Mn(III) in transformation of organic contaminants: Non-oxidative versus oxidative mechanisms. Water Res. 2017, 111, 234–243. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, P.; Chen, L. Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl. Catal. B: Environ. 2016, 189, 210–218. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, H.; Zheng, T.; Dai, Y.; Zhang, C.; Guo, X.; Wang, T.; Zhu, L. Promoted catalytic transformation of polycyclic aromatic hydrocarbons by MnO2 polymorphs: Synergistic effects of Mn3+ and oxygen vacancies. Appl. Catal. B Environ. 2020, 272, 119030. [Google Scholar] [CrossRef]
- Dong, C.; Qu, Z.; Jiang, X.; Ren, Y. Tuning oxygen vacancy concentration of MnO2 through metal doping for improved toluene oxidation. J. Hazard. Mater. 2020, 391, 122181. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Luo, X.; Chen, C.; Jiang, Q. A high specific capacity aqueous zinc-manganese battery with a ε-MnO2 cathode. Ionics 2021, 27, 3933–3941. [Google Scholar] [CrossRef]
- Wan, J.; Zhou, L.; Deng, H.; Zhan, F.; Zhang, R. Oxidative degradation of sulfamethoxazole by different MnO2 nanocrystals in aqueous solution. J. Mol. Catal. A Chem. 2015, 407, 67–74. [Google Scholar] [CrossRef]
- Garcês Gonçalves, P.R.; De Abreu, H.A.; Duarte, H.A. Stability, Structural, and Electronic Properties of Hausmannite (Mn3O4) Surfaces and Their Interaction with Water. J. Phys. Chem. C 2018, 122, 20841–20849. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
Temperature | °C | 10.0–20.0 |
Dissolved oxygen concentration | mg/L | 7.40–8.10 |
pH value | / | 7.61–8.23 |
Turbidity | NTU | 0.12–0.34 |
CODMn | mg/L | 0.90–1.50 |
TOC | mg/L | 0.69–3.97 |
Alkalinity (as CaCO3) | mg/L | 135.28–137.52 |
Sample | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|
K1 (min−1) | qe (mg/g) | R12 | K2 (g·mg−1·min−1) | qe (mg/g) | R22 | |
50 °C-1 h-MnOx | 0.0032 | 38.74 | 0.969 | 0.0013 | 110.5 | 0.996 |
50 °C-3 h-MnOx | 0.0035 | 37.59 | 0.972 | 0.0014 | 111.2 | 0.997 |
50 °C-12 h-MnOx | 0.0142 | 22.68 | 0.949 | 0.0025 | 125.7 | 0.999 |
50 °C-24 h-MnOx | 0.0059 | 35.99 | 0.980 | 0.0012 | 119.6 | 0.997 |
20 °C-12 h-MnOx | 0.0070 | 33.61 | 0.960 | 0.0013 | 121.5 | 0.998 |
80 °C-12 h-MnOx | 0.0068 | 31.39 | 0.984 | 0.0014 | 121.6 | 0.998 |
120 °C-12 h-MnOx | 0.0070 | 41.83 | 0.984 | 0.0010 | 115.2 | 0.995 |
Freeze-dried-12 h-MnOx | 0.0076 | 29.81 | 0.972 | 0.0015 | 122.5 | 0.999 |
Sample | Freundlich Isotherm Model | ||
---|---|---|---|
KF (L/mg) | 1/n | R2 | |
50 °C-1 h-MnOx | 104.5 ± 6.70 | 0.152 ± 0.016 | 0.948 |
50 °C-3 h-MnOx | 105.6 ± 8.09 | 0.161 ± 0.020 | 0.940 |
50 °C-12 h-MnOx | 136.3 ± 9.65 | 0.134 ± 0.019 | 0.968 |
50 °C-24 h-MnOx | 108.5 ± 10.8 | 0.172 ± 0.026 | 0.943 |
20 °C-12 h-MnOx | 106.6 ± 6.49 | 0.160 ± 0.016 | 0.973 |
80 °C-12 h-MnOx | 113.8 ± 10.2 | 0.154 ± 0.023 | 0.940 |
120 °C-12 h-MnOx | 113.5 ± 11.3 | 0.153 ± 0.027 | 0.959 |
Freeze-dried-12 h-MnOx | 110.4 ± 4.78 | 0.168 ± 0.011 | 0.950 |
Sample | Mn 2p2/3 | O1s | |||||
---|---|---|---|---|---|---|---|
Mn(II) (%) | Mn(III) (%) | Mn(IV) (%) | Mn(III) /Mn(IV) | Owater (%) | Olatt (%) | Oads (%) | |
50 °C-12 h-MnOx | 19.60 | 60.90 | 19.49 | 3.12 | 13.44 | 40.56 | 46.01 |
50 °C-24 h-MnOx | 10.92 | 44.22 | 44.86 | 0.98 | 11.39 | 54.90 | 33.70 |
120 °C-12 h-MnOx | 8.78 | 36.95 | 54.27 | 0.68 | 19.33 | 45.47 | 35.20 |
Freeze-dried-12 h-MnOx | 32.94 | 46.50 | 20.57 | 2.26 | 12.42 | 34.81 | 35.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Yang, L.; Yang, J.; Niu, Q.; Zhu, B. Effects of Drying Operation on the Mn2+ Removal Activity of MnOx: Performance and Mechanism. Water 2025, 17, 261. https://doi.org/10.3390/w17020261
Zhang R, Yang L, Yang J, Niu Q, Zhu B. Effects of Drying Operation on the Mn2+ Removal Activity of MnOx: Performance and Mechanism. Water. 2025; 17(2):261. https://doi.org/10.3390/w17020261
Chicago/Turabian StyleZhang, Ruifeng, Lina Yang, Jing Yang, Qiuyan Niu, and Binrong Zhu. 2025. "Effects of Drying Operation on the Mn2+ Removal Activity of MnOx: Performance and Mechanism" Water 17, no. 2: 261. https://doi.org/10.3390/w17020261
APA StyleZhang, R., Yang, L., Yang, J., Niu, Q., & Zhu, B. (2025). Effects of Drying Operation on the Mn2+ Removal Activity of MnOx: Performance and Mechanism. Water, 17(2), 261. https://doi.org/10.3390/w17020261