Adaptive Simplified Calculation of Algal Bloom Risk Index for Reservoir-Type Drinking Water Sources Based on Improved TOPSIS and Identification of Risk Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Positions and Methods
2.2.1. Sampling Positions
2.2.2. Sampling Methods
2.3. Phytoplankton Identification
2.4. Methodology for Calculating the Algal Bloom Risk Index
2.4.1. Process of Calculating the Algal Bloom Risk Index
- (a)
- Weighted normalized matrix construction
- (b)
- Algal bloom risk index definitions for positive and negative optimum solutions
- (c)
- Determination of the distance between the algal bloom risk index and the positive and negative ideal solutions
- (d)
- The calculation formula used for the algal bloom risk index:
2.4.2. Indicators of Algal Bloom Risk
2.4.3. Comprehensive Weight Based on Improved Fuzzy Analytic Hierarchy Process, Entropy Weight Method, and Game Theory
- (a)
- Improved Fuzzy Analytic Hierarchy Process (IFAHP)
- (b)
- Entropy Weight Method (EWM)
- (c)
- Game Theory (GT)
2.4.4. Validation of an Adaptive Simplified Algal Bloom Risk Index Calculation
2.5. Procedural Methods for Data Processing and Analysis
3. Results
3.1. Initial Algal Bloom Risk Index (RI-I)
3.1.1. Basic Data of Risk Indicators
3.1.2. Comprehensive Weight
- (a)
- Weight based on IFAHP (Improved Fuzzy Analytic Hierarchy Process)
- (b)
- Weight based on EWM (Entropy Weight Method)
- (c)
- Weight based on GT (Game Theory)
3.1.3. Calculation Based on Improved TOPSIS
3.2. Adaptive Simplified Algal Bloom Risk Index (RI-S)
3.3. Seasonal and Spatial Variations in RI-S
3.3.1. Seasonal Variations in RI-S
3.3.2. Spatial Variations in RI-S
4. Discussion
4.1. Rationalization of Adaptive Simplified Method
4.2. Applicability of Adaptive Simplified Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glibert, P.M. Harmful algae at the complex nexus of eutrophication and climate change. Harmful Algae 2020, 91, 101583. [Google Scholar] [CrossRef]
- Chislock, M.F.; Sarnelle, O.; Olsen, B.K.; Doster, E.; Wilson, A.E. Large effects of consumer offense on ecosystem structure and function. Ecology 2013, 94, 2375–2380. [Google Scholar] [CrossRef] [PubMed]
- Zhen, Z.; Liao, T.; Lin, Y.; Zhu, X.; Meng, H. Evaluation of Algal Control Measures in Eutrophic Reservoirs Based on Aquatic Ecosystem Models. Water 2024, 16, 1494. [Google Scholar] [CrossRef]
- Jackson, B.L.A.; Clayer, F.; Haande, S.; Sample, J.E.; Moe, S.J. Seasonal forecasting of lake water quality and algal bloom risk using a continuous Gaussian Bayesian network. Earth Syst. Sci. 2022, 26, 3103–3124. [Google Scholar] [CrossRef]
- Hou, J.; Van, D.A.I.J.M.; Beck, H.E.; Renzullo, L.J.; Wada, Y. Remotely sensed reservoir water storage dynamics (1984–2015) and the influence of climate variability and management at a global scale. Hydrol. Earth Syst. Sci. 2022, 26, 3785–3803. [Google Scholar] [CrossRef]
- Zhou, T.; Li, Y.; Jiang, B.; Alatalo, J.M.; Li, C.; Ni, C. Tracking spatio-temporal dynamics of harmful algal blooms using long-term MODIS observations of Chaohu Lake in China from 2000 to 2021. Ecol. Indic. 2023, 146, 109842. [Google Scholar] [CrossRef]
- Xu, H.; Qin, B.; Paerl, H.W.; Peng, K.; Zhang, Q.; Zhu, G.; Zhang, Y. Environmental controls of harmful cyanobacterial blooms in Chinese inland waters. Harmful Algae 2021, 110, 102127. [Google Scholar] [CrossRef] [PubMed]
- Morgane, L.M.; Chantal, G.O.; Alain, M.; Yves, S.; Claire, É.; Alix, L.; Florentina, M.; Alexandrine, P.; Philippe, S.; Alain, L.; et al. Eutrophication: A new wine in an old bottle? Sci. Total Environ. 2019, 651, 1–11. [Google Scholar]
- Zhou, T.; Qu, H.; Wang, Y.; Alatalo, J.M.; Qian, J.; Zhuan, S.; Jiang, B. A quantity-distribution synthesized framework for risk assessment of algal blooms. J. Hydrol. 2023, 623, 129869. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, S.; Zhou, A. Assessment of red tide risk by integrating CRITIC weight method, TOPSIS-ASSETS method, and Monte Carlo simulation. Environ. Pollut. 2022, 314, 120254. [Google Scholar] [CrossRef] [PubMed]
- Roche, K.M.; Sterling, A.R.; Rynearson, T.A.; Bertin, M.J.; Jenkins, B.D. A Decade of Time Series Sampling Reveals Thermal Variation and Shifts in Pseudo-nitzschia Species Composition That Contribute to Harmful Algal Blooms in an Eastern US Estuary. Front. Mar. Sci. 2022, 9, 889840. [Google Scholar] [CrossRef]
- Mineeva, N.M.; Semadeni, I.V.; Solovyeva, V.V.; Makarova, O.S. Chlorophyll Content and the Modern Trophic State of the Volga River Reservoirs (2019–2020). Inland Water Biol. 2022, 15, 410–414. [Google Scholar] [CrossRef]
- Thomas, S.; Tanguy, F.; Fabien, E. Phosphorus recycling from human excreta in French agroecosystems and potential for food self-sufficiency. Nutr. Cycl. Agroecosyst. 2024, 129, 1–15. [Google Scholar]
- Christine, C.; Birgit, H.; Saskia, F.; Arlena, B.; José, C.d.A. In Situ and Satellite Observation of CDOM and Chlorophyll-a Dynamics in Small Water Surface Reservoirs in the Brazilian Semiarid Region. Water 2017, 9, 913. [Google Scholar] [CrossRef]
- Shao, Z.; Lai, J.; Yuan, H.; Zheng, X.; Jiang, H.; Wang, C.; Huang, Z.; Wang, J.; Wang, D.; Xu, S. Analysis of microbial community structure changes during algal bloom outbreaks in different types of eutrophic microbodies. Acta Sci. Circumstantiae 2023, 43, 490–502. (In Chinese) [Google Scholar]
- Liu, M.; He, J.; Huang, Y.; Tang, T.; Hu, J.; Xiao, X. Algal bloom forecasting with time-frequency analysis: A hybrid deep learning approach. Water Res. 2022, 219, 118591. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Q.; Liu, M.; Xu, C.; Zhang, H.; Zhang, X. Algae in a Drinking Water Reservoir: Development of an Air–Water–Algal Growth Model (AWAM) for Long-Term Prediction. Water 2023, 15, 3567. [Google Scholar] [CrossRef]
- Liu, X.; Xia, J.; Zu, J.; Zeng, Z.; Li, Y.; Li, J.; Wang, Q.; Liu, Z.; Cai, W. Spatiotemporal variations and gradient functions of water turbidity in shallow lakes. Ecol. Indic. 2023, 147, 109928. [Google Scholar] [CrossRef]
- Cruz, R.C.; Costa, P.R.; Vinga, S.; Krippahl, L.; Lopes, M.B. A Review of Recent Machine Learning Advances for Forecasting Harmful Algal Blooms and Shellfish Contamination. J. Mar. Sci. Eng. 2021, 9, 283. [Google Scholar] [CrossRef]
- Li, C.; Wu, W. Analysis of the Driving Mechanism of Water Environment Evolution and Algal Bloom Warning Signals in Tai Lake. Water 2023, 15, 1245. [Google Scholar] [CrossRef]
- Du, Y.; Cui, B.; Zhang, Q.; Sun, J.; Wang, Z.; Niu, W. Utilizing comprehensive decision analysis methods to determine an optimal planting pattern and nitrogen application for winter oilseed rape. J. Integr. Agric. 2020, 19, 2229–2238. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, W.; Li, Y.; Jiang, Y.; Chen, X.; Yao, Y.; Messyasz, B.; Yin, K.; He, W.; Chen, Y. Characteristics of the Phytoplankton Community Structure and Water Quality Evaluation in Autumn in the Huaihe River (China). Int. J. Environ. Res. Public Health 2021, 18, 12092. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Jiang, Z.; Ying, J.; Feng, X.; Zheng, F. Optimal allocation model of port emergency resources based on the improved multi-objective particle swarm algorithm and TOPSIS method. Mar. Pollut. Bull. 2024, 209, 117214. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Liu, C.; Li, T.; Meng, F.; Fu, Q.; Ji, Y.; Hou, R. Evaluation of the water resource carrying capacity in Heilongjiang, eastern China, based on the improved TOPSIS model. Ecol. Indic. 2023, 150, 110208. [Google Scholar] [CrossRef]
- Du, L.; Niu, Z.; Zhang, R.; Zhang, J.; Jia, L.; Wang, L. Evaluation of water resource carrying potential and barrier factors in Gansu Province based on game theory combined weighting and improved TOPSIS model. Ecol. Indic. 2024, 166, 112438. [Google Scholar] [CrossRef]
- Gumussoy, A.D.; Onen, V.; Yalpir, S. Combined use of BWM-TOPSIS methods in the selection of thermal power plant installation site in the Karapinar/Turkiye Region, at risk of sinkhole formation. Environ. Monit. Assess. 2023, 196, 83. [Google Scholar] [CrossRef]
- Wei, Z.; Ji, D.; Yang, L. Comprehensive evaluation of water resources carrying capacity in Henan Province based on entropy weight TOPSIS—coupling coordination—obstacle model. Environ. Sci. Pollut. Res. 2023, 30, 115820–115838. [Google Scholar] [CrossRef]
- Gulishengmu, A.; Yang, G.; Tian, L.; Pan, Y.; Huang, Z.; Xu, X.; Gao, Y.; Li, Y. Analysis of Water Resource Carrying Capacity and Obstacle Factors Based on GRA-TOPSIS Evaluation Method in Manas River Basin. Water 2023, 15, 236. [Google Scholar] [CrossRef]
- Zeng, W.; Fan, J.; Ren, Z.; Liu, X.; Lv, S.; Cao, Y.; Xu, X.; Liu, J. Economic Evaluation Method of Modern Power Transmission System Based on Improved Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Best-Worst Method-Anti-Entropy Weight. Energies 2023, 16, 7242. [Google Scholar] [CrossRef]
- Huang, J.; Hu, M.; Li, M.; Zhang, X. Pollution characteristics of polycyclic aromatic hydrocarbons in coastal sediments of China based on mathematical model. Acta Sci. Circumstantiae 2023, 43, 10–19. (In Chinese) [Google Scholar]
- Deng, W.; Li, X.; Guo, Y.; Huang, J.; Zhang, L. Ecological Assessment of Water Environment in Huizhou Region of China Based on DPSIR Theory and Entropy Weight TOPSIS Model. Water 2024, 16, 2579. [Google Scholar] [CrossRef]
- Liang, C.; Yu, S.; Zhang, H.; Wang, Z.; Li, F. Economic Evaluation of Drought Resistance Measures for Maize Seed Production Based on TOPSIS Model and Combination Weighting Optimization. Water 2022, 14, 3262. [Google Scholar] [CrossRef]
- Yin, J.; Xia, J.; Liu, Z.; Ji, S.; Cai, W.; Wang, Q.; Liu, X.; Zu, J.; Wang, Y.; Xu, K. Impact assessment of cascade freshwater reservoir using the ecological security assessment (ESA) model across a four-year timescale. Ecol. Indic. 2023, 154, 110907. [Google Scholar] [CrossRef]
- Li, A.-L.; Chen, H.; Liu, Y.; Lin, Q.; Wang, W. Simulation of Nitrogen Pollution in the Shanxi Reservoir Watershed Based on SWAT Model. Nat. Environ. Pollut. Technol. 2020, 19, 1265–1272. [Google Scholar] [CrossRef]
- Yang, M.; Xia, J.; Cai, W.; Yang, L.; Zhu, X.; Li, C. Distribution characteristics and environmental drivers of phytoplankton functional groups in a drinking water reservoir. J. Hydroecol. 2022, 43, 37–44. (in Chinese). [Google Scholar]
- Wei, F. Monitoring and Analysis Methods of Water and Wastewater; Chinese Environmental Sciences Publishment: Beijing, China, 2002. [Google Scholar]
- Qi, Y. Flora Algarum Sinicarum Aquae Dulcis. Vol. 4. Bacillariophyta Centreae; Science Press: Beijing, China, 1995; ISBN 7030044223. [Google Scholar]
- Shi, Z. Flora Algarum Sinicarum Aquae Dulcis, Tomus 12, Bacillariophyta-Ghophonemaceae; Science Press: Beijing, China, 2004; ISBN 9787030133366. (In Chinese) [Google Scholar]
- Krammer, K. Diatoms of Europe: Diatoms of the European Inland Waters and Comparable Habitats. Vol. 3: Cymbella; A.R.G. Gantner Verlag, K.G.: Ruggell, Liechtenstein, 2002; ISBN 978-3-904144-84-1. [Google Scholar]
- Krammer, K. Diatoms of Europe: Diatoms of the European Inland Waters and Comparable Habitats. Vol. 4: Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella; A.R.G. Gantner Verlag, K.G: Ruggell, Liechtenstein, 2003; ISBN 978-3-904144-99-5. [Google Scholar]
- Lin, S.; Shen, S.; Zhou, A.; Xu, Y. Approach based on TOPSIS and Monte Carlo simulation methods to evaluate lake eutrophication levels. Water Res. 2020, 187, 116437. [Google Scholar] [CrossRef] [PubMed]
- Sugianti, Y.; Mujiyanto; Syam, A.R.; Nastiti, A.S. Phytoplankton community structure in Tunda Island waters, Banten Indonesia as a bioindicator to measure water quality. Mar. Pollut. Bull. 2024, 209, 117147. [Google Scholar]
- Strong, W.L. Biased richness and evenness relationships within Shannon–Wiener index values. Ecol. Indic. 2016, 67, 703–713. [Google Scholar] [CrossRef]
- Ni, D.; Zhang, Z.; Liu, X. Benthic ecological quality assessment of the Bohai Sea, China using marine biotic indexs. Mar. Pollut. Bull. 2019, 142, 457–464. [Google Scholar] [CrossRef]
- Huang, W.; Liang, N.; Zhou, L.; Lu, J. Study on the water eutrophication evolution characteristics of Junshan Lake. Water Supply 2022, 22, 8698–8707. [Google Scholar] [CrossRef]
- Yu, P.; You, Q.; Pang, W.; Cao, Y.; Bi, Y.; Wang, Q. Development of a Periphytic Diatom-Based Comprehensive Diatom Index for Assessing the Trophic Status of Lakes in the Lower Reaches of the Yangtze River, China. Water 2021, 13, 3570. [Google Scholar] [CrossRef]
- Mustafa, A.K.; Naheel, A.A.; Tasneem, H.; Ibrahim, F. Flood Hazard and Risk Assessment of Flash Floods for Petra Catchment Area Using Hydrological and Analytical Hierarchy (AHP) Modeling. Water 2024, 16, 2283. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Leng, X.; Yang, Q.; Chen, H.; Wang, X.; Cui, N. Exploring the optimisation of mulching and irrigation management practices for mango production in a dry hot environment based on the entropy weight method. Sci. Hortic-Amst. 2022, 291, 110564. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, X.; Zhang, S.; Wang, M. Dynamic assessment of seawater quality based on semi-partial subtraction set pair potential method and game theory. Environ. Monit. Assess. 2024, 196, 223. [Google Scholar] [CrossRef]
- Wang, D.; Liu, X.; Guo, Z.; Shan, W.; Yang, Z.; Chen, Y.; Ju, F.; Zhang, Y. Legacy and Novel Per- and Polyfluoroalkyl Substances in Surface Soils across China: Source Tracking and Main Drivers for the Spatial Variation. Environ. Sci. Technol. 2024, 58, 20160–20171. [Google Scholar] [CrossRef]
- Subramaniyan, A.L.; Visweswaran, V.J.; Kumar, C.S. Exploring the properties of oxide composite materials using Origin software. J. Mater. Educ. 2020, 42, 51–60. [Google Scholar]
- Mao, S.; Guo, S.; Deng, H.; Xie, Z.; Tang, T. Recognition of Patterns of Benthic Diatom Assemblages within a River System to Aid Bioassessment. Water 2018, 10, 1559. [Google Scholar] [CrossRef]
- Chen, C.; Ran, D.; Yang, Y.; Hou, H.; Peng, C. TOPSIS based multi-fidelity Co-Kriging for multiple response prediction of structures with uncertainties through real-time hybrid simulation. Eng. Struct. 2023, 280, 115734. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Shi, K.; Qin, B.; Yao, X.; Zhang, Y. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication. Water Res. 2018, 131, 255–263. [Google Scholar] [CrossRef]
- Duan, H.; Tao, M.; Loiselle, S.A.; Zhao, W.; Cao, Z.; Ma, R.; Tang, X. MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source. Water Res. 2017, 122, 455–470. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Y.; Zhao, Z.; Wang, L.; Xu, J.; Yu, J. A novel water quality mechanism modeling and eutrophication risk assessment method of lakes and reservoirs. Nonlinear Dyn. 2019, 96, 1037–1053. [Google Scholar] [CrossRef]
Branch | Sampling Position | Tem (°C) | pH | DO (mg/L) | H′ | TLI | Anabaena (Cells/L) | Gloeocapsa (Cells/L) | Microcystis (Cells/L) |
---|---|---|---|---|---|---|---|---|---|
Shanxi Branch | SXR1 | 16.93 | 7.76 | 3 | 2.14 | 64 | 0.01 | 1.02 | 7.31 |
SXR2 | 17.27 | 8.27 | 3.68 | 2.3 | 44.59 | 0.02 | 2.13 | 9.25 | |
SXR3 | 17.38 | 8.34 | 3.62 | 2.6 | 60.59 | 0.89 | 1.13 | 6.86 | |
SXR4 | 17.93 | 8.58 | 3.5 | 1.97 | 61.6 | 0.05 | 0.78 | 10.38 | |
SXR5 | 17.91 | 8.47 | 3.33 | 2.94 | 39.01 | 0.52 | 1.88 | 2.87 | |
SXR6 | 19.14 | 8.69 | 2.52 | 2.58 | 47.2 | 0.74 | 0.82 | 5.51 | |
SXR7 | 19.56 | 9 | 3.51 | 3.06 | 31.78 | 2.04 | 5.98 | 5.33 | |
SXR8 | 20.84 | 8.59 | 3.33 | 2.44 | 54.4 | 1.67 | 0.01 | 4.53 | |
SXR9 | 18.37 | 8.46 | 3.31 | 2.5 | 50.4 | 0.74 | 1.72 | 6.51 | |
Xuezuokou Branch | XZKS1 | 18.15 | 8.49 | 3.4 | 3.08 | 63.74 | 0.65 | 1.34 | 1.78 |
XZKS2 | 18.66 | 8.54 | 3.43 | 2.6 | 60.96 | 0.03 | 0.02 | 7.58 | |
XZKS3 | 18.81 | 8.53 | 3.35 | 2.4 | 27.33 | 0.01 | 0.87 | 2.69 | |
Jujiangxi Branch | JJXS1 | 19.73 | 8.51 | 3.44 | 2.54 | 50.88 | 0.84 | 1.24 | 7.87 |
JJXS2 | 19.91 | 8.59 | 3.69 | 3.1 | 68.02 | 0.01 | 0.73 | 6.02 | |
JJXS3 | 19.74 | 8.66 | 3.4 | 2.16 | 63.85 | 0.06 | 1.63 | 10.88 | |
JJXS4 | 20.14 | 9.8 | 3.6 | 2.58 | 68.11 | 0.02 | 22.83 | 15.58 | |
JJXS5 | 19.7 | 9.72 | 3.57 | 1.86 | 50.78 | 1.12 | 8.36 | 9.88 | |
Sanchaxi Branch | SCXS1 | 20.07 | 8.71 | 3.18 | 1.95 | 59.35 | 1.33 | 2.64 | 5.85 |
SCXS2 | 17.77 | 8.21 | 5.74 | 1.63 | 59.59 | 0.01 | 0.02 | 30.54 | |
SCXS3 | 19.42 | 8.68 | 3.21 | 3.52 | 28.28 | 0.03 | 8.86 | 4.48 | |
Huangtankeng Branch | HTKS1 | 17.93 | 8.45 | 3.29 | 3.43 | 66.59 | 0.04 | 1.01 | 2.87 |
HTKS2 | 18.24 | 8.66 | 3.18 | 4.18 | 66.52 | 4.17 | 4.33 | 4.28 | |
HTKS3 | 18.42 | 9.24 | 3.5 | 3.95 | 69.13 | 9.88 | 1.89 | 6.75 |
Indicators | Subjective Weight | Objective Weight | Comprehensive Weight |
---|---|---|---|
Tem (C1) | 0.11 | 0.06 | 0.08 |
pH (C2) | 0.06 | 0.07 | 0.07 |
DO (C3) | 0.20 | 0.20 | 0.20 |
H′ (C4) | 0.18 | 0.25 | 0.23 |
TLI (C5) | 0.16 | 0.18 | 0.18 |
Anabaena (C6) | 0.15 | 0.11 | 0.12 |
Gloeocapsa (C7) | 0.08 | 0.04 | 0.05 |
Microcystis (C8) | 0.06 | 0.09 | 0.07 |
Branch | Sampling Position | Spring | Summer | Autumn | Winter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RI-S | TLIrc | SM | RI-S | TLIrc | SM | RI-S | TLIrc | SM | RI-S | TLIrc | SM | ||
Shanxi Branch | SXR1 | I | I | I | I | I | I | I | I | I | I | I | I |
SXR2 | II | II | II | I | I | I | I | I | I | I | I | I | |
SXR3 | II | II | II | I | I | II | I | I | I | I | I | I | |
SXR4 | II | I | I | I | I | I | I | I | I | I | I | I | |
SXR5 | I | II | I | I | I | I | IV | IV | IV | I | I | I | |
SXR6 | I | I | II | II | III | II | II | II | III | II | II | II | |
SXR7 | III | IV | III | I | I | I | II | II | II | I | I | I | |
SXR8 | I | I | I | I | I | I | I | I | II | I | I | I | |
SXR9 | IV | IV | III | I | I | I | I | I | I | I | I | II | |
Xuezuokou Branch | XZKS1 | II | II | II | II | II | II | I | I | I | I | I | I |
XZKS2 | I | I | I | I | I | I | I | I | I | I | II | I | |
XZKS3 | I | I | II | I | I | I | III | III | III | I | I | I | |
Jujiangxi Branch | JJXS1 | II | II | III | II | II | II | II | II | II | I | I | I |
JJXS2 | I | II | I | I | I | I | I | I | I | I | I | I | |
JJXS3 | II | II | II | I | II | I | II | II | II | I | II | I | |
JJXS4 | IV | IV | IV | I | I | I | I | I | I | I | I | I | |
JJXS5 | IV | III | III | I | I | II | I | II | I | I | I | I | |
Sanchaxi Branch | SCXS1 | II | II | III | I | I | I | IV | III | IV | I | I | I |
SCXS2 | IV | IV | IV | I | I | I | II | II | II | I | I | II | |
SCXS3 | III | III | IV | I | I | I | II | II | II | I | I | I | |
Huangtankeng Branch | HTKS1 | I | II | II | I | I | I | I | I | I | I | I | I |
HTKS2 | II | III | II | IV | IV | IV | I | I | I | II | II | II | |
HTKS3 | III | III | III | I | I | I | IV | IV | IV | I | I | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, S.; Xia, J.; Wang, Y.; Zu, J.; Xu, K.; Liu, Z.; Wang, Q.; Lin, G. Adaptive Simplified Calculation of Algal Bloom Risk Index for Reservoir-Type Drinking Water Sources Based on Improved TOPSIS and Identification of Risk Areas. Water 2025, 17, 267. https://doi.org/10.3390/w17020267
Ji S, Xia J, Wang Y, Zu J, Xu K, Liu Z, Wang Q, Lin G. Adaptive Simplified Calculation of Algal Bloom Risk Index for Reservoir-Type Drinking Water Sources Based on Improved TOPSIS and Identification of Risk Areas. Water. 2025; 17(2):267. https://doi.org/10.3390/w17020267
Chicago/Turabian StyleJi, Shuyi, Jihong Xia, Yue Wang, Jiayi Zu, Kejun Xu, Zewen Liu, Qihua Wang, and Guofu Lin. 2025. "Adaptive Simplified Calculation of Algal Bloom Risk Index for Reservoir-Type Drinking Water Sources Based on Improved TOPSIS and Identification of Risk Areas" Water 17, no. 2: 267. https://doi.org/10.3390/w17020267
APA StyleJi, S., Xia, J., Wang, Y., Zu, J., Xu, K., Liu, Z., Wang, Q., & Lin, G. (2025). Adaptive Simplified Calculation of Algal Bloom Risk Index for Reservoir-Type Drinking Water Sources Based on Improved TOPSIS and Identification of Risk Areas. Water, 17(2), 267. https://doi.org/10.3390/w17020267