Comprehensive Hydrochemical Analysis, Controlling Mechanisms, and Water Quality Assessment of Surface and Groundwater in a Typical Intensive Agricultural Area, Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Measurement
2.3. Methods
2.3.1. The Entropy Water Quality Index (EWQI)
- (1)
- Calculate the index
- (2)
- Calculation of weights
- (3)
- Calculate the composite index EWQI:
2.3.2. Sodium Adsorption Ratio (SAR) and Soluble Sodium Percentage (Na%)
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Spatial Distribution of Major Ions
3.3. Hydrochemical Type
3.3.1. Kurlovian and Shukarevian Type
3.3.2. The Piper Diagram
3.4. The Interrelationships Among Various Chemical Indicators
3.5. Factors Controlling the Hydrochemical Characteristics
3.5.1. Rock Weathering
3.5.2. Ion Ratios
3.5.3. Main Ion Sources
3.6. Water Quality Assessment
3.6.1. Evaluation of Irrigation Water Quality Based on Groundwater Standards
3.6.2. Evaluation of Irrigation Water Quality Based on Farmland Safety Standards
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emenike, P.C.; Nnaji, C.C.; Tenebe, I.T. Assessment of geospatial and hydrochemical interactions of groundwater quality, southwestern Nigeria. Environ. Monit. Assess. 2018, 190, 440. [Google Scholar] [CrossRef] [PubMed]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Dll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. Discuss. 2010, 7, 3977–4021. [Google Scholar] [CrossRef]
- Li, H.H.; Lu, Y.D.; Zheng, C.; Zhang, X.N.; Zhou, B.; Wu, J. Seasonal and Inter-Annual Variability of Groundwater and Their Responses to Climate Change and Human Activities in Arid and Desert Areas: A Case Study in Yaoba Oasis, Northwest China. Water 2020, 12, 303. [Google Scholar] [CrossRef]
- Jaime, H. Regulating Agricultural groundwater use in arid and semi-arid regions of the Global South: Challenges and socio-environmental impacts. Curr. Opin. Environ. Sci. Health 2022, 27, 100341. [Google Scholar]
- Subba Rao, N. Spatial distribution of quality of groundwater and probabilistic non-carcinogenic risk from a rural dry climatic region of South India. Environ. Geochem. Health 2020, 43, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Yang, Q.C.; Ma, H.Y.; Liang, J. Chemical compositions evolution of groundwater and its pollution characterization due to agricultural activities in Yinchuan Plain, northwest China. Environ. Res. 2021, 200, 111449. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.L.; Wang, Y.X. Review and outlook of water-rock interaction studies. Earth Sci.—J. China Univ. Geosci. 2002, 27, 127–133. [Google Scholar]
- Guo, G.X.; Hou, Q.L.; Xu, L.; Liu, J.R.; Xin, B.D. Delamination and zoning characteristics of quaternary groundwater in Chaobai Alluvial-proluvial Fan, Beijing, based on hydrochemical analysis. Acta Geosci. Sin. 2014, 35, 204–210. [Google Scholar]
- Zhang, F.C.; Wu, B.; Gao, F.; Du, M.L.; Xu, L.T. Hydrochemical characteristics of groundwater and evaluation of water quality in arid area of Northwest China: A case study in the plain area of Kuitun River Basin. Arab. J. Geosci. 2021, 14, 10. [Google Scholar]
- Nadjai, S.; Bouderbala, A.; Khammar, H.; Nabed, A.N.; Benaabidate, L. Assessment of groundwater suitability for drinking and irrigation purposes in the middle Cheliff Aquifer, Algeria. Desalination Water Treat. 2024, 319, 100528. [Google Scholar] [CrossRef]
- Liu, W.; Jiang, S.J.; Chen, J.P.; Li, D.L.; Gao, Y.L.; Xing, J.F. A Brief Analysis on the Occurrence Regularity and Development and Utilization of Fracture Water in Bedrock in Laixi City. Shandong Land Resour. 2021, 37, 28–34. [Google Scholar]
- Liu, J.T.; Peng, Y.M.; Li, C.S.; Gao, Z.J.; Chen, S.J. An investigation into the hydrochemistry, quality and risk to human health of groundwater in the central region of Shandong Province, North China. J. Clean. Prod. 2021, 282, 125416. [Google Scholar] [CrossRef]
- Álvarez Torres, B.; Sotomayor Ramírez, D.R.; Castro Chacón, J.P.; Martínez Rodríguez, G.; Pérez Alegría, L.R.; DeSutter, T.M. An alternative method to measure electrical conductivity (EC) and sodium adsorption ratio (SAR) in salt-affected soil extracts. Front. Environ. Sci. 2023, 11, 1108272. [Google Scholar] [CrossRef]
- Ramesh, B.K.; Pillai, M.V.; Vanitha, S.; Diagu, J. Analysis of surface water quality for irrigation in Padmanabhapuram fort (Kanyakumari District, Tamil Nadu) India. IOP Conf. Ser. Mater. Sci. Eng. 2020, 872, 012191. [Google Scholar] [CrossRef]
- Murray, G.E. Midway Stage, Sabine Stage, and Wilcox Group. AAPG Bull. 1955, 39, 671–696. [Google Scholar]
- Thorne, D.W. Diagnosis and Improvement of Saline and Alkali Soils. Agron. J. 1954, 46, 290. [Google Scholar] [CrossRef]
- Merouche, A.; Selvam, S.; Imessaoudene, Y.; Maten, C.N. Assessment of dam water quality for irrigation in the northeast of catchment Cheliff-Zahrez, Central Algeria. Environ. Dev. Sustain. 2019, 22, 1–22. [Google Scholar] [CrossRef]
- Siddhant, D.; Kalamdhad, A.S. Hydrochemical dynamics of water quality for irrigation use and introducing a new water quality index incorporating multivariate statistics. Environ. Earth Sci. 2021, 80, 73. [Google Scholar]
- Simler, R. Diagrammes Software; Avignon University: Avignon, France, 2009. [Google Scholar]
- Vystavna, Y.; Schmidt, S.; Diadin, D.; Rossi, P.M.; Vergeles, Y.; Erostate, M.; Vadillo, I. Multi-tracing of recharge seasonality and contamination in groundwater: A tool for urban water resource management. Water Res. 2019, 161, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Mei, Y.; Yu, K.; Li, Y.; Meng, X.; Hu, F. Anthropogenic Effects on Hydrogeochemical Characterization of the Shallow Groundwater in an Arid Irrigated Plain in Northwestern China. Water 2019, 11, 2247. [Google Scholar] [CrossRef]
- Torres-Martínez, A.J.; Mora, A.; Mahlknecht, J.; Daesslé, L.W.; Cervantes-Avilés, P.A.; Ledesma-Ruiz, R. Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera), combining major ions, stable isotopes and MixSIAR model. Environ. Pollut. 2020, 269, 115445. [Google Scholar] [CrossRef]
- Gao, Z.J.; Chen, C. The classification method of water chemical types based on the principle of Kurllov’s formula and Shoka Lev classification. Groundwater 2018, 40, 6–13. [Google Scholar]
- Piper, A.M. A graphic procedure in the geochemical interpreation of water-analyses. EOS Trans. Am. Geophys. Union 1944, 25, 27–29. [Google Scholar]
- Gao, Z.J.; Wang, Z.Y.; Wang, S.; Wu, X.; An, Y.H.; Wang, W.X.; Liu, J.T. Factors that influence the chemical composition and evolution of shallow groundwater in an arid region: A case study from the middle reaches of the Heihe River, China. Environ. Earth Sci. 2019, 78, 390. [Google Scholar] [CrossRef]
- Gibbs, A.J.; McIntyre, G.A. The Diagram, a Method for Comparing Sequences. Eur. J. Biochem. 1970, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rajput, U.; Swami, D.; Joshi, N. Geospatial analysis of toxic metal contamination in groundwater and associated health risks in the lower Himalayan industrial region. Sci. Total Environ. 2024, 938, 173328. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.F.; Xiao, Y.; Hao, Q.C.; Zhang, Y.H.; Zhao, Z.; Wang, S.B.; Dong, G.F. Groundwater geochemical signatures and implication for sustainable development in a typical endorheic watershed on Tibetan plateau. Environ. Sci. Pollut. Res. Int. 2021, 28, 48312–48329. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.Q.; Li, B.Z.; Zhang, Z.; Zhang, Y. Hydrochemical Characteristics, Controlling Factors and Groundwater Sources of Zaozigou Gold Mine. Sustainability 2024, 16, 7989. [Google Scholar] [CrossRef]
- Li, P.; Wu, J.; Qian, H. Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: A case study in and around Hua County, China. Arab. J. Geosci. 2015, 9, 15. [Google Scholar] [CrossRef]
- Han, C.; Liu, J.T.; Gao, Z.J.; Xu, Y.; Zhang, Y.Q.; Han, Z.; Zhao, Z.H.; Luo, Z.J. Chemical characteristics, evolution, and quality of groundwater and processes controlling its fluoride concentration features: Case study of a typical high-fluoride areas in the Southwestern Shandong Plain, China. Environ. Sci. Pollut. Res. Int. 2022, 29, 19003–19018. [Google Scholar] [CrossRef] [PubMed]
- Vetrimurugan, E.; Rajmohan, N.; Bongani, S.; Li, P.Y.; Sivakumar, U.; Johan, V.T. Geochemical evolution and the processes controlling groundwater chemistry using ionic ratios, geochemical modelling and chemometric analysis in a semi-arid region of South Africa. Chemosphere 2022, 312, 137179. [Google Scholar]
- Yang, Q.; Li, Z.; Ma, H.; Wang, L.; Martín, J.D. Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin. China. Environ. Pollut. 2016, 218, 879–888. [Google Scholar] [CrossRef]
- Nematollahi, M.J.; Ebrahimi, P.; Razmara, M.; Ghasemi, A. Hydrogeochemical investigations and groundwater quality assessment of Torbat-Zaveh plain, Khorasan Razavi, Iran. Environ. Monit. Assess. 2015, 188, 2. [Google Scholar] [CrossRef]
- Liu, J.T.; Gao, Z.J.; Zhang, Y.Q.; Sun, Z.B.; Sun, T.Z.; Fan, H.B.; Wu, B.; Li, M.B.; Qian, L.L. Hydrochemical evaluation of groundwater quality and human health risk assessment of nitrate in the largest peninsula of China based on high-density sampling: A case study of Weifang. J. Clean. Prod. 2021, 322, 129164. [Google Scholar] [CrossRef]
- Liu, J.T.; Gao, Z.J.; Wang, Z.Y.; Xu, X.; Su, Q.; Wang, S.; Xing, T. Hydrogeochemical processes and suitability assessment of groundwater in the Jiaodong Peninsula, China. Environ. Monit. Assess. 2020, 192, 384. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Zhang, F.; Jin, Z. Spatial characteristics and controlling factors of chemical weathering of loess in the dry season in the middle Loess Plateau, China. Hydrol. Process. 2016, 30, 4855–4869. [Google Scholar] [CrossRef]
- Fan, B.; Zhao, Z.; Tao, F.; Liu, B.; Tao, Z.; Gao, S.; Zhang, L. Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin: A comparison among the upstream, midstream and downstream. Asian Earth Sci. 2014, 96, 17–26. [Google Scholar] [CrossRef]
- Wu, C.; Wu, X.; Qian, C.; Zhu, G. Hydrogeochemistry and groundwater quality assessment of high fluoride levels in the Yanchi endorheic region, northwest China. Appl. Geochem. 2018, 98, 404–417. [Google Scholar] [CrossRef]
- Li, C.S.; Gao, Z.J.; Chen, H.L.; Wang, J.X.; Liu, J.T.; Li, C.; Xu, C. Hydrochemical analysis and quality assessment of groundwater in southeast North China Plain using hydrochemical, entropy-weight water quality index, and GIS techniques. Environ. Earth Sci. 2021, 80, 523. [Google Scholar] [CrossRef]
- Wang, M.R.; Zhang, Q.; Li, Y.A.; Bak, M.; Feng, S.; Kroeze, C. Water pollution and agriculture: Multi-pollutant perspectives. Front. Agric. Sci. Eng. 2023, 10, 639–647. [Google Scholar] [CrossRef]
- Maryna, S.; Zhaohai, B.; Wietse, F.; Nynke, H.; Albert, A.K.; Fulco, L.; Lin, M.; van Peter, P.; Emiel, S.J.; Vermeulen, L.C.; et al. Urbanization: An increasing source of multiple pollutants to rivers in the 21st century. Npj Urban Sustain. 2021, 1, 24. [Google Scholar]
- Pérez-Lucas, G.; Vela, N.; El Aatik, A.; Navarro, S. Environmental risk of groundwater pollution by pesticide leaching through the soil profile. In Pesticides-Use and Misuse and Their Impact in the Environment; Larramendy, M., Soloneski, S., Eds.; Intech Open: London, UK, 2019; pp. 1–28. [Google Scholar]
- Kumar, M.; Goswami, R.; Patel, A.K.; Srivastava, M.; Das, N. Scenario., perspectives and mechanism of arsenic and fluoride co-occurrence in the groundwater: A review. Chemosphere 2020, 249, 12612623. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, D.; Kong, H.; Zhang, G.; Shen, F.; Huang, Z. Effects of Salinity Accumulation on Physical, Chemical, and Microbial Properties of Soil under Rural Domestic Sewage Irrigation. Agronomy 2024, 14, 514. [Google Scholar] [CrossRef]
Testing Indicators | Detection Methods/Instruments | Detection Iimit/(5 mg·L−1) |
---|---|---|
Cl− | Volumetric silver nitrate method | 0.05 |
Ca2+, Mg2+, TH (CaCO3) | Disodium EDTA titration method | 0.05 |
K+, Na+ | Flame atomic absorption spectrophotometry | 0.05 |
SO42− | Barium sulfate turbidimetric method | 0.05 |
NO3− | Ultraviolet spectrophotometric method | 0.20 |
pH | Glass electrode method | 0.01 |
TDS | American HACH hash portable pH meter HQ40D | 0.01 |
pH | TDS | TH | Na+ | SO42− | Cl− | HCO3− | NO3− | ||
---|---|---|---|---|---|---|---|---|---|
Standard Value | 6.5–8.5 | ≤1000 | ≤450 | ≤200 | ≤250 | ≤250 | ≤250 | ≤88.6 | |
Groundwater | Minimum | 6.86 | 358.26 | 235.13 | 24.7 | 51.65 | 27.69 | 88.62 | 29.48 |
Maximum | 7.99 | 4154.21 | 1606.10 | 678.00 | 700.00 | 1030.91 | 480.61 | 1820.0 | |
Mean value | 7.51 | 1340.79 | 759.91 | 115.68 | 246.81 | 231.15 | 200.74 | 369.67 | |
Standard deviation | 0.25 | 737.96 | 324.80 | 128.84 | 126.06 | 234.12 | 101.89 | 362.056 | |
Exceedance rate (%) | 0 | 68.97 | 82.76 | 17.24 | 34.48 | 24.14 | 20.69 | 79.31 | |
Coefficient of variation (%) | 3.3 | 55.04 | 42.74 | 111.38 | 51.08 | 101.28 | 50.76 | 97.94 | |
Surface water | Minimum | 7.48 | 543.64 | 393.36 | 45.26 | 132.94 | 84.61 | 187.47 | 11.90 |
Maximum | 7.98 | 1203.28 | 639.14 | 150 | 256.83 | 291.63 | 565.82 | 68.27 | |
Mean value | 7.81 | 875.33 | 528.84 | 90.16 | 191.54 | 172.98 | 361.39 | 43.58 | |
Standard deviation | 0.20 | 302.63 | 129.96 | 44.48 | 54.04 | 88.75 | 187.73 | 21.79 | |
Exceedance rate (%) | 0 | 40.00 | 60.00 | 0 | 20.00 | 20.00 | 60.00 | 0 | |
Coefficient of variation (%) | 3.0 | 35.0 | 25.0 | 49.0 | 28.0 | 51.0 | 52.0 | 50.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Huang, T.; Chen, J.; Tian, H.; Tan, M.; Niu, Y.; Lou, K. Comprehensive Hydrochemical Analysis, Controlling Mechanisms, and Water Quality Assessment of Surface and Groundwater in a Typical Intensive Agricultural Area, Northern China. Water 2025, 17, 276. https://doi.org/10.3390/w17020276
Gao Z, Huang T, Chen J, Tian H, Tan M, Niu Y, Lou K. Comprehensive Hydrochemical Analysis, Controlling Mechanisms, and Water Quality Assessment of Surface and Groundwater in a Typical Intensive Agricultural Area, Northern China. Water. 2025; 17(2):276. https://doi.org/10.3390/w17020276
Chicago/Turabian StyleGao, Zongjun, Tingting Huang, Jinkai Chen, Hong Tian, Menghan Tan, Yiru Niu, and Kexin Lou. 2025. "Comprehensive Hydrochemical Analysis, Controlling Mechanisms, and Water Quality Assessment of Surface and Groundwater in a Typical Intensive Agricultural Area, Northern China" Water 17, no. 2: 276. https://doi.org/10.3390/w17020276
APA StyleGao, Z., Huang, T., Chen, J., Tian, H., Tan, M., Niu, Y., & Lou, K. (2025). Comprehensive Hydrochemical Analysis, Controlling Mechanisms, and Water Quality Assessment of Surface and Groundwater in a Typical Intensive Agricultural Area, Northern China. Water, 17(2), 276. https://doi.org/10.3390/w17020276