Strategies for a Sustainable Economy: Optimizing Processes for BOD, COD and TSS Removal from Wastewater
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
- −
- Total phosphorus can be reduced below the permitted values.
- −
- The effectiveness of the treatment plant also increases in the removal of organic matter.
- −
- Prevents excessive growth of filamentous micro-organisms.
- −
- Helps to form sludge with good settling qualities.
- −
- Increases the dry matter content of the sludge, corrects density and the degree of dewatering.
- −
- for COD: F(1.063; 11.697) = 20.102, significant value at a threshold p = 0.001 < 0.05: there is a significant effect of the use of ferric chloride solution on the efficiency of COD removal from wastewater (99.9% confidence statement);
- −
- for BOD: F(1.106; 12.168) = 100.586, significant value at a threshold p = 0.000 < 0.05: there is a significant effect of the use of ferric chloride solution on the efficiency of BOD removal from wastewater (100% confidence);
- −
- for TSS: F(1.141; 12.547) = 5.705, significant value at a threshold p = 0.030 < 0.05: there is a significant effect of the use of ferric chloride solution on the efficiency of removal of TSS from wastewater (97% confidence level).
- −
- F(1; 22.760), p = 0.001 < 0.05—there are statistically significant differences between Year 2021 and Year 2022 stages (“Level 1 vs. Level 2”);
- −
- F(1; 0.367), p = 0.557 > 0.05—no statistically significant differences between Year 2022 and Year 2023 (“Level 2 vs. Level 3”).
- −
- F(1; 87.474), p = 0.000 < 0.05—there are statistically significant differences between Year 2021 and Year 2022 (“Level 1 vs. Level 2”) stages;
- −
- F(1; 3.308), p = 0.096 > 0.05—no statistically significant differences between Year 2022 and Year 2023 (“Level 2 vs. Level 3”).
- −
- F(1; 7.759), p = 0.018 < 0.05—there are statistically significant differences between the stages Year 2021 and Year 2022 (“Level 1 vs. Level 2”);
- −
- F(1; 3.449), p = 0.090 > 0.05—there are no statistically significant differences between the stages Year 2022 and Year 2023 (“Level 2 vs. Level 3”).
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, A.; Arkatkar, A.; Singh, S.; Rabbani, A.; Medina, J.D.; Ong, E.S.; Habashy, M.M.; Jadhav, D.A.; Rene, E.R.; Mungray, A.A.; et al. Physico-chemical and biological treatment strategies for converting municipal wastewater and its residue to resources. Chemosphere 2021, 282, 130881. [Google Scholar] [CrossRef] [PubMed]
- Zaharia, A.; Nedeff, V.; Culea, M.; Barsan, N.; Tomozei, C. Applications of the Ultrafiltration Membranes in the Industrial Effluents Treatment Processes. A Short Review. In Proceedings of the 2022 8th International Conference on Energy Efficiency and Agricultural Engineering, EE and AE Conferences Proceedings, Ruse, Bulgaria, 30 June–2 July 2022. [Google Scholar]
- Bretotean, M.; Tomescu, G.; Munteanu, M.T.; Radu, E.; Drăguşin, D.; Radu, C. Delimitation and characterization of underground water bodies in Romania. Hidrotehnica 2006, 50, 33–39. [Google Scholar]
- Robescu, D.; Stroe, F.; Presura, A.; Robescu, D. Waste Water Treatment Techniques, Biological Treatment of Wastewater; Technical Publishing House: Pune, India, 2011. [Google Scholar]
- European Commission. Directive 91/271/EEC—Urban Wastewater Treatment; European Commission: Brussels, Belgium, 1991. [Google Scholar]
- Gaspar, E. Domestic Wastewater Treatment Systems; “Lucian Blaga” University Publishing House from Sibiu: Sibiu, Romania, 2009. [Google Scholar]
- Chiavola, A.; Bongirolami, S.; Di Francesco, G. Technical-economic comparison of chemical precipitation and ion exchange processes for the removal of phosphorus from wastewater. Water Sci. Technol. 2020, 81, 1329–1335. [Google Scholar] [CrossRef]
- Przydatek, G.; Golonka, M.; Barsan, N.; Mosnegutu, E.; Chitimus, A.D.; Irimia, O. Environmental and energy efficiency of a selected municipal wastewater treatment plant—A case study. Eng. Res. Express 2024, 6, 035003. [Google Scholar] [CrossRef]
- Mizyed, A.G. Review on application of rotating biological contactors in removal of various pollutants from effluent. Tech. BioChemMed 2021, 2, 41–61. [Google Scholar]
- Irimia, O.; Gaspar, E.; Stanciu, M.; Mosnegutu, E.; Bârsan, N. Optimizing nitrogen and phosphorus removal from wastewater in the context of a sustainable economy. Water 2024, 16, 1585. [Google Scholar] [CrossRef]
- Rana, S.; Gupta, N.; Rana, R. Removal of organic pollutant with the use of rotating biological contactor. Mater. Today Proc. 2018, 5, 4218–4224. [Google Scholar] [CrossRef]
- Robescu, D.; Lanzi, S.; Verestoy, A.; Robescu, D. Modeling and Simulation of Purification Processes; Technical Publishing House: Bucharest, Romania, 2004. [Google Scholar]
- Kuśnierz, M.; Domańska, M.; Hamal, K.; Pera, A. Application of integrated fixed-film activated a sludge in a conventional wastewater treatment plant. Int. J. Environ. Res. Public Health 2022, 19, 5985. [Google Scholar] [CrossRef]
- Barsan, N.; Chitimus, D.; Nedeff, F.M.; Sandu, I.; Panainte Lehadus, M.; Sandu, A.V.; Irimia Tartoaca, O. Experimental application of a laboratory SBR plant used for domestic wastewater treatment. Chem. Mag. 2019, 70, 4098–4101. [Google Scholar] [CrossRef]
- 5 Ways AI Can Help Crisis Response Around the World. Available online: https://www.undp.org/?gad_source=1 (accessed on 15 November 2024).
- Mouri, G.; Takizawa, S.; Oki, T. Spatial and Temporal Variation in Nutrient parameters in stream Water in a Rural-Urban Catchment, Shikoku, Japan: Effects of Land Cover and Human Impact. J. Environ. Manag. 2011, 92, 1837–1848. [Google Scholar] [CrossRef]
- Sonune, A.; Ghate, R. Developments in wastewater treatment methods. Desalination 2004, 167, 55–63. [Google Scholar] [CrossRef]
- Ezugbe, E.O.; Rathila, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, S.; Modin, O.; Mijakovic, I. Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol. Adv. 2020, 43, 107570. [Google Scholar] [CrossRef]
- Przydatek, G.; Wota, A. Analysis of the comprehensive management of sewage sludge in Poland. J. Mater. Cycles Waste Manag. 2020, 22, 80–88. [Google Scholar] [CrossRef]
- Plappally, A.K.; Lienhard, V.J.H. Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew. Sustain. Energy Rev. 2012, 16, 4818–4828. [Google Scholar] [CrossRef]
- Mizuta, K.; Shimada, M. Benchmarking energy consumption in municipal wastewater treatment plants in Japan. Water Sci. Technol. 2010, 62, 2256–2262. [Google Scholar] [CrossRef]
- Santos, E. On the path of sustainability in wastewater treatment: The golden mean applied to regional context. IOP Conf. Ser. Earth Environ. Sci. 2021, 812, 012012. [Google Scholar] [CrossRef]
- Ma, G.; Chen, J. Nitrogen and phosphorus pollutants in cosmetics wastewater and its treatment process of a certain brand. IOP Conf. Ser. Earth Environ. Sci. 2018, 113, 012051. [Google Scholar] [CrossRef]
- Hendrasarie, N.; Trilta, M.N. Removal of nitrogen-phosphorus in food wastewater treatment by the Anaerobic Baffled Reactor (ABR) and Rotating Biological Contactor (RBC). IOP Conf. Ser. Earth Environ. Sci. 2019, 245, 012017. [Google Scholar] [CrossRef]
- Wijayanti, Y.; Fittkow, M.; Budihardjo, K.; Setyandito, O. Sustainable water management: A review study on integrated water supply (case study on special district of Yogyakarta). IOP Conf. Ser. Earth Environ. Sci. 2020, 426, 012056. [Google Scholar] [CrossRef]
- Batool, R.; Sahrish, S.; Abdul Ahad, S.; Maqsood, Q.; Waseem Ali, S.; Abbas, S.M. Redefining sustainability: Next-gen wastewater treatment breakthroughs. Clenear Water 2024, 1, 100018. [Google Scholar] [CrossRef]
- Aboagye, E.A.; Burnham, S.; Dailey, J.; Zia, R.; Tran, C.; Desai, M.; Yenkie, K. Systematic design, optimization, and sustainability assessment for generation of efficient wastewater treatment networks. Water 2021, 13, 1326. [Google Scholar] [CrossRef]
- Ahmadpour, M. Efficiency comparison of alum and ferric chloride coagulants in removal of dye and organic material from industrial wastewater—A case study. Bulg. Chem. Commun. 2015, 47, 208–212. [Google Scholar]
- El-Shafai, S.; Zahid, W. Impacts of Ferric Chloride on the Treatment Performance of Cloth-Media MBR. In Proceedings of the IWA Regional Conference on Wastewater Purification and Reuse, Heraklion, Greece, 27–29 March 2012. [Google Scholar]
- Dong, Q.; Parker, W.; Dagnew, M. Impact of FeCl3 dosing on AnMBR treatment of municipal wastewater. Water Resour. 2015, 80, 281–293. [Google Scholar] [CrossRef]
- Khan, S.A.; Khan, T.A.; Alharthi, S.S.; Zhu, G.; Zhang, Y.; Pang, H. Functionalized iminodiacetic acid pectin/montmorillonite hydrogel for enhanced adsorption of 4-nitrophenol from simulated water: An integrated approach of response surface optimization and non-linear modeling. Int. J. Biol. Macromol. 2024, 282, 137049. [Google Scholar] [CrossRef]
- Prathna, T.C.; Ankit, S. Ferric chloride for odour control: Studies from wastewater treatment plants in India. Water Pract. Techonology 2021, 16, 35–41. [Google Scholar] [CrossRef]
- Regulation of exploitation and operation of W.W.T.P. Dumbraveni, Technical documentation.
- Technical Norms NTPA-001/2002 Concerning the Limits for Pollutants Load on Industrial and Municipal Wastewater Discharged in Natural Receiving Bodies. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/98311 (accessed on 30 April 2024).
- Technical Norms NTPA-002/2002 Regarding Conditions for Wastewater Discharge in Municipal Sewerage Networks and Directly Towards Wastewater Treatment Plants. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/98310 (accessed on 30 April 2024).
- Technical Norms NTPA-011/2002 Concerning the Collection, Treatment and Discharge of Urban Wastewater. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/98309 (accessed on 30 April 2024).
- ISO 5667-10:2020; Water Quality—Sampling Part 10: Guidance on Sampling of Wastewater. ISO: Geneva, Switzerland, 2020.
Parameter | Analytical Standard or Method | Equipment | Maximal Admitted Limits mg/L |
---|---|---|---|
pH | SR ISO 10523/2012, PO-01 | WTW pH/conductivity multimeter model 330i with SENTIX® 41 electrode—Wissenschaftlich-Technische Werkstätte, Weilheim, Germania | 6.5–8.5 |
COD | SR ISO 6060/1996 | Velp eco 16 thermoreactor VELP Scientifica, Usmate Velate, Italia Merck Spectroquant® multispectrophotometer—Merck KGaA, Darmstadt, Germania | 125.0 |
BOD | SR EN ISO 5815-1/2020 Method WTW 997230 OxiTop, PO-07 | WTW incubator model TS 606/2-I—Wissenschaftlich-Technische Werkstätte, Weilheim, Germania WTW OxiTop® bottles—Wissenschaftlich-Technische Werkstätte, Weilheim, Germania | 25.0 |
TSS | SR EN 872/2009 | Classical filtration equipment | 35.0 |
No. | 2021 (COD) | 2022 (COD) | 2023 (COD) | 2021 (BOD) | 2022 (BOD) | 2023 (BOD) | 2021 (TSS) | 2022 (TSS) | 2023 (TSS) |
---|---|---|---|---|---|---|---|---|---|
Deviation | 12.9107 | 2.3519 | 3.54358 | 6.44280 | 1.18280 | 1.61946 | 12.01264 | 1.98607 | 3.52880 |
Dif. Absolute | 0.167 | 0.141 | 0.220 | 0.152 | 0.127 | 0.213 | 0.223 | 0.175 | 0.214 |
Positive | 0.083 | 0.141 | 0.193 | 0.122 | 0.081 | 0.176 | 0.153 | 0.091 | 0.148 |
Negative | 0.167 | 0.137 | 0.220 | 0.152 | 0.127 | 0.213 | 0.223 | 0.175 | 0.214 |
Kolmogorov–Smirnov | 0.578 | 0.489 | 0.763 | 0.527 | 0.440 | 0.736 | 0.773 | 0.607 | 0.740 |
Asymo. Sig. | 0.892 | 0.971 | 0.606 | 0.944 | 0.990 | 0.650 | 0.589 | 0.854 | 0.644 |
Within Subjects Effect | Mauchly’s W | Approx. Chi- Square | df | Epsilon | ||
---|---|---|---|---|---|---|
Greenhouse–Geisser | Huynh–Feldt | Lower Bound | ||||
Efficiency_COD | 0.119 | 21.268 | 2 | 0.532 | 0.541 | 0.500 |
Efficiency_BOD | 0.192 | 16.503 | 2 | 0.553 | 0.570 | 0.500 |
Efficiency_TSS | 0.247 | 13.998 | 2 | 0.570 | 0.593 | 0.500 |
Source | Type III Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|---|
Efficiency_COD | Sphericity Assumed | 2668.976 | 2 | 1334.488 | 20.102 | 0.000 |
Greenhouse–Geisser | 2668.976 | 1.063 | 2509.885 | 20.102 | 0.001 | |
Huynh–Feldt | 2668.976 | 1.083 | 2464.594 | 20.102 | 0.001 | |
Lower Bound | 2668.976 | 1.000 | 2668.976 | 20.102 | 0.001 | |
Error(Efficiency_COD) | Sphericity Assumed | 1460.498 | 22 | 66.386 | ||
Greenhouse–Geisser | 1460.498 | 11.697 | 124.858 | |||
Huynh–Feldt | 1460.498 | 11.912 | 122.605 | |||
Lower Bound | 1460.498 | 11.000 | 132.773 | |||
Efficiency_BOD | Sphericity Assumed | 2535.391 | 2 | 1267.695 | 100.586 | 0.000 |
Greenhouse–Geisser | 2535.391 | 1.106 | 2292.008 | 100.586 | 0.000 | |
Huynh–Feldt | 2535.391 | 1.140 | 2224.954 | 100.586 | 0.000 | |
Lower Bound | 2535.391 | 1.000 | 2535.391 | 100.586 | 0.000 | |
Error(Efficiency_BOD) | Sphericity Assumed | 277.269 | 22 | 12.603 | ||
Greenhouse–Geisser | 277.269 | 12.168 | 22.787 | |||
Huynh–Feldt | 277.269 | 12.535 | 22.120 | |||
Lower Bound | 277.269 | 11.000 | 25.206 | |||
Efficiency TSS | Sphericity Assumed | 639.011 | 2 | 319.505 | 5.705 | 0.010 |
Greenhouse–Geisser | 639.011 | 1.141 | 560.206 | 5.705 | 0.030 | |
Huynh–Feldt | 639.011 | 1.185 | 539.030 | 5.705 | 0.028 | |
Lower Bound | 639.011 | 1.000 | 639.011 | 5.705 | 0.036 | |
Error(Efficiency TSS) | Sphericity Assumed | 1232.056 | 22 | 56.003 | ||
Greenhouse–Geisser | 1232.056 | 12.547 | 98.192 | |||
Huynh–Feldt | 1232.056 | 13.040 | 94.481 | |||
Lower Bound | 1232.056 | 11.000 | 112.005 |
Source | Efficiency_COD | Type III Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|---|
Efficiency_COD | Level 1 vs. Level 2 | 3873.613 | 1 | 3873.613 | 22.760 | 0.001 |
Level 2 vs. Level 3 | 4.083 | 1 | 4.083 | 0.367 | 0.557 | |
Error(Efficiency_COD) | Level 1 vs. Level 2 | 1872.107 | 11 | 170.192 | ||
Level 2 vs. Level 3 | 122.437 | 11 | 11.131 | |||
Efficiency_BOD | Level 1 vs. Level 2 | 3594.941 | 1 | 3594.941 | 87.474 | 0.000 |
Level 2 vs. Level 3 | 10.830 | 1 | 10.830 | 3.308 | 0.096 | |
Error(Efficiency_BOD) | Level 1 vs. Level 2 | 452.069 | 11 | 41.097 | ||
Level 2 vs. Level 3 | 36.010 | 11 | 3.274 | |||
Efficiency_TSS | Level 1 vs. Level 2 | 1154.441 | 1 | 1154.441 | 7.769 | 0.018 |
Level 2 vs. Level 3 | 54.187 | 1 | 54.187 | 3.449 | 0.090 | |
Error(Efficiency_TSS) | Level 1 vs. Level 2 | 1634.569 | 11 | 148.597 | ||
Level 2 vs. Level 3 | 172.802 | 11 | 15.709 |
2021 (COD) | 2021 (BOD) | 2021 (TSS) | ||
---|---|---|---|---|
2021 (COD) | Pearson Correlation | 1 | 0.225 | 0.590 |
Sig. (2-tailed) | 0.483 | 0.043 | ||
N | 12 | 12 | 12 | |
2021 (BOD) | Pearson Correlation | 0.225 | 1 | 0.114 |
Sig. (2-tailed) | 0.483 | 0.665 | ||
N | 12 | 12 | 12 | |
2021 (TSS) | Pearson Correlation | 0.590 | 0.144 | 1 |
Sig. (2-tailed) | 0.043 | 0.655 | ||
N | 12 | 12 | 12 |
2022 (COD) | 2022 (BOD) | 2022 (TSS) | ||
---|---|---|---|---|
2022 (COD) | Pearson Correlation | 1 | 0.856 | 0.150 |
Sig. (2-tailed) | 0.090 | |||
N | 12 | 12 | 12 | |
2022 (BOD) | Pearson Correlation | 0.856 | 1 | 0.428 |
Sig. (2-tailed) | 0.165 | |||
N | 12 | 12 | 12 | |
2022 (TSS) | Pearson Correlation | 0.510 | 0.428 | 1 |
Sig. (2-tailed) | 0.090 | 0.165 | ||
N | 12 | 12 | 12 |
2023 (COD) | 2023 (BOD) | 2023 (TSS) | ||
---|---|---|---|---|
2023 (COD) | Pearson Correlation | 1 | 0.971 | 0.366 |
Sig. (2-tailed) | 0.242 | |||
N | 12 | 12 | 12 | |
2023 (BOD) | Pearson Correlation | 0.971 | 1 | 0.258 |
Sig. (2-tailed) | 0.419 | |||
N | 12 | 12 | 12 | |
2023 (TSS) | Pearson Correlation | 0.366 | 0.258 | 1 |
Sig. (2-tailed) | 0.242 | 0.419 | ||
N | 12 | 12 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaspar, E.; Irimia, O.; Stanciu, M.; Barsan, N.; Mosnegutu, E. Strategies for a Sustainable Economy: Optimizing Processes for BOD, COD and TSS Removal from Wastewater. Water 2025, 17, 318. https://doi.org/10.3390/w17030318
Gaspar E, Irimia O, Stanciu M, Barsan N, Mosnegutu E. Strategies for a Sustainable Economy: Optimizing Processes for BOD, COD and TSS Removal from Wastewater. Water. 2025; 17(3):318. https://doi.org/10.3390/w17030318
Chicago/Turabian StyleGaspar, Eniko, Oana Irimia, Mirela Stanciu, Narcis Barsan, and Emilian Mosnegutu. 2025. "Strategies for a Sustainable Economy: Optimizing Processes for BOD, COD and TSS Removal from Wastewater" Water 17, no. 3: 318. https://doi.org/10.3390/w17030318
APA StyleGaspar, E., Irimia, O., Stanciu, M., Barsan, N., & Mosnegutu, E. (2025). Strategies for a Sustainable Economy: Optimizing Processes for BOD, COD and TSS Removal from Wastewater. Water, 17(3), 318. https://doi.org/10.3390/w17030318