Determining the Role of Urban Greenery in Soil Hydrology: A Bibliometric Analysis of Nature-Based Solutions in Urban Ecosystem
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Source, Search, and Collection
2.2. Bibliometric Analysis and Visualization
3. Results
3.1. General Information, Publications over Time, and Temporal Trend
3.2. Number of Publications over Time
3.3. Global Contribution Map by Countries with GDP and Affiliations
3.4. Corresponding Author’s Countries and Collaboration Among Countries
3.5. Sources and Citation Analysis
3.6. Authors
3.7. Keywords Analysis and Conceptual Structure Map of Trending Topics
3.8. Hot Trending Topics in Nature-Based Solutions and Urban Hydrology with Respect to Time
4. Discussion
4.1. Publications Output over Time and Global Contributions by Countries and Institutions
4.2. Top Reputed Journals Based on Article Number and Citations in the Field of Natured-Based Solutions and Urban Hydrology
4.3. Most Productive Authors in the Field of Nature-Based Solutions and Urban Hydrology
4.4. Global Collaboration Among Countries
4.5. Keyword Analysis for Nature-Based Solution and Urban Hydrology
4.6. Current and Future Topics and Their Evolution Based on Trending Topics
- Integration of nature-based solutions (NBS) in urban planning: Stakeholders, including urban planners, policymakers, and municipal authorities, should prioritize the integration of nature-based solutions in urban development projects. These solutions, such as green roofs, urban forests, and permeable pavements, have demonstrated significant benefits in improving urban soil hydrology, managing stormwater, and mitigating the urban heat island effect. By incorporating NBS, cities can enhance their resilience to climate change and promote sustainable urban ecosystems.
- Promotion of collaborative research: The study highlights the importance of international collaboration in advancing research on nature-based solutions in urban hydrology. Stakeholders should encourage and facilitate partnerships between universities, research institutions, and governments across different countries. Collaborative efforts will enable the sharing of knowledge, resources, and best practices, leading to more effective and innovative solutions to urban hydrological challenges.
- Focus on under-researched regions: While countries like the United States and China lead in publications related to nature-based solutions, there is a need to focus research efforts on under-researched regions, particularly in developing countries. Stakeholders should allocate funding and resources to support research and the implementation of NBS in these regions, addressing local urbanization challenges and enhancing global knowledge.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tripathi, S. How does urbanization affect the human development index? A cross-country analysis. Asia-Pac. J. Reg. Sci. 2021, 5, 1053–1080. [Google Scholar] [CrossRef]
- Al-Zahrani, M.A. Assessing the impacts of rainfall intensity and urbanization on storm runoff in an arid catchment. Arab. J. Geosci. 2018, 11, 208. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects; United Nations: New York, NY, USA, 2014. [Google Scholar]
- United Nations Department of Economic and Social Affairs. World Urbanization Prospects 2018: Highlights; UN: New York, NY, USA, 2019. [Google Scholar]
- IPCC. Climate Change 2014, Synthesis Report, Summary for Policymakers; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Li, D.; Bou-Zeid, E. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteorol. Climatol. 2013, 52, 2051–2064. [Google Scholar] [CrossRef]
- Huang, K.; Li, X.; Liu, X.; Seto, K.C. Projecting global urban land expansion and heat island intensification through 2050. Environ. Res. Lett. 2019, 14, 114037. [Google Scholar] [CrossRef]
- Jochner, S.; Alves-Eigenheer, M.; Menzel, A.; Morellato, L.P.C. Using phenology to assess urban heat islands in tropical and temperate regions. Int. J. Climatol. 2013, 33, 3141–3151. [Google Scholar] [CrossRef]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V.; et al. Global risk of deadly heat. Nat. Clim. Chang. 2017, 7, 501–506. [Google Scholar] [CrossRef]
- Mitchell, D.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; Guillod, B.P.; Frumhoff, P.; Bowery, A.; Wallom, D.; Allen, M. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett. 2016, 11, 074006. [Google Scholar] [CrossRef]
- Hadley, S.W.; Erickson, D.J., III; Hernandez, J.L.; Broniak, C.T.; Blasing, T.J. Responses of energy use to climate change: A climate modeling study. Geophys. Res. Lett. 2006, 33, L17703. [Google Scholar] [CrossRef]
- Singh, S.; Priyadarshni, P.; Pandey, P. Impact of Urban Heat Island: A Local-Level Urban Climate Phenomenon on Urban Ecology and Human Health. In Advanced Remote Sensing for Urban and Landscape Ecology; Springer Nature: Singapore, 2023; pp. 113–128. [Google Scholar]
- Biggs, R.; Schlüter, M.; Biggs, D.; Bohensky, E.L.; Burnsilver, S.; Cundill, G.; Dakos, V.; Daw, T.M.; Evans, L.S.; Kotschy, K.; et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 2012, 37, 421–448. [Google Scholar] [CrossRef]
- Wang, J.; Hu, C.; Ma, B.; Mu, X. Rapid urbanization impact on the hydrological processes in Zhengzhou, China. Water 2020, 12, 1870. [Google Scholar] [CrossRef]
- de Moraes, T.C.; dos Santos, V.J.; Calijuri, M.L.; Torres, F.T.P. Effects on runoff caused by changes in land cover in a Brazilian southeast basin: Evaluation by HEC-HMS and HEC-GEOHMS. Environ. Earth Sci. 2018, 77, 250. [Google Scholar] [CrossRef]
- Mei, C. Urban hydrology and hydrodynamic coupling model and its application research. China Inst. Water Resour. Hydropower Res. 2019, 14, 67. [Google Scholar]
- Kastridis, A.; Kirkenidis, C.; Sapountzis, M. An integrated approach of flash flood analysis in ungauged Mediterranean watersheds using post-flood surveys and unmanned aerial vehicles. Hydrol. Process. 2020, 34, 4920–4939. [Google Scholar] [CrossRef]
- Hu, C.; Liu, C.; Yao, Y.; Wu, Q.; Ma, B.; Jian, S. Evaluation of the impact of rainfall inputs on urban rainfall models: A systematic review. Water 2020, 12, 2484. [Google Scholar] [CrossRef]
- Zhao, M.; Geruo, A.; Zhang, J.; Velicogna, I.; Liang, C.; Li, Z. Ecological restoration impact on total terrestrial water storage. Nat. Sustain. 2021, 4, 56–85. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, C.; Wu, Q.; Li, Z.; Jian, S.; Chen, Y. Application of temporal convolutional network for flood forecasting. Hydrol. Res. 2021, 52, 1455–1468. [Google Scholar] [CrossRef]
- Martins, R.; Leandro, J.; Djordjević, S. Influence of sewer network models on urban flood damage assessment based on coupled 1D/2D models. J. Flood Risk Manag. 2018, 11, S717–S728. [Google Scholar] [CrossRef]
- Leandro, J.; Schumann, A.; Pfister, A. A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modelling. J. Hydrol. 2016, 535, 356–365. [Google Scholar] [CrossRef]
- Šarauskienė, D.; Akstinas, V.; Nazarenko, S.; Kriaučiūnienė, J.; Jurgelėnaitė, A. Impact of physico-geographical factors and climate variability on flow intermittency in the rivers of water surplus zone. Hydrol. Process. 2020, 34, 4727–4739. [Google Scholar] [CrossRef]
- Garcia, J.; Bray, N.; Son, Y.; Butler-Jones, A.; Egendorf, S.P.; Kao-Kniffin, J. Plant growth and microbial responses from urban agriculture soils amended with excavated local sediments and municipal composts. J. Urban Ecol. 2023, 9, juad016. [Google Scholar] [CrossRef]
- Nugent, A.; Allison, S.D. A framework for soil microbial ecology in urban ecosystems. Ecosphere 2022, 13, e3968. [Google Scholar] [CrossRef]
- Ungaro, F.; Maienza, A.; Ugolini, F.; Lanini, G.M.; Baronti, S.; Calzolari, C. Assessment of joint soil ecosystem services supply in urban green spaces: A case study in Northern Italy. Urban For. Urban Green. 2022, 67, 127455. [Google Scholar] [CrossRef]
- Ozdemir, H. Mitigation impact of roadside trees on fine particle pollution. Sci. Total Environ. 2019, 659, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
- Bray, N.; Wickings, K. The roles of invertebrates in the urban soil microbiome. Front. Ecol. Evol. 2019, 7, 359. [Google Scholar] [CrossRef]
- Ziter, C.; Turner, M.G. Current and historical land use influence soil-based ecosystem services in an urban landscape. Ecol. Appl. 2018, 28, 643–654. [Google Scholar] [CrossRef]
- Liu, Q.; Li, W.; Nie, H.; Sun, X.; Dong, L.; Xiang, L.; Liu, X. The effect of human trampling activity on a soil microbial community at the urban forest park. Forests 2023, 14, 692. [Google Scholar] [CrossRef]
- Liu, Y.R.; Van der Heijden, M.G.; Riedo, J.; Sanz-Lazaro, C.; Eldridge, D.J.; Bastida, F.; Delgado-Baquerizo, M. Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide. Nat. Commun. 2023, 14, 1706. [Google Scholar] [CrossRef]
- Haase, D.; Frantzeskaki, N.; Elmqvist, T. Ecosystem services in urban landscapes: Practical applications and governance implications. Ambio 2014, 43, 407–412. [Google Scholar] [CrossRef]
- Wohldmann, E.L.; Chen, Y.; Schwarz, K.; Day, S.D.; Pouyat, R.V.; Barton, M.; Gonez, M. Building soil by building community: How can an interdisciplinary approach better support community needs and urban resilience? Front. Sustain. Cities 2022, 4, 941635. [Google Scholar] [CrossRef]
- McPhearson, T.; Andersson, E.; Elmqvist, T.; Frantzeskaki, N. Resilience of and through urban ecosystem services. Ecosyst. Serv. 2015, 12, 152–156. [Google Scholar] [CrossRef]
- O’Riordan, R.; Davies, J.; Stevens, C.; Quinton, J.N.; Boyko, C. The ecosystem services of urban soils: A review. Geoderma 2021, 395, 115076. [Google Scholar] [CrossRef]
- Valois, L.; Brachet, A.; Schiopu, N.; Barot, S. Performance assessment of the ecosystem services provided by urban Nature-based solutions: Focus on rainwater management. IOP Conf. Ser. Earth Environ. Sci. 2023, 1196, 012028. [Google Scholar] [CrossRef]
- Lim, H.S.; Lu, X.X. Sustainable urban stormwater management in the tropics: An evaluation of Singapore’s ABC Waters Program. J. Hydrol. 2016, 538, 842–862. [Google Scholar] [CrossRef]
- Yapp, G.; Walker, J.; Thackway, R. Linking vegetation type and condition to ecosystem goods and services. Ecol. Complex. 2010, 7, 292–301. [Google Scholar] [CrossRef]
- Graamans, L.; van den Dobbelsteen, A.; Meinen, E.; Stanghellini, C. Plant factories; crop transpiration and energy balance. Agric. Syst. 2017, 153, 138–147. [Google Scholar] [CrossRef]
- Silva, L.C.R.; Lambers, H. Soil-plant-atmosphere interactions: Structure, function, and predictive scaling for climate change mitigation. Plant Soil 2021, 461, 5–27. [Google Scholar] [CrossRef]
- Zhao, D.; Xu, M.; Liu, G.; Ma, L.; Zhang, S.; Xiao, T.; Peng, G. Effect of vegetation type on microstructure of soil aggregates on the Loess Plateau, China. Agric. Ecosyst. Environ. 2017, 242, 1–8. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, J.; Xu, Z.; Zou, L.; Tan, Q.; Chen, H. Shenzhen rain island effect analysis. J. Beijing Norm. Univ. (Nat. Sci. Ed.) 2021, 57, 768–775. [Google Scholar]
- Li, C.; Zhang, Y.; Shen, Y.; Kong, D.; Zhou, X. LUCC-driven changes in gross primary production and actual evapotranspiration in Northern China. J. Geophys. Res. Atmos. 2020, 125, e2019JD031705. [Google Scholar] [CrossRef]
- Konarska, J.; Holmer, B.; Lindberg, F.; Thorsson, S. Influence of vegetation and building geometry on the spatial variations of air temperature and cooling rates in a high-latitude city. Int. J. Climatol. 2016, 36, 2379–2395. [Google Scholar] [CrossRef]
- Berland, A.; Shiflett, S.A.; Shuster, W.D.; Garmestani, A.S.; Goddard, H.C.; Herrmann, D.L.; Hopton, M.E. The role of trees in urban stormwater management. Landsc. Urban Plan. 2017, 162, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.B. Sustainable surface water management and green infrastructure in UK urban catchment planning. J. Environ. Plan. Manag. 2013, 56, 24–41. [Google Scholar] [CrossRef]
- Neumann, J.E.; Price, J.; Chinowsky, P.; Wright, L.; Ludwig, L.; Streeter, R.; Jones, R.; Smith, J.B.; Perkins, W.; Jantarasami, L.; et al. Climate change risks to US infrastructure: Impacts on roads, bridges, coastal development, and urban drainage. Clim. Chang. 2015, 131, 97–109. [Google Scholar] [CrossRef]
- Xiao, Q.; McPherson, E.G. Surface water storage capacity of twenty tree species in Davis, California. J. Environ. Qual. 2016, 45, 188–198. [Google Scholar] [CrossRef]
- Wang, M. Global trends in soil monitoring research from 1999–2013: A bibliometric analysis. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2015, 65, 483–495. [Google Scholar]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Raza, S.; Irshad, A.; Margenot, A.; Zamanian, K.; Li, N.; Ullah, S.; Kuzyakov, Y. Inorganic carbon is overlooked in global soil carbon research: A bibliometric analysis. Geoderma 2024, 443, 116831. [Google Scholar] [CrossRef]
- AlRyalat, S.A.S.; Malkawi, L.W.; Momani, S.M. Comparing bibliometric analysis using PubMed, Scopus, and Web of Science databases. J. Vis. Exp. 2019, 152, e58494. [Google Scholar] [CrossRef]
- Gutiérrez-Salcedo, M.; Martínez, M.Á.; Moral-Munoz, J.A.; Herrera-Viedma, E.; Cobo, M.J. Some bibliometric procedures for analyzing and evaluating research fields. Appl. Intell. 2018, 48, 1275–1287. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Batagelj, V.; Cerinšek, M. On bibliographic networks. Scientometrics 2013, 96, 845–864. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Romanelli, J.P.; Fujimoto, J.T.; Ferreira, M.D.; Milanez, D.H. Assessing ecological restoration as a research topic using bibliometric indicators. Ecol. Eng. 2018, 120, 311–320. [Google Scholar] [CrossRef]
- Plotly, Inc. Plotly Open Source Graphing Library for Python; Plotly, Inc.: Montreal, QC, Canada. Available online: https://plotly.com/python/ (accessed on 18 November 2024).
- Aksnes, D.W.; Langfeldt, L.; Wouters, P. Citations, citation indicators, and research quality: An overview of basic concepts and theories. SAGE Open 2019, 9, 2158244019829575. [Google Scholar] [CrossRef]
- Chen, W.; Geng, Y.; Zhong, S.; Zhuang, M.; Pan, H. A bibliometric analysis of ecosystem services evaluation from 1997 to 2016. Environ. Sci. Pollut. Res. 2020, 27, 23503–23513. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef]
- Krinner, G.; Viovy, N.; de Noblet-Ducoudré, N.; Ogée, J.; Polcher, J.; Friedlingstein, P.; Ciais, P.; Sitch, S.; Prentice, I.C. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 2005, 19, GB1015. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Xia, Y. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116, D12109. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- LaPoint, S.; Balkenhol, N.; Hale, J.; Sadler, J.; van der Ree, R. Ecological connectivity research in urban areas. Funct. Ecol. 2015, 29, 868–878. [Google Scholar] [CrossRef]
- Su, J.; Wang, M.; Razi, M.A.M.; Dom, N.M.; Sulaiman, N.; Tan, L.W. A bibliometric review of nature-based solutions on urban stormwater management. Sustainability 2023, 15, 7281. [Google Scholar] [CrossRef]
- Li, L.; Chan, F.; Cheshmehzangi, A. Nature-based solutions and sponge city for urban water management. In Adapting the Built Environment for Climate Change; Woodhead Publishing: Cambridge, UK, 2023; pp. 371–402. [Google Scholar]
- Wang, M.; Liu, M.; Zhang, D.; Qi, J.; Fu, W.; Zhang, Y.; Rao, Q.; Bakhshipour, A.E.; Tan, S.K. Assessing and optimizing the hydrological performance of Grey-Green infrastructure systems in response to climate change and non-stationary time series. Water Res. 2023, 232, 119720. [Google Scholar] [CrossRef]
- Zhao, S.; Yue, B. Nature-based solutions: Establishing a comprehensive framework for addressing urban waterlogging management. Integr. Environ. Assess. Manag. 2023, 19, 1414–1421. [Google Scholar] [CrossRef]
- Palermo, S.A.; Turco, M.; Pirouz, B.; Presta, L.; Falco, S.; De Stefano, A.; Frega, F.; Piro, P. Nature-based solutions for urban stormwater management: An overview. IOP Conf. Ser. Earth Environ. Sci. 2023, 1196, 012027. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, Y. Ecosystem-based adaptation to address urbanization and climate change challenges: The case of China’s sponge city initiative. Clim. Policy 2023, 23, 268–284. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, H. Low impact development planning through a comprehensive optimization framework: Current gaps and future perspectives. Resour. Conserv. Recycl. 2023, 190, 106861. [Google Scholar] [CrossRef]
- Dong, X.; Yi, W.; Yuan, P.; Song, Y. Optimization and trade-off framework for coupled green-grey infrastructure considering environmental performance. J. Environ. Manag. 2023, 329, 117041. [Google Scholar] [CrossRef] [PubMed]
- Tansar, H.; Duan, H.F.; Mark, O. A multi-objective decision-making framework for implementing green-grey infrastructures to enhance urban drainage system resilience. J. Hydrol. 2023, 620, 129381. [Google Scholar] [CrossRef]
- Li, J.; Burian, S.J. Evaluating real-time control of stormwater drainage network and green stormwater infrastructure for enhancing flooding resilience under future rainfall projections. Resour. Conserv. Recycl. 2023, 198, 107123. [Google Scholar] [CrossRef]
- Li, J.; Strong, C.; Wang, J.; Burian, S. An event-based resilience index to assess the impacts of land imperviousness and climate changes on flooding risks in urban drainage systems. Water 2023, 15, 2663. [Google Scholar] [CrossRef]
- Zeiser, A.; Rath, S.; Strauss, P.; Weninger, T. Hydrologic characterization of sponge-city systems for urban trees based on monitoring and modelling. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023; EGU: Munich, Germany, 2023; p. EGU-14281. [Google Scholar]
Description | Results |
---|---|
Timespan | 1973–2023 |
Books | 2 |
Journals | 1592 |
Conferences | 329 |
Documents | 13,276 |
Annual growth rate % | 10.71 |
Document average age | 11.4 |
Average citations per doc | 39.49 |
Research article | 11,205 |
Conference paper | 1589 |
Review | 482 |
Authors | 33,351 |
Authors of single-authored docs | 770 |
Single-authored docs | 859 |
Co-authors per doc | 4.54 |
International co-authorships % | 28.42 |
Keywords plus (ID) | 36,589 |
Author’s keywords (DE) | 23,155 |
References | 600,702 |
Document Title | Journal Title | Document Type | Citations | Publication Year |
---|---|---|---|---|
| Monthly Weather Review | Research Article | 4746 | 2001 |
| International Journal of Remote Sensing | Research Article | 3865 | 2006 |
| Remote Sensing of Environment | Research Article | 2146 | 2011 |
| Journal of Geophysical Research Atmospheres | Research Article | 1850 | 2011 |
| Remote Sensing of Environment | Research Article | 1590 | 2002 |
| Geoscientific Model Development | Research Article | 1582 | 2017 |
| Global Biogeochemical Cycles | Review Article | 1569 | 2005 |
| Remote Sensing of Environment | Research Article | 1560 | 1998 |
| Journal of Climate | Research Article | 1522 | 1996 |
| Built Environment | Research Article | 1358 | 2007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.O.; D. Keesstra, S.; Słowik-Opoka, E.; Klamerus-Iwan, A.; Liaqat, W. Determining the Role of Urban Greenery in Soil Hydrology: A Bibliometric Analysis of Nature-Based Solutions in Urban Ecosystem. Water 2025, 17, 322. https://doi.org/10.3390/w17030322
Khan MO, D. Keesstra S, Słowik-Opoka E, Klamerus-Iwan A, Liaqat W. Determining the Role of Urban Greenery in Soil Hydrology: A Bibliometric Analysis of Nature-Based Solutions in Urban Ecosystem. Water. 2025; 17(3):322. https://doi.org/10.3390/w17030322
Chicago/Turabian StyleKhan, Muhammad Owais, Saskia D. Keesstra, Ewa Słowik-Opoka, Anna Klamerus-Iwan, and Waqas Liaqat. 2025. "Determining the Role of Urban Greenery in Soil Hydrology: A Bibliometric Analysis of Nature-Based Solutions in Urban Ecosystem" Water 17, no. 3: 322. https://doi.org/10.3390/w17030322
APA StyleKhan, M. O., D. Keesstra, S., Słowik-Opoka, E., Klamerus-Iwan, A., & Liaqat, W. (2025). Determining the Role of Urban Greenery in Soil Hydrology: A Bibliometric Analysis of Nature-Based Solutions in Urban Ecosystem. Water, 17(3), 322. https://doi.org/10.3390/w17030322