Assessing Macrophyte Diversity in the Danube River: Comparing the Effectiveness of Different Sampling Procedures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Procedures
- JDS Sampling Procedure: Locations were based on the JDS3 (ICPDR Joint Danube Survey 3) sampling sites (www.danubesurvey.org/jds3 accessed on 4 December 2024). While the JDS methodology recommends surveying macrophytes in three contiguous river kilometers on each riverside, we expanded this to five SUs (Table 1B). This subset formed the “JDS” dataset.
- NMP Sampling Procedure: Locations were based on the National Monitoring Program (NMP) conducted by the Serbian Environmental Agency (www.sepa.gov.rs accessed on 4 December 2024). We considered each sampling site as five contiguous SUs on each riverside (Table 1B). This subset formed the “NMP” dataset.
2.3. Data Analyses
2.3.1. Quantification of Sample Completeness and Comparison of Diversity Among Assemblages
2.3.2. Evaluation of Sampling Procedures’ Effectiveness in Capturing Community Structure
2.3.3. Evaluation of Sampling Procedures’ Impact on Ecological Status Assessments
3. Results
4. Discussion
4.1. Sample Completeness and Asymptotic Diversity Estimates
4.2. Spatial Heterogeneity Across Waterbodies
4.3. Undetected Diversity and Sampling Effectiveness
4.4. Community Composition and Beta Diversity
4.5. Implications for Ecological Monitoring and Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carpenter, S.R.; Lodge, D.M. Effects of Submersed Macrophytes on Ecosystem Processes. Aquat. Bot. 1986, 26, 341–370. [Google Scholar] [CrossRef]
- Lacoul, P.; Freedman, B. Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev. 2006, 14, 89–136. [Google Scholar] [CrossRef]
- Bornette, G.; Puijalon, S. Macrophytes: Ecology of Aquatic Plants. In Encyclopedia of Life Sciences (ELS); John Wiley & Sons, Ltd.: Chichester, UK, 2009; pp. 1–9. [Google Scholar]
- Bennett, A.F.; Haslem, A.; Cheal, D.C.; Clarke, M.F.; Jones, R.N.; Koehn, J.D.; Lake, P.S.; Lumsden, L.F.; Lunt, I.D.; Mackey, B.G.; et al. Ecological processes: A key element in strategies for nature conservation. Ecol. Manag. Restor. 2009, 10, 192–199. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- Kennard, M.; Pusey, B.; Harch, B.; Dore, E.; Arthington, A. Estimating local stream fish assemblage attributes: Sampling effort and efficiency at two spatial scales. Mar. Freshw. Res. 2006, 57, 635–653. [Google Scholar] [CrossRef]
- Hughes, R.M.; Herlihy, A.T.; Gerth, W.J.; Pan, Y. Estimating vertebrate, benthic macroinvertebrate and diatom taxa richness in raftable Pacific Northwest rivers for bioassessment purposes. Environ. Monit. Assess. 2012, 184, 3185–3198. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, L.; Hughes, R.M.; Cao, Y.; Wang, X. Towards a protocol for stream macroinvertebrate sampling in China. Environ. Monit. Assess. 2014, 186, 469–479. [Google Scholar] [CrossRef]
- Budka, A.; Lacka, A.; Szoszkiewicz, K. Estimation of river ecosystem biodiversity based on Chao estimator. Biodivers. Conserv. 2018, 27, 205–216. [Google Scholar] [CrossRef]
- Paller, M. Estimating fish species richness across multiple watersheds. Diversity 2018, 10, 42. [Google Scholar] [CrossRef]
- Tonkin, J.D.; Altermatt, F.; Finn, D.S.; Heino, J.; Olden, J.D.; Pauls, S.U.; Lytle, D.A. The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshw. Biol. 2018, 63, 141–163. [Google Scholar] [CrossRef]
- Sgarbi, L.F.; Bini, L.M.; Heino, J.; Jyrkankallio-Mikkola, J.; Landeiro, V.L.; Santos, E.P.; Schneck, F.; Siqueira, T.; Soinien, J.; Tolonen, K.T.; et al. Sampling effort and information quality provided by rare and common species in estimating assemblage structure. Ecol. Indic. 2020, 110, 105937. [Google Scholar] [CrossRef]
- Birk, S.; Bonne, W.; Borja, A.; Brucet, S.; Courrat, A.; Poikane, S.; Solimini, A.; van de Bund, W.; Zampoukas, N.; Hering, D. Three hundred ways to assess Europe’s surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecol. Indic. 2012, 18, 31–41. [Google Scholar] [CrossRef]
- Chao, A.; Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 2012, 93, 2533–2547. [Google Scholar] [CrossRef]
- Colwell, R.K.; Chao, A.; Gotelli, N.J.; Lin, S.Y.; Mao, C.X.; Chazdon, R.L.; Longino, J.T. Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. J. Plant Ecol. 2012, 5, 3–21. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Chao, A.; Kubota, Y.; Zeleny, D.; Chiu, C.-H.; Li, C.-F.; Kusumoto, B.; Yasuhara, M.; Thorn, S.; Wei, C.-L.; Costello, M.J.; et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 2020, 35, 292–314. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Chao, A. Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In Encyclopedia of Biodiversity, 2nd ed.; Levin, S.A., Ed.; Academic Press: Waltham, MA, USA, 2013; Volume 5, pp. 195–211. [Google Scholar]
- Budka, A.; Lacka, A.; Szoszkiewicz, K. The use of rarefaction and extrapolation as methods of estimating the effects of river eutrophication on macrophyte diversity. Biodivers. Conserv. 2019, 28, 385–400. [Google Scholar] [CrossRef]
- Szoszkiewicz, K.; Budka, A.; Lacka, A.; Pietruczuk, K. Determining macrophyte species richness and dark diversity sources—A novel approach to improve the biodiversity estimation based on species traits. Sci. Total Environ. 2022, 816, 151496. [Google Scholar] [CrossRef] [PubMed]
- Roni, P.; Liermann, M.C.; Jordan, C.; Steel, E.A. Steps for designing a monitoring and evaluation program for aquatic restoration. In Monitoring Stream and Watershed Restoration; Roni, P., Ed.; American Fisheries Society: Bethesda, MA, USA, 2005; pp. 13–34. [Google Scholar]
- Birk, S.; Willby, N. Towards harmonization of ecological quality classification: Establishing common grounds in European macrophyte assessment for rivers. Hydrobiologia 2010, 652, 149–163. [Google Scholar] [CrossRef]
- Szoszkiewicz, F.; Ferreira, T.; Korte, T.; Baattrup-Pedersen, A.; Davy-Bowker, J.; O’Hare, M. European River plant communities: The importance of organic pollution and the usefulness of existing macrophyte metrics. Hydrobiologia 2006, 566, 211–234. [Google Scholar] [CrossRef]
- Croft, M.V.; Chow-Fraser, P. Non-random sampling and its role in habitat conservation: A comparison of three wetland macrophyte sampling protocols. Biodivers. Conserv. 2009, 18, 2283–2306. [Google Scholar] [CrossRef]
- Chao, A.; Jost, L. Estimating diversity and entropy profiles via discovery rates of new species. Methods Ecol. Evol. 2015, 6, 873–882. [Google Scholar] [CrossRef]
- Szoszkiewicz, K.; Jusik, S.; Pietruczuk, K.; Gebler, D. The Macrophyte Index for Rivers (MIR) as an Advantageous Approach to Running Water Assessment in Local Geographical Conditions. Water 2020, 12, 108. [Google Scholar] [CrossRef]
- CEN EN 14184; Water Quality Guidance Standard for the Surveying of Aquatic Macrophytes in Running Waters. BSI: London, UK, 2014.
- Kohler, A. Methoden der Kartierung von Flora und Vegetation von Süβwasserbiotopen. Landsch. Stadt 1978, 10, 73–85. [Google Scholar]
- Schaumburg, J.; Schranz, C.; Foerster, J.; Gutowski, A.; Hofmann, G.; Meilinger, P.; Schneider, S.; Schmedtje, U. Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the water framework directive. Limnologica 2004, 34, 283–301. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package, R Package, Version 2.7-0; Bavarian Environment Agency: Augsburg, Germany, 2024. [Google Scholar]
- Schaumburg, J.; Schranz, C.; Stelzer, D.; Vogel, A.; Gutowski, A. Instruction Manual for the Assessment of Running Water Ecological Status in Accordance with the Requirements of the EC-Water Framework Directive: Macrophytes and Phytobenthos; Bavarian Environment Agency: Augsburg, Germany, 2012. [Google Scholar]
- Magurran, A.E. Measuring Biological Diversity; Blackwell Science: Oxford, UK, 2013. [Google Scholar]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Riis, T. Plant distribution and abundance in relation to physical conditions and location within Danish stream systems. Hydrobiologia 2001, 448, 217–228. [Google Scholar] [CrossRef]
- Mouillot, D.; Bellwood, D.R.; Baraloto, C.; Chave, J.; Galzin, R.; Harmelin-Vivien, M.; Kulbicki, M.; Lavergne, S.; Lavorel, S.; Mouquet, N.; et al. Rare Species Support Vulnerable Functions in High-Diversity Ecosystems. PLoS Biol. 2013, 11, e1001569. [Google Scholar] [CrossRef]
- Díaz, S.; Purvis, A.; Cornelissen, J.H.C.; Mace, G.M.; Donoghue, M.J.; Ewers, R.M.; Jordano, P.; Pearse, W.D. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 2013, 3, 2958–2975. [Google Scholar] [CrossRef]
- Anderson, M.J.; Ellingsen, K.E.; McArdle, B.H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 2006, 9, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Baattrup-Pedersen, A.; Larsen, S.E.; Riis, T. Long-term effects of stream management on plant communities in two Danish lowland streams. Hydrobiologia 2002, 481, 33–45. [Google Scholar] [CrossRef]
- Feld, C.K.; da Silva, P.M.; Sousa, J.P.; de Bello, F.; Bugter, R.; Grandin, U.; Hering, D.; Lavorel, S.; Mountford, O.; Pardo, I.; et al. Indicators of biodiversity and ecosystem services: A synthesis across ecosystems and spatial scales. Oikos 2014, 123, 523–530. [Google Scholar] [CrossRef]
(A). Water Body | (B). nSU | |||||
---|---|---|---|---|---|---|
Name | From [rkm] | To [rkm] | All | JDS | NMP | Overlap |
D10 | 1433 | 1381 | 53 | 5 | 5 | 3 |
D9 | 1380 | 1296 | 86 | 10 | 5 | 4 |
D8 | 1295 | 1254 | 84 | 10 | 10 | 4 |
D7 | 1253 | 1215 | 78 | 20 | 10 | 6 |
D6 | 1214 | 1171 | 88 | 10 | 10 | 0 |
D5 | 1170 | 1105 | 132 | 30 | 10 | 0 |
D4 | 1104 | 1076 | 58 | 10 | 10 | 10 |
D3 | 1075 | 944 | 132 | 15 | 5 | 3 |
D2 | 943 | 863 | 76 | 5 | 5 | 0 |
D1 | 862 | 846 | 17 | 5 | 5 | 2 |
(A). Completeness | (B). Asymptotic, Observed, and Undetected Diversity Profiles | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | JDS | NMP | All | JDS | NMP | ||||||||
Asym. | Obs. | Und. | Asym. | Obs. | Und. | Asym. | Obs. | Und. | |||||
D | q = 0 | 100% | 84% | 93% | 46.17 | 46.00 | 0.17 | 49.00 | 41.00 | 8.00 | 37.67 | 35.00 | 2.67 |
q = 1 | 100% | 100% | 100% | 13.96 | 13.95 | 0.01 | 14.60 | 14.57 | 0.03 | 13.17 | 13.11 | 0.06 | |
q = 2 | 100% | 100% | 100% | 9.61 | 9.60 | 0.01 | 10.25 | 10.24 | 0.01 | 9.04 | 9.03 | 0.01 | |
D1 | q = 0 | 86% | 73% | 94% | 13.98 | 12.00 | 1.98 | 15.02 | 11.00 | 4.02 | 8.48 | 8.00 | 0.48 |
q = 1 | 98% | 83% | 96% | 10.57 | 9.74 | 0.82 | 10.52 | 7.95 | 2.57 | 9.16 | 7.59 | 1.56 | |
q = 2 | 100% | 95% | 96% | 9.72 | 8.83 | 0.89 | 7.38 | 6.05 | 1.33 | 10.50 | 7.33 | 3.17 | |
D2 | q = 0 | 96% | 98% | 73% | 25.90 | 25.00 | 0.90 | 14.25 | 14.00 | 0.25 | 14.99 | 11.00 | 3.99 |
q = 1 | 100% | 100% | 99% | 8.11 | 8.09 | 0.01 | 6.73 | 6.67 | 0.05 | 4.76 | 4.66 | 0.10 | |
q = 2 | 100% | 100% | 100% | 6.28 | 6.28 | 0.00 | 5.20 | 5.18 | 0.02 | 4.26 | 4.22 | 0.04 | |
D3 | q = 0 | 80% | 74% | 100% | 41.00 | 33.00 | 8.00 | 38.00 | 28.00 | 10.00 | 14.00 | 14.00 | 0.00 |
q = 1 | 100% | 100% | 100% | 12.22 | 12.21 | 0.02 | 13.23 | 13.14 | 0.08 | 8.14 | 8.04 | 0.11 | |
q = 2 | 100% | 100% | 100% | 9.04 | 9.03 | 0.01 | 10.13 | 10.10 | 0.03 | 6.54 | 6.47 | 0.07 | |
D4 | q = 0 | 97% | 93% | 79% | 36.00 | 35.00 | 1.00 | 35.67 | 33.00 | 2.67 | 39.16 | 31.00 | 8.16 |
q = 1 | 100% | 100% | 100% | 12.95 | 12.93 | 0.02 | 12.75 | 12.69 | 0.06 | 13.03 | 12.90 | 0.13 | |
q = 2 | 100% | 100% | 100% | 9.61 | 9.60 | 0.01 | 9.66 | 9.64 | 0.02 | 9.43 | 9.39 | 0.04 | |
D5 | q = 0 | 92% | 88% | 79% | 29.25 | 27.00 | 2.25 | 24.00 | 21.00 | 3.00 | 21.50 | 17.00 | 4.50 |
q = 1 | 100% | 100% | 100% | 9.04 | 9.03 | 0.01 | 8.15 | 8.12 | 0.04 | 7.70 | 7.64 | 0.06 | |
q = 2 | 100% | 100% | 100% | 6.74 | 6.74 | 0.00 | 6.00 | 5.99 | 0.01 | 6.02 | 6.00 | 0.02 | |
D6 | q = 0 | 87% | 83% | 90% | 34.50 | 30.00 | 4.50 | 20.55 | 17.00 | 3.55 | 15.49 | 14.00 | 1.49 |
q = 1 | 100% | 92% | 99% | 14.39 | 14.25 | 0.14 | 11.29 | 9.73 | 1.57 | 5.82 | 5.60 | 0.23 | |
q = 2 | 100% | 99% | 100% | 10.17 | 10.11 | 0.05 | 7.40 | 6.82 | 0.58 | 3.55 | 3.51 | 0.04 | |
D7 | q = 0 | 89% | 88% | 79% | 28.00 | 25.00 | 3.00 | 23.99 | 21.00 | 2.99 | 20.15 | 16.00 | 4.15 |
q = 1 | 100% | 99% | 98% | 10.55 | 10.42 | 0.13 | 7.88 | 7.64 | 0.24 | 4.12 | 3.97 | 0.16 | |
q = 2 | 100% | 100% | 100% | 7.47 | 7.43 | 0.04 | 4.55 | 4.51 | 0.04 | 2.62 | 2.60 | 0.02 | |
D8 | q = 0 | 90% | 85% | 56% | 18.99 | 17.00 | 1.99 | 5.91 | 5.00 | 0.91 | 9.00 | 5.00 | 4.00 |
q = 1 | 99% | 85% | 69% | 8.54 | 8.28 | 0.26 | 5.37 | 4.11 | 1.25 | 6.86 | 4.17 | 2.69 | |
q = 2 | 100% | 88% | 88% | 6.10 | 6.00 | 0.10 | 4.58 | 3.46 | 1.13 | 5.14 | 3.52 | 1.62 | |
D9 | q = 0 | 77% | 100% | 100% | 11.63 | 9.00 | 2.63 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 |
q = 1 | 94% | 100% | 100% | 2.85 | 2.59 | 0.26 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | |
q = 2 | 100% | 100% | 100% | 1.63 | 1.62 | 0.02 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | |
D10 | q = 0 | 76% | 100% | 100% | 9.24 | 7.00 | 2.24 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 |
q = 1 | 99% | 100% | 100% | 1.25 | 1.23 | 0.02 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | |
q = 2 | 100% | 100% | 100% | 1.07 | 1.07 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vukov, D.; Ćuk, M.; Nikolić, N.; Ilić, M. Assessing Macrophyte Diversity in the Danube River: Comparing the Effectiveness of Different Sampling Procedures. Water 2025, 17, 328. https://doi.org/10.3390/w17030328
Vukov D, Ćuk M, Nikolić N, Ilić M. Assessing Macrophyte Diversity in the Danube River: Comparing the Effectiveness of Different Sampling Procedures. Water. 2025; 17(3):328. https://doi.org/10.3390/w17030328
Chicago/Turabian StyleVukov, Dragana, Mirjana Ćuk, Nataša Nikolić, and Miloš Ilić. 2025. "Assessing Macrophyte Diversity in the Danube River: Comparing the Effectiveness of Different Sampling Procedures" Water 17, no. 3: 328. https://doi.org/10.3390/w17030328
APA StyleVukov, D., Ćuk, M., Nikolić, N., & Ilić, M. (2025). Assessing Macrophyte Diversity in the Danube River: Comparing the Effectiveness of Different Sampling Procedures. Water, 17(3), 328. https://doi.org/10.3390/w17030328