Characteristic Wavelength Selection and Surrogate Monitoring for UV–Vis Absorption Spectroscopy-Based Water Quality Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Spectrum Detection Platform Construction
2.1.2. Pure Solution Preparation
2.1.3. River Water Samples
2.2. Methods
2.2.1. Denoising of Spectral Data
2.2.2. Candidate Algorithms of Characteristic Wavelength Selection
2.2.3. Spectral Surrogate Monitoring Statistical Learning Methods
2.2.4. Evaluation Methodology
3. Results and Discussion
3.1. Characteristic Wavelength Selection
3.2. Comparison of Surrogate Monitoring Algorithms and Screening of Optimal Algorithms
3.3. Performance Differences Among Water Quality Indicators in Spectral Surrogate Monitoring
3.4. Performance of Surrogate Monitoring Models Across Different River Sections
3.5. Innovations, Limitations, and Future Work
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, Y.; Wang, D.; Li, L.; Ning, R.; Yu, S.; Gao, N. Application of Remote Sensing Technology in Water Quality Monitoring: From Traditional Approaches to Artificial Intelligence. Water Res. 2024, 267, 122546. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Chow, C.W.K.; Fabris, R.; Liu, J.; Jin, B. Applications of Online UV-Vis Spectrophotometer for Drinking Water Quality Monitoring and Process Control: A Review. Sensors 2022, 22, 2987. [Google Scholar] [CrossRef]
- Storey, M.V.; van der Gaag, B.; Burns, B.P. Advances in On-Line Drinking Water Quality Monitoring and Early Warning Systems. Water Res. 2011, 45, 741–747. [Google Scholar] [CrossRef]
- Bastian, R.; Weberling, R.; Palilla, F. Ultraviolet Spectrophotometric Determination of Nitrate... Application to Analysis of Alkaline Carbonates. Anal. Chem. 1957, 29, 1795–1797. [Google Scholar] [CrossRef]
- Armstrong, F.A.J. Determination of Nitrate in Water Ultraviolet Spectrophotometry. Anal. Chem. 1963, 35, 1292–1294. [Google Scholar] [CrossRef]
- Hoather, R.C.; Rackham, R.F. Oxidised Nitrogen in Waters and Sewage Effluents Observed by Ultra-Violet Spectrophotometry. Analyst 1959, 84, 548–551. [Google Scholar] [CrossRef]
- Ogura, N.; Hanya, T. Ultraviolet Absorbance as an Index of the Pollution of Seawater. J. Water Pollut. Control Fed. 1968, 40, 464–467. [Google Scholar]
- Chevakidagarn, P. BOD5 Estimation by Using UV Absorption and COD for Rapid Industrial Effluent Monitoring. Environ. Monit. Assess. 2007, 131, 445–450. [Google Scholar] [CrossRef]
- Chellaiah, C.; Anbalagan, S.; Swaminathan, D.; Chowdhury, S.; Kadhila, T.; Shopati, A.K.; Shangdiar, S.; Sharma, B.; Amesho, K.T.T. Integrating Deep Learning Techniques for Effective River Water Quality Monitoring and Management. J. Environ. Manag. 2024, 370, 122477. [Google Scholar] [CrossRef]
- Verma, A.K.; Singh, T.N. Prediction of Water Quality from Simple Field Parameters. Environ. Earth Sci. 2013, 69, 821–829. [Google Scholar] [CrossRef]
- Lepot, M.; Torres, A.; Hofer, T.; Caradot, N.; Gruber, G.; Aubin, J.-B.; Bertrand-Krajewski, J.-L. Calibration of UV/Vis Spectrophotometers: A Review and Comparison of Different Methods to Estimate TSS and Total and Dissolved COD Concentrations in Sewers, WWTPs and Rivers. Water Res. 2016, 101, 519–534. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, C.; Ye, R.; Duan, Q. Advances on Water Quality Detection by UV-Vis Spectroscopy. Appl. Sci. 2020, 10, 6874. [Google Scholar] [CrossRef]
- Berisha, V.; Krantsevich, C.; Hahn, P.R.; Hahn, S.; Dasarathy, G.; Turaga, P.; Liss, J. Digital Medicine and the Curse of Dimensionality. npj Digit. Med. 2021, 4, 153. [Google Scholar] [CrossRef]
- Yun, Y.-H.; Li, H.-D.; Deng, B.-C.; Cao, D.-S. An Overview of Variable Selection Methods in Multivariate Analysis of Near-Infrared Spectra. TrAC Trends Anal. Chem. 2019, 113, 102–115. [Google Scholar] [CrossRef]
- Feng, S.; Zhao, D.; Guan, Q.; Li, J.; Liu, Z.; Jin, Z.; Li, G.; Xu, T. A Deep Convolutional Neural Network-Based Wavelength Selection Method for Spectral Characteristics of Rice Blast Disease. Comput. Electron. Agric. 2022, 199, 107199. [Google Scholar] [CrossRef]
- McCrea, R.; King, R.; Graham, L.; Börger, L. Realising the Promise of Large Data and Complex Models. Methods Ecol. Evol. 2023, 14, 4–11. [Google Scholar] [CrossRef]
- GB3838-2002; Surface Water Environmental Quality Standards; National Environmental Protection Agency of China: Beijing, China, 2002.
- HJ 915-2017; Technical Specification for Automatic Monitoring of Surface Water; Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2017.
- Menini, L.; Possieri, C.; Tornambe, A. Observers for Linear Systems by the Time Integrals and Moving Average of the Output. IEEE Trans. Automat. Control 2019, 64, 4859–4874. [Google Scholar] [CrossRef]
- Schimmack, M.; Mercorelli, P. An On-Line Orthogonal Wavelet Denoising Algorithm for High-Resolution Surface Scans. J. Frankl. Inst. 2018, 355, 9245–9270. [Google Scholar] [CrossRef]
- Shekar, S.; Chien, C.-C.; Hartel, A.; Ong, P.; Clarke, O.B.; Marks, A.; Drndic, M.; Shepard, K.L. Wavelet Denoising of High-Bandwidth Nanopore and Ion-Channel Signals. Nano Lett. 2019, 19, 1090–1097. [Google Scholar] [CrossRef]
- Farajzadeh-D, M.-G.; Hosseini Sani, S.K.; Akbarzadeh, A. Performance Enhancement of Model Reference Adaptive Control through Normalized Lyapunov Design. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2019, 233, 1209–1220. [Google Scholar] [CrossRef]
- Araújo, M.C.U.; Saldanha, T.C.B.; Galvão, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The Successive Projections Algorithm for Variable Selection in Spectroscopic Multicomponent Analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Hailong, W.; Guoguo, Y.; Yu, Z.; Yidan, B.; Yong, H. Detection of Fungal Disease on Tomato Leaves with Competitive Adaptive Reweighted Sampling and Correlation Analysis Methods. Spectrosc. Spectr. Anal. 2017, 37, 2115–2119. [Google Scholar]
- Tang, G.; Huang, Y.; Tian, K.; Song, X.; Yan, H.; Hu, J.; Xiong, Y.; Min, S. A New Spectral Variable Selection Pattern Using Competitive Adaptive Reweighted Sampling Combined with Successive Projections Algorithm. Analyst 2014, 139, 4894. [Google Scholar] [CrossRef]
- Rato, T.J.; Reis, M.S. Multiresolution Interval Partial Least Squares: A Framework for Waveband Selection and Resolution Optimization. Chemom. Intell. Lab. Syst. 2019, 186, 41–54. [Google Scholar] [CrossRef]
- He, Y.; Zhao, Y.; Zhang, C.; Li, Y.; Bao, Y.; Liu, F. Discrimination of Grape Seeds Using Laser-Induced Breakdown Spectroscopy in Combination with Region Selection and Supervised Classification Methods. Foods 2020, 9, 199. [Google Scholar] [CrossRef] [PubMed]
- Ferrer Palomino, A.; Sánchez Espino, P.; Borrego Reyes, C.; Jiménez Rojas, J.A.; Rodríguez y Silva, F. Estimation of Moisture in Live Fuels in the Mediterranean: Linear Regressions and Random Forests. J. Environ. Manag. 2022, 322, 116069. [Google Scholar] [CrossRef]
- Ma, M.; Gu, L.; Shen, Y.; Guan, Q.; Wang, C.; Deng, H.; Zhong, X.; Xia, M.; Shi, D. Computational Framework for Turbid Water Single-Pixel Imaging by Polynomial Regression and Feature Enhancement. IEEE Trans. Instrum. Meas. 2023, 72, 1–11. [Google Scholar] [CrossRef]
- Shi, Z.; Han, M. Ridge Regression Learning in ESN for Chaotic Time Series Prediction. Control. Decis. 2007, 22, 258–261. [Google Scholar]
- Mohammadi, H.A.; Ghofrani, S.; Nikseresht, A. Using Empirical Wavelet Transform and High-Order Fuzzy Cognitive Maps for Time Series Forecasting. Appl. Soft Comput. 2023, 135, 109990. [Google Scholar] [CrossRef]
- Talebi, M.; Schuster, G.; Shellie, R.A.; Szucs, R.; Haddad, P.R. Performance Comparison of Partial Least Squares-Related Variable Selection Methods for Quantitative Structure Retention Relationships Modelling of Retention Times in Reversed-Phase Liquid Chromatography. J. Chromatogr. A 2015, 1424, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Beniwal, M.; Singh, A.; Kumar, N. Forecasting Long-Term Stock Prices of Global Indices: A Forward-Validating Genetic Algorithm Optimization Approach for Support Vector Regression. Appl. Soft Comput. 2023, 145, 110566. [Google Scholar] [CrossRef]
- Wang, Z.; Shao, Y.; Ye, T.; Sun, S. Research on Optimization Method for Passive Control Strategy in CLLC-SMES System Based on BP Neural Network. J. Energy Storage 2024, 86, 111175. [Google Scholar] [CrossRef]
- Chen, Y.; Song, L.; Liu, Y.; Yang, L.; Li, D. A Review of the Artificial Neural Network Models for Water Quality Prediction. Appl. Sci. 2020, 10, 5776. [Google Scholar] [CrossRef]
- HJ 354-2019; Technical Specification for Acceptance of Online Monitoring Systems for Water Pollution Sources (CODCr, NH3-N, etc.). Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2019.
- van den Broeke, J.; Langergraber, G.; Weingartner, A. On-Line and in Situ UV/Vis Spectroscopy for Multi-Parameter Measurements: A Brief Review. Spectrosc. Eur. 2006, 18, S3–S4. [Google Scholar]
- Azqandi, M.; Nateq, K.; Golrizkhatami, F.; Nasseh, N.; Seyedi, N.; Moghaddam, N.S.M.; Fanaei, F. Innovative RGO-Bridged S-Scheme CuFe2O4@Ag2S Heterojunction for Efficient Sun-Light-Driven Photocatalytic Disintegration of Ciprofloxacin. Carbon 2025, 231, 119725. [Google Scholar] [CrossRef]
- Faucheux, M.; Fovet, O.; Gruau, G.; Jaffrézic, A.; Petitjean, P.; Gascuel, C.; Ruiz, L. Real Time High Frequency Monitoring of Water Quality in River Streams Using a UV-Visible Spectrometer: Interest, Limits and Consequences for Monitoring Strategies. Geophys. Res. Abstr. 2013, 15, EGU2013. [Google Scholar]
- Etheridge, J.R.; Birgand, F.; Osborne, J.A.; Osburn, C.L.; Burchell, M.R.; Irving, J. Using in Situ Ultraviolet-Visual Spectroscopy to Measure Nitrogen, Carbon, Phosphorus, and Suspended Solids Concentrations at a High Frequency in a Brackish Tidal Marsh: In Situ Spectroscopy to Monitor N, C, P, TSS. Limnol. Oceanogr. Methods 2014, 12, 10–22. [Google Scholar] [CrossRef]
- Jie, C.; Lifu, Z.; Linshan, Z.; Hongming, Z.; Qingxi, T. Research Progress on Online Monitoring Technologies of Water Quality Parameters Based on Ultraviolet-Visible Spectra. Remote Sens. Nat. Resour. 2021, 33, 1–9. [Google Scholar]
WQ Indicator | Training Set | Testing Set | ||||
---|---|---|---|---|---|---|
MSE | RMSE | R2 | MSE | RMSE | R2 | |
TOC | 0.325 | 0.570 | 0.816 | 0.346 | 0.588 | 0.779 |
BOD5 | 0.532 | 0.729 | 0.725 | 0.631 | 0.794 | 0.682 |
COD | 0.311 | 0.558 | 0.823 | 0.356 | 0.597 | 0.791 |
TN | 0.079 | 0.281 | 0.989 | 0.145 | 0.380 | 0.945 |
NO3-N | 0.034 | 0.183 | 0.983 | 0.183 | 0.428 | 0.941 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Luo, M.; Wang, W.; Ping, Y.; Li, H.; Chen, S.; Liang, Q. Characteristic Wavelength Selection and Surrogate Monitoring for UV–Vis Absorption Spectroscopy-Based Water Quality Sensing. Water 2025, 17, 343. https://doi.org/10.3390/w17030343
Chen C, Luo M, Wang W, Ping Y, Li H, Chen S, Liang Q. Characteristic Wavelength Selection and Surrogate Monitoring for UV–Vis Absorption Spectroscopy-Based Water Quality Sensing. Water. 2025; 17(3):343. https://doi.org/10.3390/w17030343
Chicago/Turabian StyleChen, Chenyu, Meiyu Luo, Wenyu Wang, Yang Ping, Hongming Li, Siyuan Chen, and Qian Liang. 2025. "Characteristic Wavelength Selection and Surrogate Monitoring for UV–Vis Absorption Spectroscopy-Based Water Quality Sensing" Water 17, no. 3: 343. https://doi.org/10.3390/w17030343
APA StyleChen, C., Luo, M., Wang, W., Ping, Y., Li, H., Chen, S., & Liang, Q. (2025). Characteristic Wavelength Selection and Surrogate Monitoring for UV–Vis Absorption Spectroscopy-Based Water Quality Sensing. Water, 17(3), 343. https://doi.org/10.3390/w17030343