Application of HP-LSTM Models for Groundwater Level Prediction in Karst Regions: A Case Study in Qingzhen City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Analysis of Surface Lithology and Hydrogeological Characteristics in the Study Area
2.3. Data and Statistical Analysis
2.4. Hodrick–Prescott Filter
2.5. LSTM Network Architecture and Gating Mechanisms
- Forget Gate: The forget gate determines which information from the previous time step’s cell state (Ct−1) should be retained and which should be forgotten. The calculation formula is as follows:
- 2.
- Input Gate: The input gate determines which new information needs to be added to the cell state (Ct). It consists of two parts: the input gate itself and the calculation of the candidate state. The formulas for the input gate and candidate state are as follows:
- 3.
- Cell State: The cell state is updated through the forget gate and the input gate. The calculation formula is as follows:
- 4.
- Output Gate: The output gate determines the hidden state (ht) at the current time step and incorporates the output of the cell state. The calculation formula is as follows:
2.6. Model Performance Evaluation
2.7. Selection of Input Variables
2.8. Workflow of the Study
3. Results
3.1. Model Training and Error Variation
3.2. Comparison of LSTM and HP-LSTM Models in Groundwater Depth Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siebert, S.; Burke, J.; Faures, J.-M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation–a global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef]
- Chen, X.; Wang, F.; Qi, W.; Zhou, T. Application of BP neural network model based on genetic algorithm in groundwater burial depth prediction–Mengcheng County as an example. Water Resour. Hydropower Technol. 2018, 49, 1–7. [Google Scholar]
- Yang, X.-D.; Qie, Y.-D.; Teng, D.-X.; Ali, A.; Xu, Y.; Bolan, N.; Liu, W.-G.; Lv, G.-H.; Ma, L.-G.; Yang, S.-T. Prediction of groundwater depth in an arid region based on maximum tree height. J. Hydrol. 2019, 574, 46–52. [Google Scholar] [CrossRef]
- Opoku, P.A.; Shu, L.; Ansah-Narh, T.; Banahene, P.; Yao, K.B.M.O.; Kwaw, A.K.; Niu, S. Prediction of Karst Spring Discharge Using LSTM with Bayesian Optimisation Hyperparameter Tuning: A Laboratory Physical Model Approach. Model. Earth Syst. Environ. 2024, 10, 1457–1482. [Google Scholar] [CrossRef]
- Gao, W.; Zang, M.; Mei, G. Exploring influence of groundwater and lithology on data-driven stability prediction of soil slopes using explainable machine learning: A case study. Bull. Eng. Geol. Environ. 2024, 83, 2. [Google Scholar] [CrossRef]
- Farzin, M.; Avand, M.; Ahmadzadeh, H.; Zelenakova, M.; Tiefenbacher, J.P. Assessment of ensemble models for groundwater potential modeling and prediction in a karst watershed. Water 2021, 13, 2540. [Google Scholar] [CrossRef]
- Fang, L.; Shao, D. Application of long short-term memory (LSTM) on the prediction of rainfall-runoff in karst area. Front. Phys. 2022, 9, 790687. [Google Scholar] [CrossRef]
- Merz, S.K. Australian Groundwater Modelling Guidelines; Waterlines Report Series No. 82; National Water Commission: Canberra, Australia, 2012. [Google Scholar]
- Tao, H.; Hameed, M.M.; Marhoon, H.A.; Zounemat-Kermani, M.; Heddam, S.; Kim, S.; Sulaiman, S.O.; Tan, M.L.; Sa’adi, Z.; Mehr, A.D. Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing 2022, 489, 271–308. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Z. A CNN-LSTM model based on a meta-learning algorithm to predict groundwater level in the middle and lower reaches of the Heihe River, China. Water 2022, 14, 2377. [Google Scholar] [CrossRef]
- Wunsch, A.; Liesch, T.; Broda, S. Groundwater level forecasting with artificial neural networks: A comparison of LSTM, CNN and NARX. Hydrol. Earth Syst. Sci. Discuss 2020, 552, 1–23. [Google Scholar]
- Vu, M.; Jardani, A.; Massei, N.; Fournier, M. Reconstruction of missing groundwater level data by using Long Short-Term Memory (LSTM) deep neural network. J. Hydrol. 2021, 597, 125776. [Google Scholar] [CrossRef]
- Valadkhan, D.; Moghaddasi, R.; Mohammadinejad, A. Groundwater quality prediction based on LSTM RNN: An Iranian experience. Int. J. Environ. Sci. Technol. 2022, 19, 11397–11408. [Google Scholar] [CrossRef] [PubMed]
- Alkon, M.; Wang, Y.; Harrington, M.R.; Shi, C.; Kennedy, R.; Urpelainen, J.; Kopas, J.; He, X. High resolution prediction and explanation of groundwater depletion across India. Environ. Res. Lett. 2024, 19, 044072. [Google Scholar] [CrossRef]
- Zhang, W.; Duan, L.; Liu, T.; Shi, Z.; Shi, X.; Chang, Y.; Qu, S.; Wang, G. A hybrid framework based on LSTM for predicting karst spring discharge using historical data. J. Hydrol. 2024, 633, 130946. [Google Scholar] [CrossRef]
- Zha, W.; Liu, Y.; Wan, Y.; Luo, R.; Li, D.; Yang, S.; Xu, Y. Forecasting monthly gas field production based on the CNN-LSTM model. Energy 2022, 260, 124889. [Google Scholar] [CrossRef]
- Luo, J.; Gong, Y. Air pollutant prediction based on ARIMA-WOA-LSTM model. Atmos. Pollut. Res. 2023, 14, 101761. [Google Scholar] [CrossRef]
- Lin, Y.; Yan, Y.; Xu, J.; Liao, Y.; Ma, F. Forecasting stock index price using the CEEMDAN-LSTM model. N. Am. J. Econ. Financ. 2021, 57, 101421. [Google Scholar] [CrossRef]
- Domala, V.; Kim, T.-w. Application of Empirical Mode Decomposition and Hodrick Prescot filter for the prediction single step and multistep significant wave height with LSTM. Ocean. Eng. 2023, 285, 115229. [Google Scholar] [CrossRef]
- Qian, W.; Wang, J. An improved seasonal GM (1, 1) model based on the HP filter for forecasting wind power generation in China. Energy 2020, 209, 118499. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Q.; Xiao, W.; Chu, T. Characteristic period analysis of the Chinese stock market using successive one-sided HP filter. Electron. Res. Arch. 2023, 31, 6120–6133. [Google Scholar] [CrossRef]
- Xu, W.; Gu, R.; Liu, Y.; Dai, Y. Forecasting energy consumption using a new GM–ARMA model based on HP filter: The case of Guangdong Province of China. Econ. Model. 2015, 45, 127–135. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Z. Stock Index Price Forecasting Method Based on HP Filter. J. Comput. Eng. Appl. 2021, 57, 296–304. [Google Scholar]
- He, K.; Liu, Y.; Yuan, J.; He, Z.; Yin, Q.; Xu, D.; Zhao, X.; Hu, M.; Lu, H. Water Quality Ensemble Prediction Model for the Urban Water Reservoir Based on the Hybrid Long Short-Term Memory (LSTM) Network Analysis. AQUA—Water Infrastruct. Ecosyst. Soc. 2024, 73, 1621–1642. [Google Scholar] [CrossRef]
- He, J.; Luo, Q.; Liang, Y.; Liu, S.; Shen, X. Investigation and Analysis of Medicinal Plant Resources in Qingzhen City, Guizhou Province. Guizhou Agric. Sci. 2023, 51, 103–111. [Google Scholar]
- Luo, S.; Hu, J.; Zhang, Y. Analysis of Rocky Desertification in Central Guizhou, China, Using Landsat Satellite Data. In International Conference on Computer Information Systems and Industrial Applications; Atlantis Press: Dordrecht, The Netherlands, 2015; pp. 165–168. [Google Scholar]
- Yan, J. Ecological Effects of Land Use Change in Typical Karst Areas—A Case Study of Qingzhen City, Guizhou Province. Land Dev. Eng. Res. 2020, 5, 1–9. [Google Scholar]
- Zhang, X.; Gao, S.; Wu, Q.; Li, F.; Wu, P.; Wang, Z.; Wu, J.; Zeng, J. Buffer zone-based trace elements indicating the impact of human activities on karst urban groundwater. Environ. Res. 2023, 220, 115235. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Z.; Lv, S.; Zhao, W.; Su, W. Vulnerability Assessment of Water Resources in a Karst Mountainous Area Based on GIS/RS Technology: A Case Study of Guiyang, Southwest China. Water Supply 2022, 22, 5206–5220. [Google Scholar] [CrossRef]
- Zou, J. Regional Hydrogeological Survey Report of Qingzhen City, Guizhou Province. Natl. Geol. Arch. 1998. [Google Scholar]
- Demir, V. Trend analysis of lakes and sinkholes in the Konya Closed Basin, in Turkey. Nat. Hazards 2022, 112, 2873–2912. [Google Scholar] [CrossRef]
- Yagbasan, O.; Demir, V.; Yazicigil, H. Trend analyses of meteorological variables and lake levels for two shallow lakes in central Turkey. Water 2020, 12, 414. [Google Scholar] [CrossRef]
- Ouahilal, M.; Mohajir, M.E.; Chahhou, M.; Mohajir, B.E.E. A novel hybrid model based on Hodrick–Prescott filter and support vector regression algorithm for optimizing stock market price prediction. J. Big Data 2017, 4, 1–22. [Google Scholar] [CrossRef]
- Hodrick, R.J.; Prescott, E.C. Postwar US business cycles: An empirical investigation. J. Money Credit Bank. 1997, 29, 1–16. [Google Scholar] [CrossRef]
- Peng, B.; Li, Y.; Yang, C.; Feng, H.; Gong, X.; Liu, Z.; Zhong, J.; Huan, J. Probabilistic grid carbon intensity forecasting with Hodrick–Prescott decomposition. Energy Rep. 2024, 11, 5400–5406. [Google Scholar] [CrossRef]
- Bhanja, S.N.; Zhang, X.; Wang, J. Estimating long-term groundwater storage and its controlling factors in Alberta, Canada. Hydrol. Earth Syst. Sci. 2018, 22, 6241–6255. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X.; Xiao, Y.; Shi, J.; Zhao, Y.; Zhang, M. Application of improved seasonal GM (1, 1) model based on HP filter for runoff prediction in Xiangjiang River. Environ. Sci. Pollut. Res. 2022, 29, 52806–52817. [Google Scholar] [CrossRef]
- Goyal, A.; Krishnamurthy, S.; Kulkarni, S.; Kumar, R.; Vartak, M.; Lanham, M.A. A solution to forecast demand using long short-term memory recurrent neural networks for time series forecasting. In Proceedings of the Midwest Decision Sciences Institute Conference, Indianapolis, IN, USA, 5–7 April 2018; pp. 12–14. [Google Scholar]
- Al-Selwi, S.M.; Hassan, M.F.; Abdulkadir, S.J.; Muneer, A. LSTM inefficiency in long-term dependencies regression problems. J. Adv. Res. Appl. Sci. Eng. Technol. 2023, 30, 16–31. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, J.; Zhang, T. Adaptive Whale Optimization Algorithm–DBiLSTM for Autonomous Underwater Vehicle (AUV) Trajectory Prediction. Appl. Sci. 2024, 14, 3646. [Google Scholar] [CrossRef]
- Gers, F.A.; Schraudolph, N.N.; Schmidhuber, J. Learning precise timing with LSTM recurrent networks. J. Mach. Learn. Res. 2002, 3, 115–143. [Google Scholar]
- Wu, J.; Zhang, R.; Yang, J. Analysis of rainfall-recharge relationships. J. Hydrol. 1996, 177, 143–160. [Google Scholar] [CrossRef]
- Belete, D.M.; Huchaiah, M.D. Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. Int. J. Comput. Appl. 2022, 44, 875–886. [Google Scholar] [CrossRef]
- Zhou, P.; Xie, X.; Lin, Z.; Yan, S. Towards understanding convergence and generalization of AdamW. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 6486–6493. [Google Scholar] [CrossRef]
- Chang, F.-J.; Chang, L.-C.; Huang, C.-W.; Kao, I.-F. Prediction of monthly regional groundwater levels through hybrid soft-computing techniques. J. Hydrol. 2016, 541, 965–976. [Google Scholar] [CrossRef]
- Guo, F.; Yang, J.; Li, H.; Li, G.; Zhang, Z. A convLSTM conjunction model for groundwater level forecasting in a karst aquifer considering connectivity characteristics. Water 2021, 13, 2759. [Google Scholar] [CrossRef]
- Alam, M.J.; Kar, S.; Zaman, S.; Ahamed, S.; Samiya, K. Forecasting Underground Water Levels: LSTM Based Model Outperforms GRU and Decision Tree Based Models. In Proceedings of the 2022 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), Naya Raipur, India, 30–31 December 2022; pp. 280–283. [Google Scholar]
- Lou, G.; Song, Y.; Man, L.; Sun, Z. A new method and application of groundwater prediction along the direction of tunnel excavation in karst strata. AQUA—Water Infrastruct. Ecosyst. Soc. 2023, 72, 1681–1696. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Zhu, G.; Zhao, D.; Duan, B. A new groundwater depth prediction model based on EMD-LSTM. Water Supply 2022, 22, 5974–5988. [Google Scholar] [CrossRef]
- Patra, S.R.; Chu, H.-J. Regional groundwater sequential forecasting using global and local LSTM models. J. Hydrol. Reg. Stud. 2023, 47, 101442. [Google Scholar] [CrossRef]
- Shin, M.-J.; Moon, S.-H.; Kang, K.G.; Moon, D.-C.; Koh, H.-J. Analysis of Groundwater Level Variations Caused by the Changes in Groundwater Withdrawals Using Long Short-Term Memory Network. Hydrology 2020, 7, 64. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Deng, Y.; Pan, D.; Van Griensven Thé, J.; Yang, S.X.; Gharabaghi, B. Daily Streamflow Forecasting Using Networks of Real-Time Monitoring Stations and Hybrid Machine Learning Methods. Water 2024, 16, 1284. [Google Scholar] [CrossRef]
Time Period | Pearson Correlation Coefficient |
---|---|
1 Day | 0.124 * |
3 Days | 0.273 ** |
5 Days | 0.369 ** |
7 Days | 0.322 ** |
14 Days | 0.307 ** |
30 Days | 0.309 ** |
Model | Stage | R2 | RMSE | MAPE (%) |
---|---|---|---|---|
LSTM | Training | 0.92 | 0.1264 | 0.1106 |
Validation | 0.76 | 0.1244 | 0.1247 | |
Testing | 0.95 | 0.1149 | 0.0914 | |
HP-LSTM | Training | 0.99 | 0.0415 | 0.0282 |
Validation | 0.96 | 0.0329 | 0.0308 | |
Testing | 0.98 | 0.0276 | 0.0292 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bo, Y.; Zhang, C.; Fang, X.; Sun, Y.; Li, C.; An, M.; Peng, Y.; Lu, Y. Application of HP-LSTM Models for Groundwater Level Prediction in Karst Regions: A Case Study in Qingzhen City. Water 2025, 17, 362. https://doi.org/10.3390/w17030362
Bo Y, Zhang C, Fang X, Sun Y, Li C, An M, Peng Y, Lu Y. Application of HP-LSTM Models for Groundwater Level Prediction in Karst Regions: A Case Study in Qingzhen City. Water. 2025; 17(3):362. https://doi.org/10.3390/w17030362
Chicago/Turabian StyleBo, Yanping, Chunlei Zhang, Xiaoyu Fang, Yidi Sun, Changjiang Li, Meiyun An, Yun Peng, and Yixin Lu. 2025. "Application of HP-LSTM Models for Groundwater Level Prediction in Karst Regions: A Case Study in Qingzhen City" Water 17, no. 3: 362. https://doi.org/10.3390/w17030362
APA StyleBo, Y., Zhang, C., Fang, X., Sun, Y., Li, C., An, M., Peng, Y., & Lu, Y. (2025). Application of HP-LSTM Models for Groundwater Level Prediction in Karst Regions: A Case Study in Qingzhen City. Water, 17(3), 362. https://doi.org/10.3390/w17030362