Analysis of Spatiotemporal Characteristics of Drought in Transboundary Watersheds of Northeast Asia Based on Comprehensive Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Overarching Study Design
2.3. Data Sources and Preprocessing
2.3.1. Meteorological Data
2.3.2. Remote Sensing Image Dataset
2.3.3. Land Use/Land Cover Data
2.4. Methodology
2.4.1. Inverse Distance Weighting (IDW)
2.4.2. Standardized Precipitation Evapotranspiration Index
2.4.3. Run-Length Theory
2.4.4. Vegetation Condition Index
2.4.5. Theil–Sen Slope Estimation and Mann–Kendall Combined Method
2.4.6. Overlay Analysis
3. Results
3.1. SPEI Temporal Variation Characteristics
3.1.1. SPEI-12 Temporal Variation Characteristics in Different Regions
3.1.2. Temporal Variation Characteristics of Drought Intensity
3.2. Spatial Distribution Characteristics of the SPEI
3.2.1. Spatial Distribution of Drought Intensity
3.2.2. Spatial Distribution of Drought Occurrence
3.3. Temporal Variation Trend in the VCI
3.4. VCI Spatial Variation Characteristics
3.4.1. Spatial Trend Analysis of VCI
3.4.2. Spatial Distribution of Drought Levels
- (1)
- Annual Scale
- (2)
- Seasonal
3.4.3. Spatial Distribution of Drought Frequency
3.5. Annual Integrated Drought Index Spatial Distribution
3.6. Spatial Distribution of Seasonal Comprehensive Drought Index
4. Discussion
4.1. Analysis of Spatiotemporal Characteristics of the SPEI
4.2. Analysis of Spatiotemporal Characteristics of the VCI
4.3. Combined Analysis of Drought Severity Under Different Land Cover Types Using SPEI and VCI Indices
4.4. This Study’s Limitations and Goals for Further Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Restrepo, G.U.; Pritchard, B.; Welch, E. Does the extent of time in drought affect the rate of farm ownership change in a local government area? A sixteen-year assessment of rural land ownership change in New South Wales, Australia. J. Rural Stud. 2023, 98, 11–18. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; van der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Change 2013, 4, 17–22. [Google Scholar] [CrossRef]
- Han, L.; Zhang, Q.; Zhang, Z.; Jia, J.; Wang, Y.; Huang, T.; Cheng, Y. Drought Area, Intensity and Frequency Changes in China Under Climate Warming, 1961–2014. J. Arid Environ. 2021, 193, 104566. [Google Scholar] [CrossRef]
- Tran, T.N.; Lakshmi, V. Enhancing Human Resilience Against Climate Change: Assessment of Hydroclimatic Extremes and Sea Level Rise Impacts on the Eastern Shore of Virginia, United States. Sci. Total Environ. 2024, 947, 174289. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K.; Lai, R.; Zhou, Z. Socioeconomic Drought Analysis by Standardized Water Supply and Demand Index Under Changing Environment. J. Clean. Prod. 2022, 347, 133579. [Google Scholar] [CrossRef]
- Yu, R.; Zhai, P. More Frequent and Widespread Persistent Compound Drought and Heat Event Observed in China. Sci. Rep. 2020, 10, 12345. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yin, Y.; Wang, X.; Ma, X.; Chen, Y.; Chen, W. More Frequent, Long-lasting, Extreme and Postponed Compound Drought and Hot Events in Eastern China. J. Hydrol. 2022, 614, 128738. [Google Scholar] [CrossRef]
- Shi, Z.; Jia, G.; Zhou, Y.; Xu, X.; Jiang, Y. Amplified Intensity and Duration of Heatwaves by Concurrent Droughts in China. Atmos. Res. 2021, 261, 105783. [Google Scholar] [CrossRef]
- Nguyen, B.Q.; Kantoush, S.A.; Tran, T.-N.-D.; Binh, D.V.; Vo, N.D.; Saber, M.; Sumi, T. Response of Hydrological to Anthropogenic Activities in a Tropical Basin. In Proceedings of the 40th IAHR World Congress: Rivers–Connecting Mountains and Coasts, Vienna, Austria, 21–25 August 2023; Habersack, H., Tritthart, M., Waldenberger, L., Eds.; IAHR: Vienna, Austria, 2013; pp. 269–278. [Google Scholar]
- Zhang, Y.; Wu, Z.; Singh, V.P.; Lin, Q.; Ning, S.; Zhou, Y.; Jin, J.; Zhou, R.; Ma, Q. Agricultural Drought Characteristics in a Typical Plain Region Considering Irrigation, Crop Growth, and Water Demand Impacts. Agric. Water Manag. 2023, 282, 106184. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, Z.; Feng, S.; Zhang, X.; Xu, Y.; Hao, F. Agricultural Drought Prediction in China Based on Drought Propagation and Large-Scale Drivers. Agric. Water Manag. 2021, 255, 106006. [Google Scholar] [CrossRef]
- Pinto-Gutiérrez, C.A. Drought Risk and the Cost of Debt in the Mining Industry. Resour. Policy 2023, 83, 102387. [Google Scholar] [CrossRef]
- Vinke, F.; van Koningsveld, M.; van Dorsser, C.; Baart, F.; van Gelder, P.; Vellinga, T. Cascading Effects of Sustained Low Water on Inland Shipping. Clim. Risk Manag. 2022, 35, 100397. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, G.; Li, Y.; Lu, C. Responses of Hydroelectricity Generation to Streamflow Drought under Climate Change. Renew. Sustain. Energy Rev. 2023, 174, 113071. [Google Scholar] [CrossRef]
- Kaiser, D.; Voynova, Y.G.; Brix, H. Effects of the 2018 European Heatwave and Drought on Coastal Biogeochemistry in the German Bight. Sci. Total Environ. 2023, 892, 164688. [Google Scholar] [CrossRef] [PubMed]
- Gebremeskel Haile, G.; Tang, Q.; Sun, S.; Huang, Z.; Zhang, X.; Liu, X. Droughts in East Africa: Causes, Impacts and Resilience. Earth-Sci. Rev. 2019, 193, 146–161. [Google Scholar] [CrossRef]
- Xue, Z.; Chen, Y.; Yin, Y.; Chen, W.; Jiao, Y.; Deng, P.; Dai, S. Spatio-temporal Characteristics and Driving Factors of Flash Drought in Northern China from 1978 to 2020. Glob. Planet. Change 2024, 232, 104532. [Google Scholar] [CrossRef]
- Qi, W.; Feng, L.; Yang, H.; Zhu, X.; Liu, Y.; Liu, J. Weakening Flood, Intensifying Hydrological Drought Severity and Decreasing Drought Probability in Northeast China. J. Hydrol. Reg. Stud. 2021, 38, 100905. [Google Scholar] [CrossRef]
- Yang, G.; Shao, W.; Wang, H.; Han, D. Drought Evolution Characteristics and Attribution Analysis in Northeast China. Procedia Eng. 2016, 154, 749–756. [Google Scholar] [CrossRef]
- Pei, W.; Hao, L.; Fu, Q.; Liu, H.; Ren, Y.; Li, T. Analysis of Spring Drought in Northeast China from the Perspective of Atmosphere, Snow Cover, and Soil. Catena 2024, 236, 105625. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; Lopez-Moreno, J.I.; Azorin-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of Vegetation to Drought Time-Scales across Global Land Biomes. Proc. Natl. Acad. Sci. USA 2013, 19, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Duan, Y. Constructing a Daily Drought Index Based on Evapotranspiration and Its Representation of Regional Drought Events. Sci. China Earth Sci. 2022, 52, 540–558. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Huang, Y.X.; Liu, A.G. Study on the Occurrence Patterns of Meteorological Drought and the Applicability of Its Indices in Hubei Province. Hubei Agric. Sci. 2014, 53, 788–794, 817. [Google Scholar]
- Ma, Y.; Zhao, L.; Wang, J.S.; Yu, T. Increasing Difference of China Summer Precipitation Statistics Between Percentage Anomaly and Probability Distribution Methods Due to Tropical Warming. Earth Space Sci. 2021, 8, e2021EA001777. [Google Scholar] [CrossRef]
- Dai, A. Drought Under Global Warming: A Review. Wiley Interdiscip. Rev. Clim. Change 2011, 3, 185–193. [Google Scholar] [CrossRef]
- Keyantash, J.; National Center for Atmospheric Research Staff. The Climate Data Guide: Standardized Precipitation Index (SPI). Last modified: 19 August 2023. Available online: https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-index-spi (accessed on 15 December 2024).
- Heim, R.R. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1165. [Google Scholar] [CrossRef]
- Wang, P.T. Study on the Spatio-Temporal Statistical Patterns and Risk Management of Drought Disasters in Northwest China. Master’s Thesis, Shaanxi Normal University, Xi’an, China, 2018. [Google Scholar]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Li, X.C.; Zhao, J.; Xu, J.C. Spatio-Temporal Distribution Characteristics of Drought in Anhui Province Based on Precipitation Anomaly Percentage over the Last 50 Years. China Rural. Water Hydropower 2018, 9, 133–136. [Google Scholar]
- Wei, J.; Ma, Z.G. Comparison of the Palmer Drought Index, Surface Wetness Index, and Precipitation Anomaly. Acta Geogr. Sin. 2003, 117–124. [Google Scholar]
- Liu, Q. Fitting and Prediction of Drought Index at Stations in Shandong Province and Establishment of a Comprehensive Drought Index. Master’s Thesis, Qingdao University, Qingdao, China, 2020. [Google Scholar]
- Guttman, N.B. Accepting the Standardized Precipitation Index: A Calculation Algorithm. J. Hydrol. Eng. 1999, 35, 311–322. [Google Scholar]
- Hayes, M.J.; Svoboda, M.D.; Wilhite, D.A.; Vanyarkho, O.V. Monitoring the 1996 Drought Using the Standardized Precipitation Index. J. Clim. 1999, 80, 429–438. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; U.S. Department of Commerce, Weather Bureau: Washington, DC, USA, 1965.
- Zhao, X.; Yue, W.; Gao, Z.; Chen, F. Past 205-Year Wet-Dry Changes in the Southeastern Tibetan Plateau Inferred from Valley Laoxiang Yellow Pine. J. Appl. Ecol. 2021, 32, 3643–3652. [Google Scholar]
- Alley, W.M. The Palmer Drought Severity Index: Limitations and assumptions. J. Appl. Meteorol. Climatol. 1984, 23, 1100–1109. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Stagge, J.H.; Tallaksen, L.M.; Xu, C.Y.; Van Lanen, H.A.J. Standardized Precipitation-Evapotranspiration Index (SPEI): Sensitivity to Potential Evapotranspiration Model and Parameters. In Hydrology in a Changing World; Copernicus Publications: Göttingen, Germany, 2014; pp. 367–373. [Google Scholar]
- Hao, C.; Zhang, J.; Yao, F.J. Combination of Multi-Sensor Remote Sensing Data for Drought Monitoring over Southwest China. Int. J. Appl. Earth Obs. 2015, 35, 270–283. [Google Scholar] [CrossRef]
- Khosravi, Y.; Homayouni, S.; Ouarda, T.B. Spatio-temporal evaluation of MODIS temperature vegetation dryness index in the Middle East. Ecol. Inform. 2024, 84, 102894. [Google Scholar] [CrossRef]
- Zarch, M.A.; Sivakumar, B.; Sharma, A. Droughts in a Warming Climate: A Global Assessment of Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI). J. Hydrol. 2015, 526, 183–195. [Google Scholar] [CrossRef]
- Diao, W.; Meng, L.; Zhang, D.; Guo, S. Application of MODIS Data in Drought Monitoring in Hubei Province. Water Conserv. Informatiz. 2013, 1, 12–15. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Swetnam, T.W.; Betancourt, J.L. Fire-Southern Oscillation Relations in the Southwestern United States. Science 1990, 249, 1017–1020. [Google Scholar] [CrossRef] [PubMed]
- Swetnam, T.W. Fire History and Climate Change in Giant Sequoia Groves. Science 1993, 262, 885–889. [Google Scholar] [CrossRef]
- Yin, G.; He, W.; Liu, X.; Xia, Y.; Zhang, H. Wetting or Greening? Probing the Global Trends in Vegetation Condition Index (VCI). Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103822. [Google Scholar] [CrossRef]
- Kogan, F.N. Operational Space Technology for Global Vegetation Assessment. Bull. Am. Meteorol. Soc. 2001, 82, 1949–1964. [Google Scholar] [CrossRef]
- Qian, X.; Liang, L.; Shen, Q.; Sun, Q.; Zhang, L.; Liu, Z.; Zhao, S.; Qin, Z. Drought Trends Based on the VCI and Its Correlation with Climate Factors in the Agricultural Areas of China from 1982 to 2010. Environ. Monit. Assess. 2016, 188, 639. [Google Scholar] [CrossRef]
- Jia, H.; Li, X.; Wang, L.; Xue, Y.; Lin, H. Remote Sensing Drought Monitoring and Assessment in Southwest China Based on Machine Learning. Plateau Meteorol. 2023, 41, 1572–1582. [Google Scholar]
- Song, Y.; Fang, S.; Wei, Y. Research Progress on Remote Sensing Drought Monitoring Indices and Their Applicability in Agriculture. Sci. Technol. Rev. 2016, 34, 45–52. [Google Scholar]
- Quiring, S.M.; Ganesh, S.J.A. Evaluating the Utility of the Vegetation Condition Index (VCI) for Monitoring Meteorological Drought in Texas. Meteorology 2010, 150, 330–339. [Google Scholar] [CrossRef]
- Yu, J.; Lim, J.; Lee, K.S. Investigation of Drought-Vulnerable Regions in North Korea Using Remote Sensing and Cloud Computing Climate Data. Environ. Monit. Assess. 2018, 190, 126. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, B.; Ma, B.; Huang, H. Spatio-temporal Evolution of Drought in Northeast China over the Past 58 Years Based on Daily SPEI. Plateau Meteorol. 2023, 41, 721–732. [Google Scholar]
- Zhang, H.F. Impact of Land Use and Land Cover Change (LULCC) on Vegetation Coverage in the China–North Korea–Russia Transboundary Region. Master’s Thesis, Yanbian University, Yanji, China, 2019. [Google Scholar]
- Quan, D.; Quan, H.; Zhu, W.; Lin, Z.; Jin, R. A comparative study on the drivers of forest fires in different countries in the cross-border area between China, North Korea, and Russia. Forests 2022, 13, 1939. [Google Scholar] [CrossRef]
- Tian, C.; Sun, Z.; Fang, Y.; Sheng, D.; Li, B.; Liu, C.; Zhao, Y. Fish diversity in a little-known border river between China, North Korea, and Russia, according to traditional and eDNA surveys. Diversity 2024, 16, 704. [Google Scholar] [CrossRef]
- Lu, G.Y.; Wong, D.W. An Adaptive Inverse-Distance Weighting Spatial Interpolation Technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Ali, M.G.; Younes, K.; Esmaeil, A.; Fatemeh, T. Assessment of Geostatistical Methods for Spatial Analysis of SPI and EDI Drought Indices. World Appl. Sci. J. 2011, 15, 474–482. [Google Scholar]
- Panigrahi, N. Inverse Distance Weight. In Encyclopedia of Mathematical Geosciences; Daya Sagar, B., Cheng, Q., McKinley, J., Agterberg, F., Eds.; Encyclopedia of Earth Sciences Series; Springer: Cham, Switzerland, 2022. [Google Scholar]
- He, Q.; Wang, M.; Liu, K.; Wang, B. High-Resolution Standardized Precipitation Evapotranspiration Index (SPEI) Reveals Trends in Drought and Vegetation Water Availability in China. Geogr. Sustain. 2024, in press. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; National Center for Atmospheric Research Staff. The Climate Data Guide: Standardized Precipitation Evapotranspiration Index (SPEI). Last modified 22 April 2024. Available online: https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-evapotranspiration-index-spei (accessed on 14 December 2024).
- GB/T 20481-2006; Meteorological Drought Classification. China Standards Press: Beijing, China, 2006.
- Ma, Q.; Li, Y.; Liu, F.; Feng, H.; Biswas, A.; Zhang, Q. SPEI and Multi-threshold Run Theory-Based Drought Analysis Using Multi-source Products in China. J. Hydrol. 2023, 616, 128737. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, J.; Bao, Y.; Guo, E. Run Theory and Copula-Based Drought Risk Analysis for Songnen Grassland in Northeastern China. Sustainability 2019, 11, 6032. [Google Scholar] [CrossRef]
- Ding, Y.; He, X.; Zhou, Z.; Hu, J.; Cai, H.; Wang, X.; Li, L.; Xu, J.; Shi, H. Response of Vegetation to Drought and Yield Monitoring Based on NDVI and SIF. Catena 2022, 219, 106328. [Google Scholar] [CrossRef]
- Kogan, F.; Sullivan, J. Development of Global Drought-Watch System Using NOAA/AVHRR Data. Adv. Space Res. 1993, 13, 219–222. [Google Scholar] [CrossRef]
- Ji, M.; Zhang, C.; Zhao, J.; Yan, J.; Liang, L. Spatio-temporal Dynamic Changes of Spring Drought in the Qinghai-Tibet Plateau Based on the VCI Index. Land Resour. Remote Sens. 2021, 33, 152–157. [Google Scholar]
- Mckee, T.B.; Doesken, N.J.; Kleist, J.R. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Arora, M.; Goel, N.K.; Singh, P. Assessment of Temperature Trends in India. J. Hydrol. Sci. 2005, 50, 81–93. [Google Scholar]
- Hamed, K.H. Trend Detection in Hydrologic Data: The Mann–Kendall Trend Test Under the Scaling Hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Pirnia, A.; Golshan, M.; Darabi, H.; Adamowski, J.; Rozbeh, S. Using the Mann–Kendall Test and Double Mass Curve Method to Explore Stream Flow Changes in Response to Climate and Human Activities. J. Water Clim. Change 2019, 10, 725–742. [Google Scholar] [CrossRef]
- Sethi, R.; Pandey, B.K.; Krishan, R.; Khare, D.; Nayak, P.C. Performance Evaluation and Hydrological Trend Detection of a Reservoir Under Climate Change Conditions. Model. Earth Syst. Environ. 2015, 1, 33. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Li, N.; Zhu, J.; Pan, Z.; Qin, F. Spatial and Temporal Characteristics and Driving Forces of Vegetation Changes in the Huaihe River Basin from 2003 to 2018. Sustainability 2020, 12, 2198. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Wang, J.; Dong, G.; Wei, Y. Quantitative Analysis of NDVI Driving Factors Based on the Geographical Detector Model in the Chengdu-Chongqing Region, China. Ecol. Indic. 2023, 155, 110978. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of Changes in Meteorological Variables Using Mann-Kendall and Sen’s Slope Estimator Statistical Tests in Serbia. Glob. Planet. Change 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Abbas, H.; Hussain, A.; Xu, M. Precipitation Dynamics and Its Interactions with Possible Drivers Over Global Highlands. Glob. Planet. Change 2024, 240, 104529. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Hu, T. Spatio-temporal characteristics of drought in eastern Gansu Province based on SPI index. J. Desert Res. 2014, 34, 244–253. [Google Scholar]
- Dong, J.; Xing, L.; Cui, N.; Zhao, L.; Guo, L.; Gong, D. Standardized Precipitation Evapotranspiration Index (SPEI) Estimated Using Variant Long Short-Term Memory Network at Four Climatic Zones of China. Comput. Electron. Agric. 2023, 213, 108253. [Google Scholar] [CrossRef]
- Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-Based Vegetation Dynamics and Its Response to Climate Changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650 Pt 2, 2051–2062. [Google Scholar] [CrossRef]
- Dahmer, T.D. Sanjiang Plain and Wetlands Along the Ussuri and Amur Rivers: Amur River Basin (Russia and China). In The Wetland Book; Finlayson, C., Milton, G., Prentice, R., Davidson, N., Eds.; Springer: Dordrecht, The Netherlands, 2018. [Google Scholar]
- Liang, L.; Qiu, S.; Yan, J.; Shi, Y.; Geng, D. VCI-Based Analysis on Spatiotemporal Variations of Spring Drought in China. Int. J. Environ. Res. Public Health 2021, 8, 7967. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q. Spatiotemporal Variation Characteristics of Drought in China from 1981 to 2015 Based on the VCI Index. Master’s Thesis, Jiangsu Normal University, Xuzhou, China, 2017. [Google Scholar]
- Jiang, L.; Liu, W.; Liu, B.; Yuan, Y.; Bao, A. Monitoring Vegetation Sensitivity to Drought Events in China. Sci. Total Environ. 2023, 893, 164917. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Sun, B.-M.; Chen, D.; Wu, X.; Guo, L.-Z.; Wang, G. Land Use Changes and Their Effects on the Value of Ecosystem Services in the Small Sanjiang Plain in China. Sci. World J. 2014, 2014, 752846. [Google Scholar] [CrossRef]
- Editors of Encyclopedia Britannica. Tumen River. Encyclopedia Britannica. 26 June 2024. Available online: https://www.britannica.com/place/Tumen-River (accessed on 20 August 2024).
- Khosravi, Y.; Homayouni, S.; St-Hilaire, A. An integrated dryness index based on geographically weighted regression and satellite earth observations. Sci. Total Environ. 2024, 911, 168807. [Google Scholar] [CrossRef] [PubMed]
Level | SPEI Value | Grade |
---|---|---|
1 | −0.5 < SPEI | No drought |
2 | −1.0 < SPEI −0.5 | Mild drought |
3 | −1.5 < SPEI ≤ −1.0 | Medium drought |
4 | −2.0 < SPEI ≤ −1.5 | Severe drought |
5 | SPEI ≤ −2.0 | Extreme drought |
Level | Category | VCI Value |
---|---|---|
1 | No drought | [70, 100) |
2 | Mild drought | [50, 70) |
3 | Medium drought | [30, 50) |
4 | Extreme drought | [0, 30) |
Season | Severe Drought | Medium Drought | Mild Drought | No Drought |
---|---|---|---|---|
Spring | 680 | 212,098 | 362,764 | 925 |
Summer | 381 | 96,213 | 453,924 | 25,950 |
Autumn | 614 | 98,897 | 464,891 | 12,063 |
Winter | 210,565 | 302,981 | 61,681 | 1240 |
Frequency (%) | Annual | Spring | Summer | Autumn | Winter |
---|---|---|---|---|---|
0–25 | 11 | 22 | 4 | 6 | 91,849 |
26–50 | 264,477 | 262,328 | 94,979 | 96,581 | 366,478 |
51–75 | 310,491 | 310,997 | 473,845 | 474,317 | 62,474 |
75–100 | 1 | 10 | 5442 | 923 | 134 |
Land Cover Types | Drought Level (%) | Total | ||||
---|---|---|---|---|---|---|
Extremely Low | Low | Medium | High | Extremely High | ||
Cropland | 1.21 | 3.98 | 5.64 | 4.44 | 1.31 | 16.58 |
Forest | 6.49 | 15.53 | 20.56 | 17.91 | 10.76 | 71.25 |
Grassland | 1.66 | 3.72 | 3.80 | 2.26 | 0.73 | 12.17 |
Shrubland | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Bare land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Total | 9.36 | 23.23 | 30.00 | 24.61 | 12.80 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, F.; Quan, D.; Zhu, W.; Yu, H.; Jin, R. Analysis of Spatiotemporal Characteristics of Drought in Transboundary Watersheds of Northeast Asia Based on Comprehensive Indices. Water 2025, 17, 382. https://doi.org/10.3390/w17030382
Li J, Liu F, Quan D, Zhu W, Yu H, Jin R. Analysis of Spatiotemporal Characteristics of Drought in Transboundary Watersheds of Northeast Asia Based on Comprehensive Indices. Water. 2025; 17(3):382. https://doi.org/10.3390/w17030382
Chicago/Turabian StyleLi, Jiaxin, Fei Liu, Donghe Quan, Weihong Zhu, Hangnan Yu, and Ri Jin. 2025. "Analysis of Spatiotemporal Characteristics of Drought in Transboundary Watersheds of Northeast Asia Based on Comprehensive Indices" Water 17, no. 3: 382. https://doi.org/10.3390/w17030382
APA StyleLi, J., Liu, F., Quan, D., Zhu, W., Yu, H., & Jin, R. (2025). Analysis of Spatiotemporal Characteristics of Drought in Transboundary Watersheds of Northeast Asia Based on Comprehensive Indices. Water, 17(3), 382. https://doi.org/10.3390/w17030382