The Role of the Heterogeneity of Volcanic Aquifer Properties in Assessing Sustainable Well Yield: Study Cases from Latium (Central Italy)
Abstract
:1. Introduction
2. Geological and Hydrogeological Setting
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cabrera, M.C.; Custodio, E. Groundwater flow in a volcanic sedimentary coastal aquifer: Telde area; Gran Canaria; Canary Islands; Spain. Hydrogeol. J. 2010, 12, 305–320. [Google Scholar] [CrossRef]
- Custodio, E. Groundwater in volcanic hard rocks. In Groundwater in Fractured Rocks, 1st ed.; Krásný, J., Sharp, J.M., Eds.; Taylor&Francis Group: London, UK, 2007; pp. 95–108. [Google Scholar]
- Baiocchi, A.; Lotti, F.; Piscopo, V. Influence of hydrogeological setting on the arsenic occurrence in groundwater of the volcanic areas of central and southern Italy. Aqua Mundi 2011, 2, 131–142. [Google Scholar] [CrossRef]
- Charlier, J.B.; Lachassagne, P.; Ladouche, B.; Cattan, P.; Moussa, R.; Voltz, M. Structure and hydrogeological functioning of an insular tropical humid andesitic volcanic watershed: A multi-disciplinary experimental approach. J. Hydrol. 2011, 398, 155–170. [Google Scholar] [CrossRef]
- Izquierdo, T. Conceptual hydrogeological model and aquifer system classification of a small volcanic island (La Gomera; Canary Islands). Catena 2014, 626, 119–128. [Google Scholar] [CrossRef]
- Lachassagne, P.; Aunay, B.; Frissant, N.; Guilbert, M. High-resolution hydrogeological model of complex basaltic volcanic islands: A Mayotte; Comoros; case study. Terranova 2014, 26, 307–321. [Google Scholar] [CrossRef]
- Vittecoq, B.; Reninger, P.A.; Lacquement, F.; Martelet, G.; Violette, S. Hydrogeological conceptual model of andesitic watersheds revealed by high-resolution heliborne geophysics. Hydrol. Earth Syst. Sci. 2019, 23, 2321–2338. [Google Scholar] [CrossRef]
- Poncela, R.; Santamarta, J.C.; Garcìa-Gil, A.; Cruz-Pèrez, N.; Skupien, E.; Garcìa-Barba, J. Hydrogeological characterization of heterogeneous volcanic aquifers in the Canary Islands using recession analysis of deep water gallery discharge. J. Hydrol. 2022, 610, 127975. [Google Scholar] [CrossRef]
- Baud, B.; Lachassagne, P.; Dumont, M.; Toulier, A.; Heru, H.; Arif, F.; Dorfliger, N. Review: Andesitic aquifers—Hydrogeological conceptual models and insights relevant to applied hydrogeology. Hydrogeol. J. 2024, 32, 1259–1286. [Google Scholar] [CrossRef]
- Baiocchi, A.; Dragoni, W.; Lotti, F.; Luzzi, G.; Piscopo, V. Outline of the hydrogeology of the Cimino and Vico volcanic area and of the interaction between groundwater and Lake Vico (Lazio Region; central Italy). Boll. Soc. Geol. Ital. 2006, 125, 187–202. [Google Scholar]
- Baye, A.Y.; Razack, M.; Ayenew, T.; Zemedagegnehu, E. Estimating transmissivity using empirical and geostatistical methods in the volcanic aquifers of Upper Awash Basin; central Ethiopia. Environ. Earth Sci. 2013, 69, 1791–1802. [Google Scholar] [CrossRef]
- Vittecoq, B.; Reninger, P.A.; Violette, S.; Martelet, G.; Dewandel, B.; Audru, J.C. Heterogeneity of hydrodynamic properties and groundwater circulation of a coastal andesitic volcanic aquifer controlled by tectonic induced faults and rock fracturing: Martinique island (Lesser Antilles—FWI). J. Hydrol. 2015, 529, 1041–1059. [Google Scholar] [CrossRef]
- Kreyns, P.; Geng, X.; Michael, H.A. The influence of connected heterogeneity on groundwater flow and salinity distributions in coastal volcanic aquifers. J. Hydrol. 2020, 586, 124863. [Google Scholar] [CrossRef]
- Bear, J. Dynamics of Fluids in Porous Media; American Elsevier Publishing Company, Inc.: New York, NY, USA, 1972; pp. 1–764. [Google Scholar]
- Dagan, G. Flow and Transport in Porous Formation; Springer: Berlin, Germany, 1989. [Google Scholar]
- Brunetti, G.F.A.; Maiolo, M.; Fallico, C.; Severino, G. Unraveling the complexities of a highly heterogeneous aquifer under convergent radial flow conditions. Eng. Comput. 2024, 40, 3115–3130. [Google Scholar] [CrossRef]
- Severino, G.; Fallico, C.; Brunetti, G.F.A. Correlation structure of steady well-type flows through heterogeneous porous media: Results and application. Water Resour. Res. 2024, 60, e2023WR036279. [Google Scholar] [CrossRef]
- Piscopo, V.; Baiocchi, A.; Bicorgna, S.; Lotti, F. Hydrogeological support for estimation of the sustainable well yield in volcanic rocks: Some examples from Central and Southern Italy. In Proceedings of the 36th IAH Congress, Toyama, Japan, 26 October—1 November 2008. [Google Scholar]
- Angelone, M.; Cremisini, C.; Piscopo, V.; Proposito, M.; Spaziani, F. Influence of hydrostratigraphy and structural setting on the arsenic occurrence in groundwater of the Cimino-Vico volcanic area (central Italy). Hydrogeol. J. 2009, 17, 901–914. [Google Scholar] [CrossRef]
- Baiocchi, A.; Coletta, A.; Espositi, L.; Lotti, F.; Piscopo, V. Sustainable groundwater development in a naturally arsenic-contaminated aquifer: The case of the Cimino-Vico volcanic area (Central Italy). Ital. J. Eng. Geol. Environ. 2013, 1, 5–18. [Google Scholar] [CrossRef]
- Armiento, G.; Baiocchi, A.; Cremisini, C.; Crovato, C.; Lotti, F.; Lucentini, L.; Mazzuoli, M.; Nardi, E.; Piscopo, V.; Proposito, M.; et al. An integrated approach to identify water resources for human consumption in an area affected by high natural arsenic content. Water 2015, 7, 5091–5114. [Google Scholar] [CrossRef]
- Capelli, G.; Mastrorillo, L.; Mazza, R.; Petitta, M. Carta delle Unità Idrogeologiche della Regione Lazio; Scala 1:250,000; SELCA: Firenze, Italy, 2012. [Google Scholar]
- Boni, C.; Bono, P.; Capelli, G. Schema idrogeologico dell’Italia centrale. Mem. Soc. Geol. It. 1986, 35, 991–1012. [Google Scholar]
- Capelli, G.; Mazza, R.; Gazzetti, C. Strumenti e Strategie per la Tutela e l’uso Compatibile della Risorsa Idrica nel Lazio. Gli Acquiferi Vulcanici; Pitagora Editrice: Bologna, Italy, 2005; pp. 1–216. [Google Scholar]
- Alley, W.M.; Reilly, T.E.; Franke, O.L. Sustainability of Ground-Water Resources; U.S. Geological Survey: Reston, VA, USA, 1999; 79p. [Google Scholar]
- Bredehoeft, J.D. Safe yield and the water budget myth. Ground Water 1997, 35, 929. [Google Scholar] [CrossRef]
- Kalf, R.P.; Woolley, D.R. Applicability and methodology of determining sustainable yield in groundwater systems. Hydrogeol. J. 2005, 13, 295–312. [Google Scholar] [CrossRef]
- Bredehoeft, J.D. The water budget revisited: Why hydrogeologists model. Ground Water 2002, 40, 340–345. [Google Scholar] [CrossRef]
- Bredehoeft, J.D.; Alley, W.M. Mining groundwater for sustainable yield. Bridge 2014, 44, 33–41. [Google Scholar]
- Theis, C.V. The source of water derived from wells: Essential factors controlling the response of an aquifer to development. Civ. Eng. 1940, 10, 277–280. [Google Scholar]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology. Wiley & Sons: New York, NY, USA, 1990; pp. 1–824. [Google Scholar]
- Zhou, Y. A critical review of groundwater budget myth; safe yield and sustainability. J. Hydrol. 2009, 370, 207–213. [Google Scholar] [CrossRef]
- De Rita, D. Il Vulcanismo Della Regione Lazio. Guide Geologiche Regionali. Lazio; Società Geologica Italiana: Roma, Italy, 1993; Volume 5, pp. 50–64. [Google Scholar]
- Nappi, G.; Renzulli, A.; Santi, P. Evidence of incremental growth in the vulsinian calderas (Central Italy). J. Volcanol. Geotherm. Res. 1991, 47, 13–31. [Google Scholar] [CrossRef]
- Capaccioni, B.; Cinelli, G.; Mostacci, D.; Tositti, L. Long-term risk in a recently active volcanic system: Evaluation of doses and indoor radiological risk in the quaternary Vulsini Volcanic District (Central Italy). J. Volcanol. Geotherm. Res. 2012, 247, 26–36. [Google Scholar] [CrossRef]
- Peccerillo, A.; Manetti, P. The potassium alkaline volcanism of Central-Southern Italy: A review of the data relevant to petrogenesis and geodynamic significance. Trans. Geol. Soc. S. Afr. 1985, 88, 379–384. [Google Scholar]
- Nappi, G.; Capaccioni, B.; Renzulli, A.; Santi, P.; Valentini, L. Stratigraphy of the Orvieto-Bagnoregio ignimbrite eruption (eastern Vulsini District Central Italy). Mem. Descr. Carta Geol. D’It. 1994, 49, 241–254. [Google Scholar]
- Palladino, D.M.; Simei, S.; Sottili, G.; Trigila, R. Integrated approach for the reconstruction of stratigraphy and geology of Quaternary volcanic terrains: An application to the Vulsini volcanoes (central Italy). In Stratigraphy and Geology in Volcanic Areas: Geological Society of America Special Paper; Groppelli, G., Viereck, L., Eds.; Geological Society of America: Boulder, CO, USA, 2010; Volume 464, pp. 66–84. [Google Scholar] [CrossRef]
- Sollevanti, F. Geologic, volcanologic and tectonic setting of theVico-Cimini area, Italy. J. Volcanol. Geotherm. Res. 1983, 17, 203–217. [Google Scholar] [CrossRef]
- Lardini, D.; Nappi, G. I cicli eruttivi del complesso vulcanico Cimino [The eruptive phases of the Cimino volcanic complex]. Rend. Soc. Geol. It. Min. Petr. 1987, 42, 141–153. [Google Scholar]
- Bertagnini, A.; Sbrana, A. Il vulcano di Vico: Stratigrafia del complesso vulcanico e sequenze eruttive delle formazioni piroclastiche [The Vico volcano: Stratigraphy of the volcanic complex and sequence of the eruptions of the pyroclastic units]. Mem. Soc. Geol. It. 1986, 35, 699–713. [Google Scholar]
- De Rita, D.; Di Filippo, M.; Sposato, A. Carta geologica del Complesso Vulcanico Sabatino. In Quaderni de “La Ricerca Scientifica”: Sabatini Volcanic Complex; Di Filippo, M., Ed.; CNR: Rome, Italy, 1987; Volume 114, pp. 33–79. [Google Scholar]
- Mazza, R.; Mastrorillo, L. L’idrologia Regionale nella pianificazione e gestione della risorsa idrica sotterranea. Il dominio vulcanico laziale (Italia centrale). Acque Sotter. 2013, 2, 41–53. [Google Scholar] [CrossRef]
- Allocca, V.; Colantuono, P.; Colella, A.; Piacentini, S.M.; Piscopo, V. Hydraulic properties of ignimbrites: Matrix and fracture permeabilities in two pyroclastic flow deposits from Cimino-Vico volcanoes (Italy). Bull. Eng. Geol. Environ. 2022, 81, 221. [Google Scholar] [CrossRef]
- Piscopo, V.; Armiento, G.; Baiocchi, A.; Mazzuoli, M.; Nardi, E.; Piacentini, S.M.; Proposito, M.; Spaziani, F. Role of high-elevation groundwater flows in the hydrogeology of the Cimino volcano (central Italy) and possibilities to capture drinking water in a geogenically contaminated environment. Hydrogeol. J. 2018, 26, 1027–1045. [Google Scholar] [CrossRef]
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA). Dati Geognostici e Geofisici—Archivio indagini nel sottosuolo (Legge 464/84). Available online: http://portalesgi.isprambiente.it/it/categorie-db/sondaggi (accessed on 18 December 2024).
- Kruseman, G.P.; De Ridder, N.A. Analysis and Evaluation of Pumping Test Data, 2nd ed.; ILRI Publication; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 1994; pp. 1–372. [Google Scholar]
- Waterloo Hydrogeologic, Inc. User Manual, Aquifer Test Pro 13.0. Pumping & Slug Test Analysis, Interpretation & Visualization Software; Waterloo Hydrogeologic: Kitchner, ON, Canada, 2023; pp. 1–541. [Google Scholar]
- Ehlig-Economides, C.; Hegeman, P.; Clark, G. Three key elements necessary for successful testing. Oil Gas J. 1994, 92, 30. [Google Scholar]
- Bourdet, D. Well Test Analysis, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2002; pp. 1–426. [Google Scholar]
- Renard, P.; Glenz, D.; Mejias, M. Understanding diagnostic plots for well-test interpretation. Hydrogeol. J. 2009, 17, 589–600. [Google Scholar] [CrossRef]
- Ferroud, A.; Rafini, S.; Chesnaux, R. Using flow dimension sequences to interpret non-uniform aquifers with constant-rate pumping-tests: A review. J. Hydrol. X 2019, 2, 100003. [Google Scholar] [CrossRef]
- Razak, M.; Huntley, D. Assessing transmissivity from specific capacity in a large and heterogeneous alluvial aquifer. Ground Water 1991, 29, 856–861. [Google Scholar] [CrossRef]
- Mace, R. Determination of transmissivity from specific capacity tests in a karst aquifer. Ground Water 1997, 35, 738–742. [Google Scholar] [CrossRef]
- Hamm, S.Y.; Cheong, J.Y.; Jang, S.; Jung, C.Y.; Sang, K.B. Relationship between transmissivity and specific capacity in the volcanic aquifers of Jeju Island; Korea. J. Hydrol. 2005, 310, 111–121. [Google Scholar] [CrossRef]
- Fabbri, P.; Piccinini, L. Assessing transmissivity from specific capacity in an alluvial aquifer in the middle Venetian plain (NE Italy). Water Sci. Technol. 2013, 67, 2000–2008. [Google Scholar] [CrossRef]
- Rotzoll, K.; El-Kadi, A.I. Estimating hydraulic conductivity from specific capacity for Hawaii aquifers; USA. Hydrogeol. J. 2008, 16, 969–979. [Google Scholar] [CrossRef]
- Piscopo, V.; Formica, F.; Lana, L.; Lotti, F.; Pianese, L.; Trifuoggi, M. Relationship between aquifer pumping response and quality of water extracted from wells in an active hydrothermal system: The case of the Island of Ischia (Southern Italy). Water 2020, 12, 2576. [Google Scholar] [CrossRef]
- Theis, C.V. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans. Am. Geophys. Union 1935, 16, 519–524. [Google Scholar] [CrossRef]
- Van Tonder, G.J.; Botha, J.F.; Chiang, W.H.; Kunstmann, H.; Xu, Y. Estimation of the sustainable yields of boreholes in fractured rock formation. J. Hydrol. 2001, 241, 70–90. [Google Scholar] [CrossRef]
- Piscopo, V.; Sbarbati, C.; Dinagde, T.D.; Lotti, F. Practical approach for defining the sustainable yield of wells in low-permeability fractured rocks. Sustainability 2023, 15, 10706. [Google Scholar] [CrossRef]
- Piscopo, V.; Paoletti, M.; Sbarbati, C. Response to Pumping of Wells in Carbonate and Karst Aquifers and Effect on the Assessment of Sustainable Well Yield: Some Examples from Southern Italy. Water 2024, 16, 2664. [Google Scholar] [CrossRef]
- Misstear, B.D.R.; Beeson, S. Using operational data to estimate the reliable yields of water-supply wells. Hydrogeol. J. 2000, 8, 177–187. [Google Scholar] [CrossRef]
Aquifer Class | All | T–P | L | IC |
---|---|---|---|---|
Number | 233 | 26 | 80 | 127 |
Min | 6.06 × 10−6 | 3.00 × 10−5 | 6.00 × 10−6 | 8.00 × 10−6 |
Max | 5.00 × 10−2 | 1.80 × 10−2 | 5.00 × 10−2 | 2.06 × 10−2 |
Mean | 2.30 × 10−3 | 2.27 × 10−3 | 2.46 × 10−3 | 2.20 × 10−3 |
Geometric mean | 6.57 × 10−4 | 6.28 × 10−4 | 6.64 × 10−4 | 6.60 × 10−4 |
Median | 6.00 × 10−4 | 7.15 × 10−4 | 7.75 × 10−4 | 5.20 × 10−4 |
25th perc. | 2.13 × 10−4 | 1.78 × 10−4 | 2.23 × 10−4 | 2.11 × 10−4 |
75th perc. | 2.00 × 10−3 | 1.90 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 |
Standard error | 3.31 × 10−4 | 7.92 × 10−4 | 7.40 × 10−4 | 3.57 × 10−4 |
Standard deviation | 5.05 × 10−3 | 4.04 × 10−3 | 6.62 × 10−3 | 4.02 × 10−3 |
Variance | 2.55 × 10−5 | 1.63 × 10−5 | 4.38 × 10−5 | 1.62 × 10−5 |
Coefficient of variation | 219.70 | 178.12 | 268.74 | 182.89 |
Skewness | 5.37 | 2.82 | 5.80 | 2.95 |
Kurtosis | 39.32 | 8.92 | 37.43 | 8.91 |
Number | 23 |
---|---|
Min | 5.80 × 10−6 |
Max | 4.00 × 10−2 |
Mean | 4.44 × 10−3 |
Geometric mean | 7.61 × 10−4 |
Median | 8.12 × 10−4 |
25th perc. | 2.10 × 10−4 |
75th perc | 5.80 × 10−3 |
Standard error | 1.88 × 10−3 |
Standard deviation | 9.04 × 10−3 |
Variance | 8.16 × 10−5 |
Coefficient of variation | 203.51 |
Skewness | 3.28 |
Kurtosis | 11.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sbarbati, C.; Paoletti, M.; Piscopo, V. The Role of the Heterogeneity of Volcanic Aquifer Properties in Assessing Sustainable Well Yield: Study Cases from Latium (Central Italy). Water 2025, 17, 409. https://doi.org/10.3390/w17030409
Sbarbati C, Paoletti M, Piscopo V. The Role of the Heterogeneity of Volcanic Aquifer Properties in Assessing Sustainable Well Yield: Study Cases from Latium (Central Italy). Water. 2025; 17(3):409. https://doi.org/10.3390/w17030409
Chicago/Turabian StyleSbarbati, Chiara, Matteo Paoletti, and Vincenzo Piscopo. 2025. "The Role of the Heterogeneity of Volcanic Aquifer Properties in Assessing Sustainable Well Yield: Study Cases from Latium (Central Italy)" Water 17, no. 3: 409. https://doi.org/10.3390/w17030409
APA StyleSbarbati, C., Paoletti, M., & Piscopo, V. (2025). The Role of the Heterogeneity of Volcanic Aquifer Properties in Assessing Sustainable Well Yield: Study Cases from Latium (Central Italy). Water, 17(3), 409. https://doi.org/10.3390/w17030409