Experimental Analysis of a Vertical Drop Shaft
Abstract
:1. Introduction
1.1. Diversion Structure
1.2. Drop Shaft
2. Experimental Setup and Data Collection
ID | h [m] | d [m] | [m] | [m] | L [m] | Q [m3/s] |
---|---|---|---|---|---|---|
1 | 0.033 | 0.05 | 0.0866 | 0.05 | 0.7 | 0.00283 |
2 | 0.115 | 0.05 | 0.0866 | 0.05 | 0.7 | 0.00616 |
3 | 0.135 | 0.05 | 0.0866 | 0.05 | 0.7 | 0.00963 |
4 | 0.175 | 0.05 | 0.0866 | 0.05 | 0.7 | 0.01139 |
5 | 0.155 | 0.05 | 0.0866 | 0.05 | 0.7 | 0.01174 |
6 | 0.150 | 0.05 | 0.0866 | 0.05 | 0.7 | 0.01347 |
7 | 0.170 | 0.05 | 0.0866 | 0.05 | 0.7 | 0.01494 |
8 | 0.170 | 0.05 | 0.0866 | 0.05 | 0.7 | 0.01672 |
9 | 0.203 | 0.05 | 0.0866 | 0.05 | 0.7 | 0.01737 |
10 | 0.290 | 0.05 | 0.0866 | 0.05 | 0.7 | 0.01902 |
11 | 0.392 | 0.05 | 0.0866 | 0.05 | 0.7 | 0.02014 |
12 | 0.628 | 0.05 | 0.0866 | 0.05 | 0.7 | 0.02218 |
13 | 0.872 | 0.05 | 0.0866 | 0.05 | 0.7 | 0.02423 |
14 | 1.078 | 0.05 | 0.0866 | 0.05 | 0.7 | 0.02579 |
15 | 0.150 | 0.05 | 0.0866 | 0.05 | 0.4 | 0.00714 |
16 | 0.170 | 0.05 | 0.0866 | 0.05 | 0.4 | 0.01038 |
17 | 0.180 | 0.05 | 0.0866 | 0.05 | 0.4 | 0.01205 |
18 | 0.195 | 0.05 | 0.0866 | 0.05 | 0.4 | 0.01372 |
19 | 0.185 | 0.05 | 0.0866 | 0.05 | 0.4 | 0.01515 |
20 | 0.352 | 0.05 | 0.0866 | 0.05 | 0.4 | 0.01706 |
21 | 0.413 | 0.05 | 0.0866 | 0.05 | 0.4 | 0.01791 |
22 | 0.648 | 0.05 | 0.0866 | 0.05 | 0.4 | 0.02034 |
23 | 0.870 | 0.05 | 0.0866 | 0.05 | 0.4 | 0.02240 |
24 | 1.075 | 0.05 | 0.0866 | 0.05 | 0.4 | 0.02419 |
25 | 0.090 | 0.05 | 0.0866 | 0.05 | 0.2 | 0.00513 |
26 | 0.155 | 0.05 | 0.0866 | 0.05 | 0.2 | 0.00869 |
27 | 0.190 | 0.05 | 0.0866 | 0.05 | 0.2 | 0.01099 |
28 | 0.195 | 0.05 | 0.0866 | 0.05 | 0.2 | 0.01277 |
29 | 0.305 | 0.05 | 0.0866 | 0.05 | 0.2 | 0.01444 |
30 | 0.420 | 0.05 | 0.0866 | 0.05 | 0.2 | 0.01604 |
31 | 0.620 | 0.05 | 0.0866 | 0.05 | 0.2 | 0.01842 |
32 | 0.841 | 0.05 | 0.0866 | 0.05 | 0.2 | 0.02076 |
33 | 1.078 | 0.05 | 0.0866 | 0.05 | 0.2 | 0.02244 |
34 | 0.048 | 0 | 0.1 | 0.10 | 1 | 0.00274 |
35 | 0.038 | 0 | 0.1 | 0.10 | 1 | 0.00357 |
36 | 0.123 | 0 | 0.1 | 0.10 | 1 | 0.00645 |
37 | 0.080 | 0 | 0.1 | 0.10 | 1 | 0.00706 |
38 | 0.120 | 0 | 0.1 | 0.10 | 1 | 0.01219 |
39 | 0.160 | 0 | 0.1 | 0.10 | 1 | 0.01625 |
40 | 0.200 | 0 | 0.1 | 0.10 | 1 | 0.02016 |
41 | 0.195 | 0 | 0.1 | 0.10 | 1 | 0.02395 |
42 | 0.230 | 0 | 0.1 | 0.10 | 1 | 0.02534 |
43 | 0.145 | 0 | 0.1 | 0.10 | 1 | 0.02738 |
44 | 0.160 | 0 | 0.1 | 0.10 | 1 | 0.02886 |
45 | 0.308 | 0 | 0.1 | 0.10 | 1 | 0.03398 |
46 | 0.540 | 0 | 0.1 | 0.10 | 1 | 0.03688 |
47 | 0.820 | 0 | 0.1 | 0.10 | 1 | 0.04010 |
48 | 1.060 | 0 | 0.1 | 0.10 | 1 | 0.04274 |
3. Results
4. Discussion
4.1. Non-Vented Configuration
4.2. Vented Configurations
id | Re | f | ξ | β | ||||
---|---|---|---|---|---|---|---|---|
10 | 0.01902 | 0.290 | 3.23 | 161,440 | 0.0158 | 0.674 | 0.189 | 0.01957 |
11 | 0.02014 | 0.392 | 3.42 | 170,959 | 0.0155 | 0.646 | 0.186 | 0.02056 |
12 | 0.02218 | 0.628 | 3.77 | 188,256 | 0.0152 | 0.656 | 0.182 | 0.02267 |
13 | 0.02423 | 0.872 | 4.11 | 205,660 | 0.0148 | 0.645 | 0.178 | 0.02466 |
14 | 0.02579 | 1.078 | 4.38 | 218,948 | 0.0146 | 0.644 | 0.175 | 0.02623 |
19 | 0.01515 | 0.185 | 2.57 | 128,610 | 0.0167 | 0.635 | 0.100 | 0.01504 |
20 | 0.01706 | 0.352 | 2.90 | 144,768 | 0.0162 | 0.663 | 0.097 | 0.01706 |
21 | 0.01791 | 0.413 | 3.04 | 152,054 | 0.0160 | 0.629 | 0.096 | 0.01774 |
22 | 0.02034 | 0.648 | 3.45 | 172,660 | 0.0155 | 0.631 | 0.093 | 0.02014 |
23 | 0.02240 | 0.870 | 3.80 | 190,125 | 0.0151 | 0.633 | 0.091 | 0.02217 |
24 | 0.02419 | 1.075 | 4.11 | 205,363 | 0.0148 | 0.626 | 0.089 | 0.02389 |
28 | 0.01277 | 0.195 | 2.17 | 108,372 | 0.0174 | 0.615 | 0.035 | 0.01236 |
29 | 0.01444 | 0.305 | 2.45 | 122,528 | 0.0169 | 0.616 | 0.034 | 0.01398 |
30 | 0.01604 | 0.420 | 2.72 | 136,124 | 0.0165 | 0.606 | 0.033 | 0.01549 |
31 | 0.01842 | 0.620 | 3.13 | 156,389 | 0.0159 | 0.613 | 0.032 | 0.01781 |
32 | 0.02076 | 0.841 | 3.52 | 176,220 | 0.0154 | 0.613 | 0.031 | 0.02007 |
33 | 0.02244 | 1.078 | 3.81 | 190,445 | 0.0151 | 0.698 | 0.030 | 0.02224 |
46 | 0.03688 | 0.540 | 4.70 | 469,541 | 0.0121 | 0.274 | 0.097 | 0.03691 |
47 | 0.04010 | 0.820 | 5.11 | 510,564 | 0.0118 | 0.275 | 0.095 | 0.04012 |
48 | 0.04274 | 1.060 | 5.44 | 544,167 | 0.0116 | 0.272 | 0.093 | 0.04269 |
4.3. Adimensionalization of Results
5. Conclusions
Acknowledgements
Conflicts of Interest
References
- Del Giudice, G.; Hager, W.H. Sewer side weir with throttling pipe. J. Irrig. Drain. Eng. 1999, 125, 298–306. [Google Scholar] [CrossRef]
- Hager, W. Wastewater Hydraulics: Theory and Practice, 2nd ed.; Springer: Berlin, Germany, 2010. [Google Scholar]
- Del Giudice, G.; Padulano, R.; Carravetta, A. Novel diversion structure for supercritical flow. J. Hydraul. Eng. 2013, 139, 84–87. [Google Scholar] [CrossRef]
- Williams, O. Tunnels and Shafts in Rock; Manual No. 1110-2-2901; U.S. Army Corps of Engineers: Washington, DC, USA, 1997. [Google Scholar]
- Rajaratnam, N.; Mainali, A.; Hsung, C.Y. Observations on flow in vertical dropshafts in urban drainage systems. J. Environ. Eng. 1997, 5, 486–491. [Google Scholar] [CrossRef]
- Guo, Q.; Song, C.C.S. Hydraulic Transient Analysis of TARP Phase II O’Hare System; Project Report 276; St. Anthony Falls Hydraulic Laboratory: Minneapolis, MN, USA, 1988. [Google Scholar]
- Viparelli, M. Air and water currents in vertical shafts. La Huille Blanche 1961, 16, 857–869. [Google Scholar] [CrossRef]
- United States Bureau of Reclamation (USBR). Design of Small Dams; USBR: Washington, DC, USA, 1987. [Google Scholar]
- Fattor, C.A.; Bacchiega, J.D. Analysis of instabilities in the change of regime in morning-glory spillways. Proc. Congr. Int. Assoc. Hydraul. Res. 2001, 29, 656–662. [Google Scholar]
- Khatsuria, R.M. Hydraulics of Spillways and Energy Dissipators; Civil and Environmental Engineering Series, Marcel Dekker: New York, NY, USA, 2005. [Google Scholar]
- Robinson, A.; Morvan, H.; Eastwick, C. Computational investigations into draining in an axisymmetric Vessel. J. Fluid. Eng. 2010, 132. [Google Scholar] [CrossRef]
- Binnie, A. The use of a vertical pipe as an overflow for a large tank. In Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences; The Royal Society: London, UK, 1938; pp. 219–237. [Google Scholar]
- Anwar, H.O. Coefficients of discharge for gravity flow into vertical pipes. J. Hydraul. Res. 1965, 3, 1–19. [Google Scholar] [CrossRef]
- Potter, M.C.; Wiggert, D.C.; Ramadan, B.H. Mechanics of Fluids, 4th ed.; Cengage Learining: Hampshire, UK, 2011. [Google Scholar]
- Hager, W.H.; del Giudice, G. Generalized culvert design diagram. J. Irrig. Drain. Eng. 1998, 124, 271–274. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Padulano, R.; Del Giudice, G.; Carravetta, A. Experimental Analysis of a Vertical Drop Shaft. Water 2013, 5, 1380-1392. https://doi.org/10.3390/w5031380
Padulano R, Del Giudice G, Carravetta A. Experimental Analysis of a Vertical Drop Shaft. Water. 2013; 5(3):1380-1392. https://doi.org/10.3390/w5031380
Chicago/Turabian StylePadulano, Roberta, Giuseppe Del Giudice, and Armando Carravetta. 2013. "Experimental Analysis of a Vertical Drop Shaft" Water 5, no. 3: 1380-1392. https://doi.org/10.3390/w5031380
APA StylePadulano, R., Del Giudice, G., & Carravetta, A. (2013). Experimental Analysis of a Vertical Drop Shaft. Water, 5(3), 1380-1392. https://doi.org/10.3390/w5031380