An Overview of Hybrid Water Supply Systems in the Context of Urban Water Management: Challenges and Opportunities
Abstract
:1. Introduction
2. Present Water Supply Systems Challenges
2.1. Centralized Water Supply Systems
2.2. Decentralized Water Supply Systems
- reducing the cost of infrastructure for long distance transport and treatment of stormwater, potable water and sewage, along with unnecessary treatment to potable standards of water used for purposes other than drinking and bathing;
- more efficient use of resource;
- improving service security;
- reducing water systems’ failure risk;
- strengthening local economies;
- regenerating and protecting the natural environment;
- fortifying community well being.
2.3. Urban Water Cycle
3. Effects of Alternative Water-Service Infrastructure on Centralized Water System
3.1. Water Reclamation and Reuse
3.2. Grey Water Recycling and Reuse
3.3. Rainwater Harvesting
3.4. Stormwater Harvesting
4. Hybrid Water Supply Systems
4.1. Inertia in Water Infrastructure and Hybrid Water Supply Systems
4.2. Advantages of Hybrid Water Supply Systems
4.3. Challenges of Hybrid Water Supply Systems
4.4. The Need for Framework for Assessment of Hybrid Water Supply Systems
5. Discussion
6. Conclusions
Conflicts of Interest
References
- Sharma, A.; Burn, S.; Gardner, T.; Gregory, A. Role of decentralised systems in the transition of urban water systems. Water Sci. Technol. 2010, 10, 577–583. [Google Scholar]
- Pahl-Wostl, C.; Jeffrey, P.; Isendahl, N.; Brugnach, M. Maturing the new water management paradigm: Progressing from aspiration to practice. Water Resour. Manag. 2011, 25, 837–856. [Google Scholar] [CrossRef]
- Nelson, V. Achieving the water commons—The role of decentralised system. In Water Sensitive Cities; Howe, C., Mitchell, C., Eds.; IWA Publishing: London, UK, 2012; pp. 9–28. [Google Scholar]
- Sapkota, M.; Arora, M.; Malano, H.; George, B.; Bandara, N.; Sharma, A.; Moglia, M. Development of a framework to evaluate the hybrid water supply systems. In Proceedings of 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013; pp. 2387–2393.
- Brown, R.R.; Keath, N.; Wong, T.H.F. Urban water management in cities: Historical, current and future regimes. Water Sci. Technol. 2009, 59, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Brown, R. Transitioning to the water sensitive city: The socio-technical challenge. In Water Sensitive Cities; Howe, C., Mitchell, C., Eds.; IWA Publishing: London, UK, 2012; pp. 29–42. [Google Scholar]
- Daigger, G.T. Evolving urban water and residuals management paradigms: Water reclamation and reuse, decentralization, and resource recovery. Water Environ. Res. 2009, 81, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Bell, S. Briefing: Creating sustainable urban water systems. Proc. ICE Urban Des. Plan. 2012, 166, 100. [Google Scholar] [CrossRef]
- Lloyd, S.; Pamminger, F.; Wang, J.; Wallner, S. Transitioning existing development to more sustainable urban water infrastructure. In World Water Congress & Exhibition; International Water Association (IWA): Busan, Korea, 2012; p. 10. [Google Scholar]
- Ferguson, B.C.; Brown, R.R.; Frantzeskaki, N.; de Haan, F.J.; Deletic, A. The enabling institutional context for integrated water management: Lessons from melbourne. Water Res. 2013, 47, 7300–7314. [Google Scholar] [CrossRef] [PubMed]
- Rozos, E.; Makropoulos, C. Assessing the combined benefits of water recycling technologies by modelling the total urban water cycle. Urban Water 2012, 9, 1–10. [Google Scholar] [CrossRef]
- Daigger, G.T.; Crawford, G.V. Enhancing water system security and sustainability by incorporating centralized and decentralized water reclamation and reuse into urban water management systems. J. Environ. Eng. Manag. 2007, 17, 1–10. [Google Scholar]
- Sitzenfrei, R.; Moderl, M.; Rauch, W. Assessing the impact of transitions from centralised to decentralised water solutions on existing infrastructures integrated city-scale analysis with vibe. Water Res. 2013, 47, 7251–7263. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.; Ashley, R.; Farrelly, M. Political and professional agency entrapment: An agenda for urban water research. Water Resour. Manag. 2011, 25, 4037–4050. [Google Scholar] [CrossRef]
- Leeuwen, C.J.V.; Frijns, J.; Wezel, A.V.; Ven, F.H.M.V.D. City blueprints: 24 indicators to assess the sustainability of the urban water cycle. Water Resour. Manag. 2012, 26, 2177–2197. [Google Scholar] [CrossRef]
- Marlow, D.R.; Moglia, M.; Cook, S.; Beale, D.J. Towards sustainable urban water management: A critical reassessment. Water Res. 2013, 47, 7150–7161. [Google Scholar] [CrossRef] [PubMed]
- Urich, C.; Bach, P.M.; Hellbach, C.; Sitzenfrei, R.; Kleidorfer, M.; McCarthy, D.T.; Deletic, A.; Rauch, W. Dynamics of cities and water infrastructure in the dance4water model. In Proceedings of 12th International Conference on Urban Drainage, Porto Alegre, Brazil, 11–16 September 2011; p. 8.
- Ashley, R.M.; Nowell, R.; Gersonius, B.; Walker, L. Surface Water Management and Green Infrastructure: A Review of Potential Benefits and UK and International Practices; Foundation for Water Research: Marlow, UK, 2011. [Google Scholar]
- Wong, T.H.F.; Brown, R.R. The water sensitive city: Principles for practice. Water Sci. Technol. 2009, 60, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.; Brown, R. Transitioning to water sensitive cities: Ensuring resilience through a new hydro-social contract. In Proceedings of 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 31 August–5 September 2008; p. 10.
- Mitchell, V.G. Applying integrated urban water management concepts: A review of Australian experience. Environ. Manag. 2006, 37, 589–605. [Google Scholar] [CrossRef]
- Younos, T. Paradigm shift: Holistic approach for water management in urban environments. Front. Earth Sci. 2011, 5, 421–427. [Google Scholar]
- Sharma, A.K.; Tjandraatmadja, G.; Cook, S.; Gardner, T. Decentralised systems—Definition and drivers in the current context. Water Sci. Technol. 2013, 67, 2091–2101. [Google Scholar] [CrossRef] [PubMed]
- Tjandraatmadja, G.; Burn, S.; McLaughlin, M.; Biswas, T. Rethinking urban water systems: Revisiting concepts in urban wastewater collection and treatment to ensure infrastructure sustainability. Water Supply 2005, 5, 145–154. [Google Scholar]
- Rygaard, M.; Albrechtsen, H.J.; Binning, P.J. Alternative Water Management and Self-Sufficient Water Supplies; IWA Publishing: London, UK, 2009. [Google Scholar]
- Gikas, P.; Tchobanoglous, G. The role of satellite and decentralized strategies in water resources management. J. Environ. Manag. 2009, 90, 144–152. [Google Scholar] [CrossRef]
- Sharma, A.K.; Cook, S.; Chong, M.N. Monitoring and validation of decentralised water and wastewater systems for increased uptake. Water Sci. Technol. 2013, 67, 2576–2581. [Google Scholar] [CrossRef] [PubMed]
- Van Roon, M. Water localisation and reclamation: Steps towards low impact urban design and development. J. Environ. Manag. 2007, 83, 437–447. [Google Scholar] [CrossRef]
- Biggs, C.; Ryan, C.; Wiseman, J.; Larsen, K. Distributed Water Systems: A Networked and Localised Approach for Sustainable Water Services; Victorian Eco-Innovation Lab (VEIL), University of Melbourne: Melbourne, Australia, 2009; p. 31. [Google Scholar]
- Sharma, A.; Grant, A.L.; Grant, T.; Pamminger, F.; Opray, L. Environmental and economic assessment of urban water services for a greenfield development. Environ. Eng. Sci. 2009, 26, 921–934. [Google Scholar] [CrossRef]
- Moglia, M.; Alexander, K.S.; Sharma, A. Discussion of the enabling environments for decentralised water systems. Water Sci. Technol. 2011, 63, 2331–2339. [Google Scholar] [CrossRef] [PubMed]
- Moglia, M.; Cook, S.; Sharma, A.K.; Burn, S. Assessing decentralised water solutions: Towards a framework for adaptive learning. Water Resour. Manag. 2011, 25, 217–238. [Google Scholar] [CrossRef]
- Parkinson, J.; Schutze, M.; Butler, D. Modelling the impacts of domestic water conservation on the sustainability of the urban sewerage system. Water Environ. J. 2005, 19, 49–56. [Google Scholar] [CrossRef]
- Carragher, B.J.; Stewart, R.A.; Beal, C.D. Quantifying the influence of residential water appliance efficiency on average day diurnal demand patterns at an end use level: A precursor to optimised water service infrastructure planning. Resour. Conserv. Recycl. 2012, 62, 81–90. [Google Scholar] [CrossRef]
- Marleni, N.; Gray, S.; Sharma, A.; Burn, S.; Muttil, N. Impact of water source management practices in residential areas on sewer networks—A review. Water Sci. Technol. 2012, 65, 624–642. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Cook, S.; Tjandraatmadja, G.; Gregory, A. Impediments and constraints in the uptake of water sensitive urban design measures in greenfield and infill developments. Water Sci. Technol. 2012, 65, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Farrelly, M.; Brown, R. Rethinking urban water management: Experimentation as a way forward? Glob. Environ. Change 2011, 21, 721–732. [Google Scholar] [CrossRef]
- Bieker, S.; Cornel, P.; Wagner, M. Semicentralised supply and treatment systems: Integrated infrastructure solutions for fast growing urban areas. Water Sci. Technol. 2010, 61, 2905–2913. [Google Scholar] [CrossRef] [PubMed]
- Weber, B.; Cornel, P.; Wagner, M. Semi-centralised supply and treatment systems for (fast growing) urban areas. Water Sci. Technol. 2007, 55, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Rygaard, M.; Binning, P.J.; Albrechtsen, H.J. Increasing urban water self-sufficiency: New era, new challenges. J. Environ. Manag. 2011, 92, 185–194. [Google Scholar] [CrossRef]
- Wilderer, P.A.; Huber, H. Integration of water reuse in the planning of livable cities. Intell. Build. Int. 2011, 3, 96–106. [Google Scholar]
- Dimitriadis, S. Issues Encountered in Advancing Australia’s Water Recycling Schemes; Department of the Parliamentary Services: Canberra, Australia, 2005. [Google Scholar]
- Killion, S.M. Design and Modeling of Infrastructure for Residential and Community Water Reuse. Master Thesis, University of Nebraska, Lincoln, NE, USA, 2011. [Google Scholar]
- Chiou, R.J.; Chang, T.C.; Ouyang, C.F. Aspects of municipal wastewater reclamation and reuse for future water resource shortages in Taiwan. Water Sci. Technol. 2007, 55, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.W. Integrated concepts in water reuse: Managing global water needs. Desalination 2006, 187, 65–75. [Google Scholar] [CrossRef]
- Burkhard, R.; Deletic, A.; Craig, A. Techniques for water and wastewater management: A review of techniques and their integration in planning. Urban Water 2000, 2, 197–221. [Google Scholar] [CrossRef]
- Coombes, P.; Mitchell, G. Urban water harvesting and reuse. In Australian Runoff Quality: A Guide to Water Sensitive Urban Design; Wong, T.H.F., Ed.; Engineers Australia: Sydney, Australia, 2006; pp. 6-1–6-15. [Google Scholar]
- Willis, R.M.; Stewart, R.A.; Williams, P.R.; Hacker, C.H.; Emmonds, S.C.; Capati, G. Residential potable and recycled water end uses in a dual reticulated supply system. Desalination 2011, 272, 201–211. [Google Scholar] [CrossRef]
- Blanksby, J. Water conservation and sewerage systems. In Water Demand Management; Butler, D., Memon, F.A., Eds.; IWA Publishing: London, UK, 2006; pp. 107–129. [Google Scholar]
- Bong, C.H.J. A review on the self-cleansing design criteria for sewer system. UNIMAS e-J. Civil Eng. 2014, 5, 1–7. [Google Scholar]
- Nalluri, C.; Dabrowski, W. Need for new standards to prevent deposition in wastewater sewers. J. Environ. Eng. 1994, 120, 1032–1042. [Google Scholar] [CrossRef]
- Anderson, J.M. The potential for water recycling in Australia—Expanding our horizons. Desalination 2012, 106, 151–156. [Google Scholar]
- Penn, R.; Hadari, M.; Friedler, E. Evaluation of the effects of greywater reuse on domestic wastewater quality and quantity. Urban Water 2012, 9, 137–148. [Google Scholar] [CrossRef]
- Eriksson, E.; Auffarth, K.; Henze, M.; Ledin, A. Characteristics of grey wastewater. Urban Water 2002, 4, 85–104. [Google Scholar] [CrossRef]
- Novotny, V.; Ahern, J.; Brown, P. Water Centric Sustainable Communities: Planning, Retrofitting, and Building the Next Urban Environment; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Zhang, Y.; Grant, A.; Sharma, A.; Chen, D.; Chen, L. Alternativewater resources for rural residential development in western Australia. Water Resour. Manag. 2010, 24, 25–36. [Google Scholar] [CrossRef]
- Zhang, Y.; Grant, A.; Sharma, A.; Chen, D.; Chen, L. Assessment of rainwater use and greywater reuse in high-rise buildings in a brownfield site. Water Sci. Technol. 2009, 60, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gersberg, R.M.; Wilhelm, C.; Voigt, M. Decentralized water management: Rainwater harvesting and greywater reuse in an urban area of Beijing, China. Urban Water 2009, 6, 375–385. [Google Scholar] [CrossRef]
- Diaper, C.; Jefferson, B.; Parsons, S.A.; Judd, S.J. Water-recycling technologies in the UK. Water Environ. J. 2001, 15, 282–286. [Google Scholar] [CrossRef]
- Hunt, D.V.L.; Lombardi, D.R.; Farmani, R.; Jefferson, I.; Memon, F.A.; Butler, D.; Rogers, C.D.F. Urban futures and the code for sustainable homes. Eng. Sustain. 2012, 165, 37–58. [Google Scholar] [CrossRef]
- Hunt, J.; Anda, M.; Ho, G. Water balance modelling of alternate water sources at the household scale. Water Sci. Technol. 2011, 63, 1873–1879. [Google Scholar] [CrossRef]
- Mitchell, V.G.; Diaper, C.; Gray, S.R.; Rahilly, M. UVQ: Modelling the movement of water and contaminants through the total urban water cycle. In Proceedings of 28th International Hydrology and Water Resources Symposium, Wollongong, NSW, Australia, 10–14 November 2003; p. 8.
- Bertrand, N.; Jefferson, B.; Jeffrey, P. Cross sectoral and scale-up impacts of greywater recycling technologies on catchment hydrological flows. Water Sci. Technol. 2008, 57, 741–746. [Google Scholar] [CrossRef]
- Bertrand, N.M.A. Impacts of Scaling up Water Recycling and Rainwater Harvesting Technologies on Hydraulic and Hydrological Flows. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2008. [Google Scholar]
- Rozos, E.; Makropoulos, C.; Butler, D. Design robustness of local water-recycling schemes. J. Water Resour. Plan. Manag. 2010, 136, 531–538. [Google Scholar] [CrossRef]
- Radcliffe, J.C. Evolution of water recycling in Australian cities since 2003. Water Sci. Technol. 2010, 62, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Ogoshi, M.; Suzuki, Y.; Asano, T. Water reuse in japan. Water Sci. Technol. 2001, 43, 17–23. [Google Scholar] [PubMed]
- Penn, R.; Schütze, M.; Friedler, E. Effects of on-site greywater reuse on municipal sewer systems. In Proceedings of 12th International Conference on Urban Drainage, Porto Alegre, Brazil, 11–16 September 2011.
- Leidl, C.; Farahbakhsh, K.; FitzGibbon, J. Identifying barriers to widespread implementation of rainwater harvesting for urban household use in Ontario. Can. Water Resour. J. 2010, 35, 93–104. [Google Scholar] [CrossRef]
- Villarreal, E.L.; Dixon, A. Analysis of a rainwater collection system for domestic water supply in ringdansen, Norrköping, Sweden. Build. Environ. 2005, 40, 1174–1184. [Google Scholar] [CrossRef]
- Sharma, A.; Gray, S.; Diaper, C.; Liston, P.; Howe, C. Assessing integrated water management options for urban developments—Canberra case study. Urban Water 2008, 5, 147–162. [Google Scholar] [CrossRef]
- Burns, M.J.; Fletcher, T.D.; Duncan, H.P.; Hatt, B.E.; Ladson, A.R.; Walsh, C.J. The performance of rainwater tanks for stormwater retention and water supply at the household scale: An empirical study. Hydrol. Proc. 2014, 29, 152–160. [Google Scholar] [CrossRef]
- Aladenola, O.O.; Adeboye, O.B. Assessing the potential for rainwater harvesting. Water Resour. Manag. 2010, 24, 2129–2137. [Google Scholar] [CrossRef]
- Burn, S. Future urban water supplies. In Water: Science and Solutions for Australia; Prosser, I.P., Ed.; CSIRO: Canberra, Australia, 2011; pp. 89–104. [Google Scholar]
- Cook, S.; Sharma, A.; Chong, M. Performance analysis of a communal residential rainwater system for potable supply: A case study in Brisbane, Australia. Water Resour. Manag. 2013, 27, 4865–4876. [Google Scholar] [CrossRef]
- Cook, S.; Sharma, A.K.; Gurung, T.R. Evaluation of alternative water sources for commercial buildings: A case study in Brisbane, Australia. Resour. Conserv. Recycl. 2014, 89, 86–93. [Google Scholar] [CrossRef]
- Burns, M.J.; Fletcher, T.D.; Duncan, H.P.; Hatt, B.E.; Ladson, A.R.; Walsh, C.J. The stormwater retention performance of rainwater tanks at the land-parcel scale. In Proceedings of 7th International Conference on Water Sensitive Urban Design, Melbourne, Australia, 21–23 February 2012.
- Coombes, P.J.; Kuczera, G. Integrated urban water cycle management: Moving towards system understanding. In Proceedings of 2nd National Conference on Water Sensitive Urban Design, Engineers Australia, Brisbane, Australia, 2–4 September 2002.
- Burns, M.J.; Fletcher, T.D.; Hatt, B.E.; Ladson, A.R.; Walsh, C.J. Can allotment-scale rainwater harvesting manage urban flood risk and protect stream health? In Proceedings of Novatech 7th International Conference, Lyon, France, 27 June–1 July 2010.
- Gardels, D.; Stansbury, J.; Killion, S.; Zhang, T.; Neal, J.; Alahmad, M.; Berryman, C.; Lau, S.; Li, H.; Schwer, A.; et al. Economic input-output life cycle assessment of water reuse strategies in residential buildings. In Proceedings of World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, Palm Springs, CA, USA, 22–26 May 2011; pp. 1652–1662.
- Cook, S.; Tjandraatmadja, G.; Marleni, N. Impact of Source Management Strategies on Quality and Loads in Residential Wastewater—Scenario Analysis; CSIRO: Canberra, Australia, 2010. [Google Scholar]
- Moglia, M.; Tjandraatmadja, G.; Sharma, A.K. Exploring the need for rainwater tank maintenance: Survey, review and simulations. Water Supply 2013, 13, 191–201. [Google Scholar] [CrossRef]
- Diaper, C.; Tjandraatmadja, G.; Kenway, S. Sustainable Subdivisions—Review of Technologies for Integrated Water Services; Cooperative Research Centre for Construction Innovation: Brisbane, Australia, 2007. [Google Scholar]
- Mitchell, V.G.; McCarthy, D.T.; Deletic, A.; Fletcher, T.D. Urban stormwater harvesting sensitivity of a storage behaviour model. Environ. Model. Softw. 2008, 23, 782–793. [Google Scholar] [CrossRef]
- Inamdar, P.M.; Cook, S.; Sharma, A.K.; Corby, N.; O’Connor, J.; Perera, B.J.C. A gis based screening tool for locating and ranking of suitable stormwater harvesting sites in urban areas. J. Environ. Manag. 2013, 128, 363–370. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Deletic, A.; Mitchell, V.G.; Hatt, B.E. Reuse of urban runoff in Australia: A review of recent advances and remaining challenges. J. Environ. Qual. 2008, 37, 116–127. [Google Scholar] [CrossRef]
- Mitchell, V.G.; Deletic, A.; Fletcher, T.D.; Hatt, B.E.; McCarthy, D.T. Achieving multiple benefits from stormwater harvesting. Water Sci. Technol. 2007, 55, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, T.D.; Mitchell, V.G.; Deletic, A.; Ladson, T.R.; Séven, A. Is stormwater harvesting beneficial to urban waterway environmental flows? Water Sci. Technol. 2007, 55, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.J.; Fletcher, T.D.; Burns, M.J. Urban stormwater runoff: A new class of environmental flow problem. PLoS One 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Hering, J.G.; Waite, T.D.; Luthy, R.G.; Drewes, J.E.; Sedlak, D.L. A changing framework for urban water systems. Environ. Sci. Technol. 2013, 47, 10721–10726. [Google Scholar] [CrossRef] [PubMed]
- Schramm, S. Semicentralised water supply and treatment: Options for the dynamic urban area of Hanoi, Vietnam. J. Environ. Assess. Policy Manag. 2011, 13, 285–314. [Google Scholar] [CrossRef]
- Schramm, S.; Bieker, S. Urban semicentralised supply and disposal: Innovations and challenges for Hanoi, Vietnam. Int. J. Sustain. Dev. 2010, 13, 97–110. [Google Scholar] [CrossRef]
- Makropoulos, C.K.; Butler, D. Distributed water infrastructure for sustainable communities. Water Resour. Manag. 2010, 24, 2795–2816. [Google Scholar] [CrossRef]
- Bach, P.M.; McCarthy, D.T.; Urich, C.; Sitzenfrei, R.; Kleidorfer, M.; Rauch, W.; Deletic, A. A planning algorithm for quantifying decentralised water management opportunities in urban environments. Water Sci. Technol. 2013, 68, 1857–1865. [Google Scholar] [CrossRef] [PubMed]
- Wang, S. Values of decentralized systems that avoid investments in idle capacity within the wastewater sector: A theoretical justification. J. Environ. Manag. 2014, 136, 68–75. [Google Scholar] [CrossRef]
- Daigger, G.T. Sustainable urban water and resource management. The Bridge 2011, 41, 13–18. [Google Scholar]
- Christian-Smith, J.; Gleick, P.H. Introduction: The soft path for water. In A Twenty-First Century US Water Policy; Oxford University Press: New York, NY, USA, 2012; pp. xv–xxi. [Google Scholar]
- Butler, D.; Makropoulos, C. Water Related Infrastructure for Sustainable Communities; Environment Agency: Bristol, UK, 2006. [Google Scholar]
- Poustie, M.S.; Deletic, A.; Brown, R.R.; Wong, T.; de Haana, F.J.; Skinner, R. Sustainable urban water futures in developing countries: The centralised, decentralised or hybrid dilemma. Urban Water 2014. [Google Scholar] [CrossRef]
- Brown, R.; Farrelly, M.; Keath, N. Practitioner perceptions of social and institutional barriers to advancing a diverse water source approach in Australia. Water Resour. Dev. 2009, 25, 15–28. [Google Scholar] [CrossRef]
- Lienert, J.; Monstadt, J.; Truffer, B. Future scenarios for a sustainable water sector: A case study from Switzerland. Environ. Sci. Technol. 2006, 40, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Krozer, Y.; Hophmayer-Tokich, S.; van Meerendonk, H.; Tijsma, S.; Vos, E. Innovations in the water chain—Experiences in the Netherlands. J. Clean. Prod. 2010, 18, 439–446. [Google Scholar] [CrossRef]
- Brown, R.R.; Farrelly, M.A. Delivering sustainable urban water management: A review of the hurdles we face. Water Sci. Technol. 2009, 59, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.H.; Wenger, S.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Shuster, W.D.; Thurston, H.W.; Brown, R.R. Impediments and solutions to sustainable, watershed-scale urban stormwater management: Lessons from australia and the united states. Environ. Manag. 2008, 42, 344–359. [Google Scholar] [CrossRef]
- Domènech, L. Rethinking water management: From centralised to decentralised water supply and sanitation models. Doc. d'Anàlisi Geogr. 2011, 57, 293–310. [Google Scholar]
- Prime Minister’s Science, Engineering and Innovation Council (PMSEIC). Water for Our Cities: Building Resilience in a Climate of Uncertainty; PMSEIC: Canberra, Australia, 2007. [Google Scholar]
- Schramm, E.; Felmeden, J. Towards more resilient water infrastructures. Local Sustain. 2012, 2, 177–186. [Google Scholar]
- Wolf, M.; Störmer, E. Decentralisation of wastewater infrastructure in eastern-germany. Network Ind. Quart. 2010, 12, 7–10. [Google Scholar]
- Kluge, T.; Moser-Nørgaard, P.M. Innovative water supply and disposal technologies as integral part of integrated water resources management: An example. Int. J. Water 2008, 4, 41–54. [Google Scholar] [CrossRef]
- Umapathi, S.; Chong, M.N.; Sharma, A.K. Assessment of diurnal water demand patterns to determine supply reliability of plumbed rainwater tanks in south east Queensland. In Proceedings of WSUD 2012: Water Sensitve Urban Design; Building the Water Sensitve Community 7th International Conference on Water Sensitive Urban Design, Melbourne, Australia, 21–23 February 2012; pp. 187–194.
- Lucas, S.A.; Coombes, P.J.; Sharma, A.K. The impact of diurnal water use patterns, demand management and rainwater tanks on water supply network design. Water Sci. Technol. Water Supply 2010, 10, 69–80. [Google Scholar] [CrossRef]
- Gurung, T.R.; Stewart, R.A.; Sharma, A.K.; Beal, C.D. Smart meters for enhanced water supply network modelling and infrastructure planning. Resour. Conserv. Recycl. 2014, 90, 34–50. [Google Scholar] [CrossRef]
- Speers, A.; Mitchell, G. Integrated urban water cycle. In Proceedings of National Conference on Water Sensitive Urban Design Sustainable Drainage Systems for Urban Areas, Melbourne, Australia, 30–31 August 2000.
- Bichai, F.; Ryan, H.; Fitzgerald, C.; Williams, K.; Abdelmoteleb, A.; Brotchie, R.; Komatsu, R. Understanding the role of alternative water supply in an urban water security strategy: An analytical framework for decision-making. Urban Water J. 2014. [Google Scholar] [CrossRef]
- Marsden Jacob Associates. Environmental and Social Values Associated with Non-Potable Recycled Water; Australian Water Recycling Centre of Excellence: Brisbane, Australia, 2014. [Google Scholar]
- De Graaf, R.; van der Brugge, R. Transforming water infrastructure by linking water management and urban renewal in rotterdam. Technol. Forecast. Soc. Change 2010, 77, 1282–1291. [Google Scholar] [CrossRef]
- Marsden Jacob Associates. Economic Viability of Recycled Water Schemes; Australian Water Recycling Centre of Excellence: Brisbane, Australia, 2013. [Google Scholar]
- Bell, S. Urban water systems in transition. Emerg. Complex. Organ. 2012, 14, 45–58. [Google Scholar]
- De Luca, M.J. Appropriate Technology and Adoption of Water Conservation Practices: Case Study of Greywater Reuse in Guelph. Master’s Thesis, The University of Guelph, Guelph, ON, Canada, 2012. [Google Scholar]
- Environmental Protection Agency (EPA). Effects of Water Age on Distribution System Water Quality; EPA: Washington, DC, USA, 2002. [Google Scholar]
- Andrade, M.A.; Romero-Gomez, P.; Choi, C.Y. Impact of sustainable urban water infrastructure on water quality. In Proceedings of World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, Palm Springs, CA, USA, 22–26 May 2011; pp. 253–262.
- Moglia, M. Water Management in the Developing Town: A Complex Systems Perspective. Ph.D. Thesis, Australian National University, Canberra, Australia, 2010. [Google Scholar]
- Marney, D.; Sharma, A. SMART SYSTEMS-The application and utility of “smarts” for monitoring water and its infrastructure-the benefits of current and future sensor technology. Water Aust. Water Wastewater Assoc. 2012, 39, 86–92. [Google Scholar]
- Mankad, A.; Tapsuwan, S. Review of socio-economic drivers of community acceptance and adoption of decentralised water systems. J. Environ. Manag. 2011, 92, 380–391. [Google Scholar] [CrossRef]
- Abrishamchi, A.; Ebrahimian, A.; Tajrishi, M.; Mariño, M.A. Case study: Application of multicriteria decision making to urban water supply. J. Water Resour. Plan. Manag. 2005, 131, 326–335. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapkota, M.; Arora, M.; Malano, H.; Moglia, M.; Sharma, A.; George, B.; Pamminger, F. An Overview of Hybrid Water Supply Systems in the Context of Urban Water Management: Challenges and Opportunities. Water 2015, 7, 153-174. https://doi.org/10.3390/w7010153
Sapkota M, Arora M, Malano H, Moglia M, Sharma A, George B, Pamminger F. An Overview of Hybrid Water Supply Systems in the Context of Urban Water Management: Challenges and Opportunities. Water. 2015; 7(1):153-174. https://doi.org/10.3390/w7010153
Chicago/Turabian StyleSapkota, Mukta, Meenakshi Arora, Hector Malano, Magnus Moglia, Ashok Sharma, Biju George, and Francis Pamminger. 2015. "An Overview of Hybrid Water Supply Systems in the Context of Urban Water Management: Challenges and Opportunities" Water 7, no. 1: 153-174. https://doi.org/10.3390/w7010153
APA StyleSapkota, M., Arora, M., Malano, H., Moglia, M., Sharma, A., George, B., & Pamminger, F. (2015). An Overview of Hybrid Water Supply Systems in the Context of Urban Water Management: Challenges and Opportunities. Water, 7(1), 153-174. https://doi.org/10.3390/w7010153