Modeling Typhoon‐Induced Alterations on River Sediment Transport and Turbidity Based on Dynamic Landslide Inventories: Gaoping River Basin, Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Turbidity
2.2.2. Precipitation
Year | Precipitation (mm) | Land Cover Ratio (%) | ||||||
---|---|---|---|---|---|---|---|---|
Forest | Agriculture | Grassland | Water | Building | Landslide | Others | ||
1998 | 3388 | * | ||||||
1999 | 3030 | |||||||
2000 | 2986 | |||||||
2001 | 4133 | |||||||
2002 | 2015 | |||||||
2003 | 2101 | |||||||
2004 | 2960 | 70.8 | 14.5 | 2.1 | 4.7 | 3.1 | 2.5 | 2.3 |
2005 | 5069 | 70.3 | 14.5 | 2.0 | 4.7 | 3.1 | 3.2 | 2.2 |
2006 | 3965 | 70.2 | 14.5 | 2.0 | 4.7 | 3.1 | 3.4 | 2.1 |
2007 | 4110 | 70.2 | 14.5 | 2.0 | 4.7 | 3.1 | 3.3 | 2.2 |
2008 | 4325 | 70.0 | 14.5 | 2.0 | 4.6 | 3.1 | 3.5 | 2.3 |
2009 | 3406 | 70.4 | 14.5 | 2.0 | 4.7 | 3.1 | 3.0 | 2.3 |
2010 | 3074 | 66.2 | 14.3 | 1.4 | 4.5 | 3.1 | 8.2 | 2.3 |
2011 | 2550 | 67.6 | 14.4 | 1.6 | 4.5 | 3.1 | 6.5 | 2.3 |
2012 | 3989 | 67.9 | 14.4 | 1.7 | 4.5 | 3.1 | 6.2 | 2.2 |
Average | 3407 | 69.3 | 15.1 | 1.9 | 4.6 | 3.1 | 4.4 | 0.8 |
2.2.3. River Discharge and Suspended Sediment Load
2.2.4. Inventory of Landslides
2.3. Landslide Updating
2.4. SWAT
Sensitivity Ranking | Parameter | Process | Recommended Range | Values Calibrated by NSCE | Values Calibrated by Log-RMSE | Parameter Description |
---|---|---|---|---|---|---|
1 | SPCON | Sediment from channels | 0.0001–0.01 | 0.002 | 0.009 | Linear parameter for calculating the maximum amount of sediment that can be re-entrained during channel sediment routing (Equation (2)) |
2 | PUSLE | Sediment from landscape | 0–1 | 0.846 | 0.966 | USLE equation support practice factor (Equation (1)) |
3 | CH_N(2) | Channel flow | 0.025–0.15 | 0.048 | 0.065 | Manning coefficient for the main channel |
4 | CN2 | Surface runoff | ±25% | ±0.81% | ±2.54% | Tuning range for the compensation of initial curve number settings at moisture condition II |
5 | SURLAG | Surface runoff | 0–10 | 0.623 | 3.31 | Surface runoff lag coefficient |
6 | Slope | Sediment from landscape | ±25% | ±0% | ±0% | Range for the fluctuation of initial average slope steepness (m/m) |
7 | SPEXP | Sediment from channels | 1.0–2.0 | 1.113 | 1.732 | Exponent parameter for calculating sediment re-entrained in channel sediment routing (Equation (2)) |
2.5. Objective Functions
3. Results and Discussion
3.1. The Alterations in Turbidity and Sediment Regimes after Typhoon Morakot
3.1.1. Turbidity
Event | Date * | Cumulative Rainfall (mm) | Duration (Day) | Max. 24-h Rainfall (mm) | Max. Daily Turbidity (NTU) |
---|---|---|---|---|---|
Talim | 21 June 2012 | 644 | 7 | 358 | 45,000 |
0726 storm | 29 July 2010 | 569 | 10 | 194 | 45,000 |
0522 storm | 24 May 2010 | 133 | 5 | 45 | 45,000 |
Morakot | 9 August 2009 | 2489 | 7 | 1190 | 42,400 ** |
0829 storm | 30 August 2011 | 450 | 5 | 204 | 40,000 |
0610 storm | 13 June 2012 | 1366 | 8 | 389 | 39,000 |
0529 storm | 30 May 2010 | 334 | 4 | 165 | 35,000 |
0719 storm | 19 July 2011 | 643 | 6 | 286 | 32,700 |
Kalmaegi | 18 July 2008 | 1043 | 3 | 540 | 24,000 |
Fanapi | 21 September 2010 | 524 | 2 | 501 | 23,000 |
0803 storm | 6 August 2010 | 158 | 3 | 98 | 18,500 |
Mindulle | 4 July 2004 | 1667 | 6 | 577 | 18,000 |
Sepat | 19 August 2007 | 1032 | 6 | 360 | 14,500 |
Tembin | 29 August 2012 | 165 | 5 | 78 | 14,000 |
0609 storm | 10 June 2006 | 1063 | 9 | 390 | 13,360 |
Fungwong | 29 July 2008 | 525 | 2 | 347 | 10,000 |
Event | Date | Cumulative Rainfall (mm) | Duration (Day) | Max. 24-h Rainfall (mm) | Peak Daily Discharge (CMS) | Contribution Ratio * (%) |
---|---|---|---|---|---|---|
Morakot | 9 August | 2489 | 7 | 1190 | 15,252 | 93 |
Haitang | 5 July | 1574 | 4 | 616 | - | 47 |
Mindulle | 4 July | 1667 | 6 | 577 | 10,007 | 80 |
Talim | 5 September | 619 | 2 | 560 | - | 20 |
Kalmaegi | 8 July | 1043 | 3 | 540 | 2850 | 48 |
Fanapi | 10 September | 524 | 2 | 501 | 2832 | 55 |
Bilis | 6 July | 697 | 4 | 476 | - | 68 |
0914 storm | 8 September | 656 | 5 | 445 | 5075 | 40 |
0609 storm | 6 June | 1063 | 9 | 390 | - | 18 |
0610 storm | 12 June | 1366 | 8 | 389 | 6499 | 55 |
0813 storm | 7 August | 836 | 9 | 367 | 5505 | 70 |
Sepat | 1032 | 6 | 360 | 6364 |
3.1.2. Sediment Load
3.1.3. Sediment Rating Curve
3.2. Simulation of River Flow, Sediment Loads and Turbidity Using SWAT
3.2.1. River Flow Simulation
Time Periods | Simulation of River Discharge with Landslide Updating | Simulation of Suspended Sediment Load with Landslide Updating | ||||||
---|---|---|---|---|---|---|---|---|
NSCE Based Calibration | Log-RMSE Based Calibration | NSCE Based Calibration | Log-RMSE Based Calibration | |||||
NSE | R2 | NSE | R2 | NSE | R2 | NSE | R2 | |
1999–2003 (Calibration) | 0.752 | 0.768 | 0.814 | 0.858 | 0.888 | 0.898 | −16.614 | 0.903 |
2004–2008 (Pre-Morakot validation) | 0.897 | 0.913 | 0.897 | 0.920 | 0.669 | 0.688 | −10.839 | 0.751 |
2009–2012 (Post-Morakot validation) | 0.503 | 0.901 | 0.734 | 0.901 | 0.937 | 0.993 | −0.862 | 0.976 |
2004–2012 (overall validation) | 0.789 | 0.852 | 0.855 | 0.873 | 0.884 | 0.909 | −2.831 | 0.845 |
3.2.2. Sediment Load Simulation
3.2.3. Turbidity Simulation
3.3. Modeling the Effects of Landslides on Annual Sediment Yields
3.3.1. Comparison between SWAT Modeling Results with and without the Use of Landslide Updating
Year | Landslide Ratio (%) | Observed Ls (Mt/yr) | NSCE Simulated Ls (Mt/yr) | Log-RMSE Simulated Ls (Mt/yr) | The Effect of LU Updating on Ls (%) | Difference in Landslide Ratio * (%) | ||
---|---|---|---|---|---|---|---|---|
January–July | August–December | Without Updating | With Updating | With Updating | ||||
2004 | 2.5 | 3.2 | 7.23 | 8.47 | 8.28 | 35.2 | −2.3 | −0.1 |
2005 | 3.2 | 3.4 | - | 14.66 | 14.65 | 62.3 | −0.1 | +0.1 |
2006 | 3.4 | 3.3 | - | 7.18 | 7.20 | 30.7 | +0.2 | 0 |
2007 | 3.3 | 3.5 | - | 10.94 | 11.03 | 50.0 | +0.8 | +0.2 |
2008 | 3.5 | 3.0 | 20.54 | 10.88 | 10.89 | 52.7 | +0.1 | −0.5 |
2009 | 3.0 | 8.2 | 27.01 | 17.46 | 20.53 | 63.1 | +17.6 | +4.9 |
2010 | 8.2 | 6.5 | 7.53 | 4.40 | 4.99 | 23.1 | +13.4 | +3.2 |
2011 | 6.5 | 6.2 | 2.50 | 2.91 | 3.22 | 17.4 | +10.7 | +2.9 |
2012 | 6.2 | 4.60 | 3.61 | 3.98 | 18.9 | +10.2 | +2.9 |
3.3.2. Integration of Landslide Updating and SWAT Modeling
4. Conclusions and Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chai, B.H.T. Structure and tectonic evolution of Taiwan. Am. J. Sci. 1972, 272, 389–422. [Google Scholar] [CrossRef]
- Li, Y.H. Denudation of Taiwan Island since Pliocene Epoch. Geology 1976, 4, 105–108. [Google Scholar] [CrossRef]
- Kao, S.J.; Milliman, J.D. Water and sediment discharge from small mountainous rivers, Taiwan: The roles of lithology, episodic events, and human activities. J. Geol. 2008, 116, 431–448. [Google Scholar] [CrossRef]
- Hsu, S.M.; Wen, H.Y.; Chen, N.C.; Hsu, S.Y.; Chi, S.Y. Using an integrated method to estimate watershed sediment yield during heavy rain period: A case study in Hualien County, Taiwan. Nat. Hazards Earth Syst. Sci. 2012, 12, 1949–1960. [Google Scholar] [CrossRef]
- Hovius, N.; Stark, C.P.; Chu, H.T.; Lin, J.C. Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. J. Geol. 2000, 108, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Kao, S.J.; Chan, S.C.; Kuo, C.H.; Liu, K.K. Transport-dominated sediment loading in Taiwanese rivers: A case study from the Ma-an Stream. J. Geol. 2005, 113, 217–225. [Google Scholar] [CrossRef]
- Dadson, S.J.; Hovius, N.; Chen, H.G.; Dade, W.B.; Hsieh, M.L.; Willett, S.D.; Hu, J.C.; Horng, M.J.; Chen, M.C.; Stark, C.P.; et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 2003, 426, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.-W.; Chen, H.; Petley, D.N.; Horng, M.-J.; Wu, S.-J.; Chuang, B. Impact of rainstorm-triggered landslides on high turbidity in a mountain reservoir. Eng. Geol. 2011, 117, 97–103. [Google Scholar] [CrossRef]
- Harris, P.T.; Hughes, M.G.; Baker, E.K.; Dalrymple, R.W.; Keene, J.B. Sediment transport in distributary channels and its export to the pro-deltaic environment in a tidally dominated delta: Fly River, Papua New Guinea. Cont. Shelf Res. 2004, 24, 2431–2454. [Google Scholar] [CrossRef]
- Wass, P.D.; Marks, S.D.; Finch, J.W.; Leeks, G.J.L.; Ingram, J.K. Monitoring and preliminary interpretation of in-river turbidity and remote sensed imagery for suspended sediment transport studies in the Humber catchment. Sci. Total Environ. 1997, 194, 263–283. [Google Scholar] [CrossRef]
- Chuang, S.C.; Chen, H.; Lin, G.-W.; Lin, C.W.; Chang, C.P. Increase in basin sediment yield from landslides in storms following major seismic disturbance. Eng. Geol. 2009, 103, 59–65. [Google Scholar] [CrossRef]
- Aksoy, H.; Kavvas, M.L. A review of hillslope and watershed scale erosion and sediment transport models. Catena 2005, 64, 247–271. [Google Scholar] [CrossRef]
- Pratt, B.; Chang, H.J. Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales. J. Hazard. Mater. 2012, 209, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Bathurst, J.C.; Moretti, G.; El-Hames, A.; Moaven-Hashemi, A.; Burton, A. Scenario modelling of basin-scale, shallow landslide sediment yield, Valsassina, Italian Southern Alps. Nat. Hazards Earth Syst. Sci. 2005, 5, 189–202. [Google Scholar] [CrossRef]
- Czaplewski, R.L. Multistage remote sensing—Toward an annual national inventory. J. For. 1999, 97, 44–48. [Google Scholar]
- Liu, C.-C.; Shieh, C.-L.; Lin, J.-C.; Wu, A.-M. Classification of non-vegetated areas using Formosat-2 high spatiotemporal imagery: The case of Tseng-Wen Reservoir catchment area (Taiwan). Int. J. Remote Sens. 2011, 32, 8519–8540. [Google Scholar] [CrossRef]
- Lin, G.-W.; Chen, H. Recurrence of hyper-concentration flows on the orogenic, subtropical island of Taiwan. J. Hydrol. 2013, 502, 139–144. [Google Scholar] [CrossRef]
- Dadson, S.; Hovius, N.; Pegg, S.; Dade, W.B.; Horng, M.J.; Chen, H. Hyperpycnal river flows from an active mountain belt. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Hu, C.Y.; Lo, S.L.; Chang, C.L.; Chen, F.L.; Wu, Y.D.; Ma, J.L. Treatment of highly turbid water using chitosan and aluminum salts. Sep. Purif. Technol. 2013, 104, 322–326. [Google Scholar] [CrossRef]
- Kobiyama, M.; Mota, A.D.A.; Grison, F.; Giglio, J.N. Landslide influence on turbidity and total solids in Cubato do Norte River, Santa Catarina, Brazil. Nat. Hazards 2011, 59, 1077–1086. [Google Scholar] [CrossRef]
- Huang, M.Y.F.; Montgomery, D.R. Altered regional sediment transport regime after a large typhoon, southern Taiwan. Geology 2013, 41, 1223–1226. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Chung, H.W.; Liu, C.C.; Chiu, Y.S.; Liu, J.T. Spatiotemporal variation of Gaoping River plume observed by Formosat-2 high resolution imagery. J. Mar. Syst. 2014, 132, 28–37. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, L.K.; Yu, F.C.; Lin, S.C.; Lin, Y.C.; Lee, C.L.; Wang, Y.T. Landslides affecting sedimentary characteristics of reservoir basin. Environ. Earth Sci. 2010, 59, 1693–1702. [Google Scholar] [CrossRef] [Green Version]
- Dadson, S.J.; Hovius, N.; Chen, H.; Dade, W.B.; Lin, J.C.; Hsu, M.L.; Lin, C.W.; Horng, M.J.; Chen, T.C.; Milliman, J.; et al. Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology 2004, 32, 733–736. [Google Scholar] [CrossRef]
- Taiwan Forestry Bureau (TWFB). Applying Satelliet Images in Taiwan Landslide Interpretation and Disaster Damage Analysis Project; Forest Bureau, Council of Agriculture Executive Yuan: Taipei, Taiwan, 2012. (in Chinese) [Google Scholar]
- Stark, C.P.; Barbour, J.R.; Hayakawa, Y.S.; Hattanji, T.; Hovius, N.; Chen, H.G.; Lin, C.W.; Horng, M.J.; Xu, K.Q.; Fukahata, Y. The climatic signature of incised river meanders. Science 2010, 327, 1497–1501. [Google Scholar] [CrossRef] [PubMed]
- Comber, A.; Fisher, P.; Wadsworth, R. What is land cover? Environ. Plan. B 2005, 32, 199–209. [Google Scholar] [CrossRef]
- Introduction to NLSC Affairs: National Land Surveying and Mapping Program. Available online: http://www.nlsc.gov.tw/En/MakePage/166?level=166 (accessed on 28 August 2015).
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Williams, J.R.; Berndt, H.D. Sediment yield prediction based on watershed hydrology. Trans. ASAE 1977, 20, 1100–1104. [Google Scholar] [CrossRef]
- Van Griensven, A.; Bauwens, W. Multiobjective autocalibration for semidistributed water quality models. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Van Griensven, A.; Meixner, T.; Grunwald, S.; Bishop, T.; Diluzio, A.; Srinivasan, R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol. 2006, 324, 10–23. [Google Scholar] [CrossRef]
- Du, J.K.; Rui, H.Y.; Zuo, T.H.; Li, Q.; Zheng, D.P.; Chen, A.L.; Xu, Y.P.; Xu, C.Y. Hydrological simulation by SWAT model with fixed and varied parameterization approaches under land use change. Water Resour. Manag. 2013, 27, 2823–2838. [Google Scholar] [CrossRef]
- Efstratiadis, A.; Koutsoyiannis, D. One decade of multi-objective calibration approaches in hydrological modelling: A review. Hydrol. Sci. J. 2010, 55, 58–78. [Google Scholar] [CrossRef]
- Bekele, E.G.; Nicklow, J.W. Multi-objective automatic calibration of SWAT using NSGA-II. J. Hydrol. 2007, 341, 165–176. [Google Scholar] [CrossRef]
- Arnold, J.G.; Williams, J.R.; Maidment, D.R. Continuous-time water and sediment routing model for large basins. J. Hydraul. Eng. ASCE 1995, 121, 171–183. [Google Scholar] [CrossRef]
- Wang, F.; Mu, X.; Hessel, R.; Zhang, W.; Ritsema, C.J.; Li, R. Runoff and Sediment load of the Yan River, China: Changes over the last 60 yr. Hydrol. Earth Syst. Sci. 2013, 17, 2515–2527. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.; Harrison, J.F.; Huang, Y. Modeling Typhoon‐Induced Alterations on River Sediment Transport and Turbidity Based on Dynamic Landslide Inventories: Gaoping River Basin, Taiwan. Water 2015, 7, 6910-6930. https://doi.org/10.3390/w7126666
Chang C, Harrison JF, Huang Y. Modeling Typhoon‐Induced Alterations on River Sediment Transport and Turbidity Based on Dynamic Landslide Inventories: Gaoping River Basin, Taiwan. Water. 2015; 7(12):6910-6930. https://doi.org/10.3390/w7126666
Chicago/Turabian StyleChang, Chih‐Hua, John F. Harrison, and Yu‐Chi Huang. 2015. "Modeling Typhoon‐Induced Alterations on River Sediment Transport and Turbidity Based on Dynamic Landslide Inventories: Gaoping River Basin, Taiwan" Water 7, no. 12: 6910-6930. https://doi.org/10.3390/w7126666
APA StyleChang, C., Harrison, J. F., & Huang, Y. (2015). Modeling Typhoon‐Induced Alterations on River Sediment Transport and Turbidity Based on Dynamic Landslide Inventories: Gaoping River Basin, Taiwan. Water, 7(12), 6910-6930. https://doi.org/10.3390/w7126666