Reducing Agricultural Water Footprints at the Farm Scale: A Case Study in the Beijing Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
Year | Planting Date | Harvest Date | Study Variables |
---|---|---|---|
2006~2007 | 2 October 2006 | 15 June 2007 | Different irrigation options were set to be compared to local farmers’ usual irrigation practice. Other aspects of farm management, such as fertilization, pest and weed control, followed the farmers’ usual practices. |
24 June 2007 | 1 October 2007 | ||
2007~2008 | 10 October 2007 | 15 June 2008 | Same as above |
25 June 2008 | 26 September 2008 | ||
2008~2009 | 6 October 2008 | 8 June 2009 | Different fertilization options were set to be compared to local farmers’ usual fertilization practice. Other aspects of farm management, such as irrigation, pest and weed control, followed the farmers’ usual practices. |
13 June 2009 | 2 October 2009 |
Crop | Irrigation Time | Irrigation Options | ||||
---|---|---|---|---|---|---|
FI | I-1 | I-2 | I-3 | I-4 | ||
Wheat | Overwintering | 50 | 50 | 50 | 0 | 0 |
Seedling establishment | 50 | 50 | 0 | 0 | 0 | |
Jointing | 50 | 50 | 50 | 50 | 0 | |
Filling | 50 | 0 | 0 | 0 | 0 | |
Total | 200 | 150 | 100 | 50 | 0 | |
Maize | Jointing | 50 | 0 | 0 | 0 | 0 |
Booting | 50 | 50 | 50 | 50 | 0 | |
Total | 100 | 50 | 50 | 50 | 0 |
Crop | N Application Options | |||
---|---|---|---|---|
FN | N-1 | N-2 | N-3 | |
wheat | 225 | 150 | 75 | 0 |
maize | 225 | 150 | 75 | 0 |
Total | 450 | 300 | 150 | 0 |
2.2. Calculation of Crop Water Footprint
2.2.1. Goal and Scope Definition
2.2.2. Water Footprint Inventory Analysis
2.2.3. Water Footprint Impact Assessment
2.3. Statistical Analysis
3. Results
3.1. Crop Yield under Different Irrigation and N Application Options
3.2. Water Scarcity Footprint and Water Eutrophication Footprint
Crop | Item | Unit | Irrigation Options | ||||
---|---|---|---|---|---|---|---|
FI | I-1 | I-2 | I-3 | I-4 | |||
Wheat | Irrigation water use | L·kg−1 | 324.6 | 264.3 | 184.1 | 119.4 | 0.0 |
Farm input water use | L·kg−1 | 6.8 | 7.2 | 7.5 | 9.7 | 21.6 | |
Water scarcity footprint | L H2Oe kg−1 | 544.6 | 444.7 | 311.7 | 206.1 | 17.2 | |
N leaching amount | g·kg−1 | 2.1 | 1.9 | 1.1 | 0.7 | 0.0 | |
Water eutrophication footprint | g PO4−3e·kg−1 | 0.9 | 0.8 | 0.4 | 0.3 | 0.0 | |
Maize | Irrigation water use | L·kg−1 | 121.0 | 57.1 | 57.5 | 57.0 | 0.0 |
Farm input water use | L·kg−1 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | |
Water scarcity footprint | L H2Oe·kg−1 | 204.9 | 98.7 | 99.5 | 98.6 | 3.9 | |
N leaching amount | g·kg−1 | 1.0 | 0.5 | 0.4 | 0.5 | 0.0 | |
Water eutrophication footprint | g PO4−3e·kg−1 | 0.4 | 0.2 | 0.2 | 0.2 | 0.0 |
Crop | Item | Unit | N Application Options | |||
---|---|---|---|---|---|---|
FN | N-1 | N-2 | N-3 | |||
Wheat | Irrigation water use | L·kg−1 | 291.4 | 293.6 | 319.8 | 354.4 |
Farm input water use | L·kg−1 | 6.1 | 4.7 | 3.7 | 2.5 | |
Water scarcity footprint | L H2Oe·kg−1 | 488.9 | 491.4 | 534.2 | 590.7 | |
N leaching amount | g·kg−1 | 0.9 | 0.4 | 0.1 | 0.0 | |
Water eutrophication footprint | g PO4−3e·kg−1 | 0.4 | 0.2 | 0.0 | 0.0 | |
Maize | Irrigation water use | L·kg−1 | 110.4 | 115.2 | 122.5 | 131.6 |
Farm input water use | L·kg−1 | 4.3 | 3.4 | 2.6 | 1.6 | |
Water scarcity footprint | L H2Oe·kg−1 | 186.8 | 194.0 | 205.5 | 219.8 | |
N leaching amount | g·kg−1 | 0.6 | 0.3 | 0.0 | 0.0 | |
Water eutrophication footprint | g PO4−3e·kg−1 | 0.2 | 0.1 | 0.0 | 0.0 |
4. Discussion
4.1. Water Footprinting Methodology
4.2. Water Footprint Implications
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- The United Nations World Water Development Report 3: Water in a Changing World. Available online: http://webworld.unesco.org/water/wwap/wwdr/wwdr3/pdf/WWDR3_Water_in_a_Changing_World.pdf (assessed on 2 October 2015).
- Ridoutt, B.G.; Pfister, S. Reducing humanity’s water footprint. Environ. Sci. Technol. 2010, 44, 6019–6021. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard, 1st ed.; Earthscan Press: London, UK; Washington, DC, USA, 2011; pp. 194–195. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A global assessment of the water footprint of farm animal products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef]
- Bayart, J.B.; Bulle, C.; Deschênes, L.; Margni, M.; Pfister, S.; Vince, F.; Koehler, A. A framework for assessing off-stream freshwater use in LCA. Int. J. Life Cycle Assess. 2010, 15, 439–453. [Google Scholar] [CrossRef]
- Berger, M.; Finkbeiner, M. Water footprinting: How to address water use in life cycle assessment? Sustainability 2010, 2, 919–944. [Google Scholar] [CrossRef]
- Kounina, A.; Margni, M.; Bayart, J.B.; Boulay, A.M.; Berger, M.; Bulle, C.; Frischknecht, R.; Koehler, A.; Milà i Canals, L.; Motoshita, M.; et al. Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int. J. Life Cycle Assess. 2013, 18, 707–721. [Google Scholar] [CrossRef]
- Milà i Canals, L.; Chenoweth, J.; Chapagain, A.; Orr, S.; Anton, A.; Clift, R. Assessing freshwater use in LCA: Part I—Inventory modelling and characterization factors for the main impact pathways. Int. J. Life Cycle Assess. 2008, 14, 28–42. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 14046: 2014: Environmental Management: Water Footprint—Principles, Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- Ridoutt, B.G.; Poulton, P.L. Dryland and irrigated cropping systems: Comparing the impacts of consumptive water use. In Proceeding of the VII International Conference on Life Cycle Assessment in the Agri-Food Sector, Università degli Studi di Bari Aldo Moro, Italy, 22–24 September 2010; Notarnicola, B., Ed.; pp. 153–158.
- Page, G.; Ridoutt, B.; Bellotti, B. Fresh tomato production for the Sydney market: An evaluation of options to reduce freshwater scarcity from agricultural water use. Agric. Water Manag. 2011, 100, 18–24. [Google Scholar] [CrossRef]
- Jefferies, D.; Muñoz, I.; Hodges, J.; King, V.J.; Aldaya, M.; Ercin, A.E.; Milà i Canals, L.; Hoekstra, A.Y. Water footprint and life cycle assessment as approaches to assess potential impacts of products on water consumption. Key learning points from pilot studies on tea and margarine. J. Clean. Prod. 2011, 33, 155–166. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Juliano, P.; Sanguansri, P.; Sellahewa, J. The water footprint of food waste: Case study of fresh mango in Australia. J. Clean. Prod. 2010, 18, 1714–1721. [Google Scholar] [CrossRef]
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the environmental impacts of freshwater consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098–4104. [Google Scholar] [CrossRef] [PubMed]
- Beijing Municipal Bureau of Statistics (BMBS). Beijing Statistical Yearbook; Chinese Statistics Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Huang, J.; Ridoutt, B.G.; Xu, C.C.; Zhang, H.L.; Chen, F. Cropping pattern modifications change water resource demands in the Beijing metropolitan area. J. Integr. Agric. 2012, 11, 101–108. [Google Scholar] [CrossRef]
- Huang, J.; Ridoutt, B.G.; Zhang, H.L.; Xu, C.C.; Chen, F. Water footprint of cereals and vegetables for the Beijing market: Comparison between local and imported supply. J. Ind. Ecol. 2014, 18, 40–48. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Z.W. The Construction of the Water-Saving Cropping System Based on Simulation Model and Scenario Analysis: A Case of Beijing. Ph.D. Thesis, China Agricultural University, Beijing, China, 1 June 2010. [Google Scholar]
- Shock, C.C.; Shock, C.B. Research, extension, and good farming practices improve water quality and productivity. J. Integr. Agric. 2012, 11, 14–30. [Google Scholar] [CrossRef]
- Huang, J. The Sustainable Use of Agricultural Water in Beijing Based on Water Footprinting. Ph.D. Thesis, China Agricultural University, Beijing, China, 1 June 2013. [Google Scholar]
- Snyder, R.L.; Geng, S.; Orang, M.; Sarreshteh, S. Calculation and simulation of evapotranspiration of applied water. J. Integr. Agric. 2012, 11, 489–501. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Li, C.; Frolking, S.; Frolking, T.A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J. Geophys. Res. 1992, 97, 9759–9776. [Google Scholar] [CrossRef]
- Kim, Y.; Seo, Y.; Kraus, D.; Klatt, S.; Haas, E.; Tenhunen, J.; Kiese, R. Estimation and mitigation of N2O emission and nitrate leaching from intensive crop cultivation in the Haean catchment, South Korea. Sci. Total Environ. 2015, 529, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Farahbakhshazad, N.; Jaynes, D.B.; Dinnes, D.L.; Salas, W.; McLaughlin, D. Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa. Ecol. Model. 2006, 196, 116–130. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Qiu, J.; Li, C.; Gao, M.; Gao, C. Calibration of DNDC model for nitrate leaching from an intensively cultivated region of Northern China. Geoderma 2014, 223–225, 108–118. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Pfister, S. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob. Environ. Chang. 2010, 20, 113–120. [Google Scholar] [CrossRef]
- Zonderland-Thomassen, M.A.; Ledgard, S.F. Water footprinting–a comparison of methods using New Zealand dairy farming as a case study. Agric. Syst. 2012, 110, 30–40. [Google Scholar] [CrossRef]
- Seppälä, J.; Knuuttila, S.; Silvo, K. Eutrophication of aquatic ecosystems: A new method for calculating the potential contributions of nitrogen and phosphorus. Int. J. Life Cycle Assess. 2004, 9, 90–100. [Google Scholar] [CrossRef]
- Swiss Ecological Scarcity Method: The New Version 2006. Available online: http://www.esu-services.ch/cms/fileadmin/download/Frischknecht-2006-EcologicalScarcity-Paper.pdf (assessed on 2 October 2015).
- Ridoutt, B.G.; Pfister, S. A new water footprint calculation method integrating consumptive and degradative water use into a single stand-alone indicator. Int. J. Life Cycle Assess. 2013, 18, 204–207. [Google Scholar] [CrossRef]
- Li, X.; Hu, C.; Delgado, J.A.; Zhang, Y.; Ouyang, Z. Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in North China Plain. Agric. Water Manag. 2007, 89, 137–147. [Google Scholar] [CrossRef]
- Zhu, A.; Zhang, J.; Zhao, B.; Cheng, Z.; Li, L. Water balance and nitrate leaching losses under intensive crop production with Ochric Aquic Cambosols in North China Plain. Environ. Int. 2005, 31, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, H.R. Sustainable use of water resources in agriculture in Beijing: Problems and countermeasures. Water Policy 2005, 7, 345–357. [Google Scholar]
- Lü, L.; Dong, Z.; Zhang, J.; Zhang, L.; Liang, S.; Jia, X.; Yao, H. Effect of water and nitrogen on yield and nitrogen utilization of winter wheat and summer maize. Sci. Agric. Sin. 2014, 47, 3839–3849. (In Chinese) [Google Scholar]
- Mahajan, G.; Chauhan, B.S.; Timsina, J.; Singh, P.P.; Singh, K. Crop performance and water-and nitrogen-use efficiencies in dry-seeded rice in response to irrigation and fertilizer amounts in northwest India. Field Crop. Res. 2012, 134, 59–70. [Google Scholar] [CrossRef]
- Ye, Y.; Liang, X.; Chen, Y.; Liu, J.; Gu, J.; Guo, R.; Li, L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crop. Res. 2013, 144, 212–224. [Google Scholar] [CrossRef]
- Aguilera, E.; Lassaletta, L.; Sanz-Cobenad, A.; Garniere, J.; Vallejod, A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems: A review. Agric. Ecosyst. Environ. 2013, 164, 32–52. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Xu, C.; Ridoutt, B.G.; Chen, F. Reducing Agricultural Water Footprints at the Farm Scale: A Case Study in the Beijing Region. Water 2015, 7, 7066-7077. https://doi.org/10.3390/w7126674
Huang J, Xu C, Ridoutt BG, Chen F. Reducing Agricultural Water Footprints at the Farm Scale: A Case Study in the Beijing Region. Water. 2015; 7(12):7066-7077. https://doi.org/10.3390/w7126674
Chicago/Turabian StyleHuang, Jing, Changchun Xu, Bradley G. Ridoutt, and Fu Chen. 2015. "Reducing Agricultural Water Footprints at the Farm Scale: A Case Study in the Beijing Region" Water 7, no. 12: 7066-7077. https://doi.org/10.3390/w7126674
APA StyleHuang, J., Xu, C., Ridoutt, B. G., & Chen, F. (2015). Reducing Agricultural Water Footprints at the Farm Scale: A Case Study in the Beijing Region. Water, 7(12), 7066-7077. https://doi.org/10.3390/w7126674