Subgrid Parameterization of the Soil Moisture Storage Capacity for a Distributed Rainfall-Runoff Model
Abstract
:1. Introduction
2. Study Area
3. Method
3.1. The Grid-Xinanjiang Model
3.2. Subgrid Scale Parameterization of the Soil Storage Capacity
4. Results and Discussion
4.1. Model Validation
Period | Year | ARD (%) | NSC |
---|---|---|---|
Calibration | 1981 | 13 | 0.74 |
1982 | 4 | 0.90 | |
1983 | 7 | 0.81 | |
1984 | 11 | 0.79 | |
Validation | 1985 | 14 | 0.65 |
1986 | 6 | 0.87 |
4.2. The Scale-Dependence of the Grid-Xinanjiang Model with a Uniform Grid
Parameter | Description | Range | Calibrated value | |||
---|---|---|---|---|---|---|
50 m | 100 m | 500 m | 1000 m | |||
K | Ratio of potential evapotranspiration to pan evaporation | 0–2 | 1.0 | 0.98 | 0.94 | 0.93 |
WMM | Maximum watershed soil storage capacity (mm) | 60–300 | 124 | 118 | 114 | 112 |
α | Shape parameter | 0–20 | 1.1 | 1.0 | 0.9 | 0.9 |
β | Shape parameter | 0–20 | 1.5 | 1.5 | 1.5 | 1.4 |
SM | Free water storage capacity (mm) | 0–100 | 12 | 11 | 10 | 10 |
Ki | Outflow coefficient of free water storage to interflow | 0–0.7 | 0.42 | 0.40 | 0.41 | 0.40 |
Kg | Outflow coefficient of free water storage to Groundwater | 0–0.7 | 0.28 | 0.26 | 0.26 | 0.25 |
Ci | Recession constant of interflow storage | 0.3–0.8 | 0.58 | 0.57 | 0.54 | 0.53 |
Cg | Recession constant of groundwater storage | 0.8–0.995 | 0.85 | 0.86 | 0.85 | 0.84 |
X | A weight factor of Muskingum method | 0.1–0.5 | 0.33 | 0.33 | 0.32 | 0.32 |
V | Flow velocity in channel (m/s) | 0.5–2 | 1.3 | 1.3 | 1.3 | 1.3 |
4.3. Evaluation of the Subgrid Parameterization
Process | Uniform Subgrid | Non-uniform Subgrid | ||||||
---|---|---|---|---|---|---|---|---|
50 m | 100 m | 500 m | 1000 m | 50 m | 100 m | 500 m | 1000 m | |
Ep(mm) | 472 | 487 | 516 | 520 | 430 | 430 | 427 | 427 |
R (mm) | 852 | 819 | 768 | 763 | 876 | 875 | 862 | 864 |
RS (mm) | 244 | 208 | 154 | 147 | 253 | 253 | 242 | 243 |
RI (mm) | 374 | 376 | 378 | 379 | 383 | 383 | 382 | 383 |
RG (mm) | 234 | 235 | 236 | 237 | 239 | 239 | 239 | 239 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Paniconi, C.; Wood, E.F. A detailed model for simulation of catchment scale subsurface hydrologic processes. Water Resour. Res. 1993, 29, 1601–1620. [Google Scholar] [CrossRef]
- Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system. J. Hydrol. 1986, 87, 45–59. [Google Scholar] [CrossRef]
- Blöschl, G.; Reszler, C.; Komma, J. A spatially distributed flash flood forecasting model. Environ. Model. Softw. 2008, 23, 464–478. [Google Scholar] [CrossRef]
- Reed, S.; Koren, V.; Smith, M.; Zhang, Z.; Moreda, F.; Seo, D.-J.; Dmip Participants. Overall distributed model intercomparison project results. J. Hydrol. 2004, 298, 27–60. [Google Scholar] [CrossRef]
- Carpenter, T.M.; Georgakakos, K.P. Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulations of a distributed hydrologic model. J. Hydrol. 2004, 298, 202–221. [Google Scholar] [CrossRef]
- Smith, M.B.; Koren, V.I.; Zhang, Z.; Reed, S.M.; Pan, J.-J.; Moreda, F. Runoff response to spatial variability in precipitation: An analysis of observed data. J. Hydrol. 2004, 298, 267–286. [Google Scholar] [CrossRef]
- Ciarapica, L.; Todini, E. TOPKAPI: A model for the representation of the rainfall-runoff process at different scales. Hydrol. Process. 2002, 16, 207–229. [Google Scholar] [CrossRef]
- Beven, K.; Freer, J. A dynamic TOPMODEL. Hydrol. Process. 2001, 15, 1993–2011. [Google Scholar] [CrossRef]
- Dehotin, J.; Braud, I. Which spatial discretization for distributed hydrological models? Proposition of a methodology and illustration for medium to large-scale catchments. Hydrol. Earth Syst. Sci. 2008, 12, 769–796. [Google Scholar] [CrossRef]
- Band, L.E.; Moore, I.D. Scale: Landscape attributes and geographical information systems. Hydrol. Process. 1995, 9, 401–422. [Google Scholar] [CrossRef]
- Kavvas, M.L. On the coarse-graining of hydrologic processes with increasing scales. J. Hydrol. 1999, 217, 191–202. [Google Scholar] [CrossRef]
- Beven, K. How far can we go in distributed hydrological modelling? Hydrol. Earth Syst. Sci. 1999, 5, 1–12. [Google Scholar] [CrossRef]
- Wood, E.F.; Sivapalan, M.; Beven, K.; Band, L. Effects of spatial variability and scale with implications to hydrologic modeling. J. Hydrol. 1988, 102, 29–47. [Google Scholar] [CrossRef]
- Arora, V.K.; Chiew, F.H.S.; Grayson, R.B. Effect of sub-grid-scale variability of soil moisture and precipitation intensity on surface runoff and streamflow. J. Geophys. Res. 2001, 106, 17073–17091. [Google Scholar] [CrossRef]
- Ghan, S.J.; Liljegren, J.C.; Shaw, W.J.; Hubbe, J.H.; Doran, J.C. Influence of Subgrid Variability on Surface Hydrology. J. Clim. 1997, 10, 3157–3166. [Google Scholar] [CrossRef]
- Vázquez, R.F.; Feyen, L.; Feyen, J.; Refsgaard, J.C. Effect of grid size on effective parameters and model performance of the MIKE-SHE code. Hydrol. Process. 2002, 16, 355–372. [Google Scholar] [CrossRef]
- Yao, C.; Li, Z.; Bao, H.; Yu, Z. Application of a Developed Grid-Xinanjiang Model to Chinese Watersheds for Flood Forecasting Purpose. J. Hydrol. Eng. 2009, 14, 923–934. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, X. The Xinanjiang model. In Computer Models of Watershed Hydrology; Singh, V., Ed.; Water Resources Publications: Littleton, CO, USA, 1995; pp. 215–232. [Google Scholar]
- Liu, J.; Chen, X.; Zhang, J.; Flury, M. Coupling the Xinanjiang model to a kinematic flow model based on digital drainage networks for flood forecasting. Hydrol. Process. 2009, 23, 1337–1348. [Google Scholar] [CrossRef]
- Zhao, R. The Xinanjiang model applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar]
- Todini, E. The ARNO rainfall—Runoff model. J. Hydrol. 1996, 175, 339–382. [Google Scholar] [CrossRef]
- Wood, E.F.; Lettenmaier, D.P.; Zartarian, V.G. A land-surface hydrology parameterization with subgrid variability for general circulation models. J. Geophys. Res. 1992, 97, 2717–2728. [Google Scholar] [CrossRef]
- Williams, J.; Ouyang, Y.; Chen, J.-S.; Ravi, V.; Jewett, D.S.B.D.G. Estimation of Infiltration Rate in Vadose Zone: Application of Selected Mathematical Models; Office of Research and Development, United States Environmental Protection Agency: Washington, DC, USA, 1998. [Google Scholar]
- Anderson, R.M.; Koren, V.I.; Reed, S.M. Using SSURGO data to improve Sacramento Model a priori parameter estimates. J. Hydrol. 2006, 320, 103–116. [Google Scholar] [CrossRef]
- Yao, C.; Li, Z.; Yu, Z.; Zhang, K. A priori parameter estimates for a distributed, grid-based Xinanjiang model using geographically based information. J. Hydrol. 2012, 468–469; 47–62. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Ryu, D.; Berg, A.A.; Rodell, M.; Jackson, T.J. Field observations of soil moisture variability across scales. Water Resour. Res. 2008. [Google Scholar] [CrossRef]
- Western, A.W.; Blöschl, G.; Grayson, R.B. Geostatistical characterisation of soil moisture patterns in the Tarrawarra catchment. J. Hydrol. 1998, 205, 20–37. [Google Scholar] [CrossRef]
- Western, A.W.; Zhou, S.-L.; Grayson, R.B.; McMahon, T.A.; Blöschl, G.; Wilson, D.J. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J. Hydrol. 2004, 286, 113–134. [Google Scholar] [CrossRef]
- Western, A.W.; Grayson, R.B.; Blöschl, G.; Willgoose, G.R.; McMahon, T.A. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour. Res. 1999, 35, 797–810. [Google Scholar] [CrossRef]
- Shi, P.; Rui, X.; Qu, S.; Chen, X. Development and application of a grid-based distributed hydrological model. Dv. In Water Sci. 2008, 19, 662–670. [Google Scholar]
- Woods, R.A.; Sivapalan, M.; Robinson, J.S. Modeling the spatial variability of subsurface runoff using a topographic index. Water Resour. Res. 1997, 33, 1061–1073. [Google Scholar] [CrossRef]
- Hjerdt, K.N.; McDonnell, J.J.; Seibert, J.; Rodhe, A. A new topographic index to quantify downslope controls on local drainage. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Pradhan, N.R.; Tachikawa, Y.; Takara, K. A downscaling method of topographic index distribution for matching the scales of model application and parameter identification. Hydrol. Process. 2006, 20, 1385–1405. [Google Scholar] [CrossRef]
- Li, B.; Avissar, R. The Impact of Spatial Variability of Land-Surface Characteristics on Land-Surface Heat Fluxes. J. Clim. 1994, 7, 527–537. [Google Scholar] [CrossRef]
- Jenson, S.K.; Domingue, J.O. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar]
- Vivoni, E.R.; Entekhabi, D.; Bras, R.L.; Ivanov, V.Y. Controls on runoff generation and scale-dependence in a distributed hydrologic model. Hydrol. Earth Syst. Sci. Discuss. 2007, 11, 1683–1701. [Google Scholar]
- Rawls, W.; Brakensiek, D.; Miller, N. Green-ampt Infiltration Parameters from Soils Data. J. Hydraul. Eng. 1983, 109, 62–70. [Google Scholar] [CrossRef]
- Ciach, G.J.; Krajewski, W.F. Analysis and modeling of spatial correlation structure in small-scale rainfall in Central Oklahoma. Adv. Water Resour. 2006, 29, 1450–1463. [Google Scholar] [CrossRef]
- Chen, W.; Chau, K. Intelligent manipulation and calibration of parameters for hydrological models. Int. J. Environ. Pollut. 2006, 28, 432–447. [Google Scholar] [CrossRef]
- Gupta, V.; Sorooshian, S. Calibration of conceptual hydrologic models: Past, present and future. In Trends in Hydrology. Research Trends; Council of Scientific Research Integration: Trivandrum, India, 1994; pp. 329–346. [Google Scholar]
- Taormina, R.; Chau, K.-W. Neural network river forecasting with multi-objective fully informed particle swarm optimization. J. Hydroinform. 2015, 17, 99–113. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Duan, Q.Y.; Gupta, V.K.; Sorooshian, S. Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 1993, 76, 501–521. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Wang, C.; Zeng, X.; Ma, T.; Yang, H. Subgrid Parameterization of the Soil Moisture Storage Capacity for a Distributed Rainfall-Runoff Model. Water 2015, 7, 2691-2706. https://doi.org/10.3390/w7062691
Guo W, Wang C, Zeng X, Ma T, Yang H. Subgrid Parameterization of the Soil Moisture Storage Capacity for a Distributed Rainfall-Runoff Model. Water. 2015; 7(6):2691-2706. https://doi.org/10.3390/w7062691
Chicago/Turabian StyleGuo, Weijian, Chuanhai Wang, Xianmin Zeng, Tengfei Ma, and Hai Yang. 2015. "Subgrid Parameterization of the Soil Moisture Storage Capacity for a Distributed Rainfall-Runoff Model" Water 7, no. 6: 2691-2706. https://doi.org/10.3390/w7062691
APA StyleGuo, W., Wang, C., Zeng, X., Ma, T., & Yang, H. (2015). Subgrid Parameterization of the Soil Moisture Storage Capacity for a Distributed Rainfall-Runoff Model. Water, 7(6), 2691-2706. https://doi.org/10.3390/w7062691