Reduced Runoff Due to Anthropogenic Intervention in the Loess Plateau, China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Collection
3. Methodology
3.1. Statistical Methods
3.2. Potential Evaporation
3.3. Attribution Analysis of Runoff Change
4. Results
4.1. Changes in Runoff
4.2. Changes in Climate and LUCC Elasticity of Naturalized Runoff
4.3. Quantifying the Runoff Response to Climate and Anthropogenic Interference
5. Discussion
5.1. Correlation between Vegetation Parameter n and LUCC, LAI, and NDVI
5.2. Uncertainties and Suggestions
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Sterling, S.M.; Ducharne, A.; Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Chang. 2013, 3, 385–390. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhao, J.; Rustomji, P.; Hairsine, P. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res. 2008, 44, 2183–2188. [Google Scholar] [CrossRef]
- Liu, C.; Xia, J. Water problems and hydrological research in the Yellow River and the Huai and Hai River Basins of China. Hydrol. Process. 2004, 18, 2197–2210. [Google Scholar] [CrossRef]
- Jaramillo, F.; Destouni, G. Local flow regulation and irrigation raise global human water consumption and footprint. Science 2015, 350, 1248–1251. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Destouni, G.; Jaramillo, F.; Prieto, C. Hydroclimatic shifts driven by human water use for food and energy production. Nat. Clim. Chang. 2013, 3, 213–217. [Google Scholar] [CrossRef]
- Jaramillo, F.; Destouni, G. Developing water change spectra and distinguishing change drivers worldwide. Geophys. Res. Lett. 2014, 41, 8377–8386. [Google Scholar] [CrossRef]
- Kingsford, R.T. Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Aust. Ecol. 2000, 25, 109–127. [Google Scholar] [CrossRef]
- Levi, L.; Jaramillo, F.; Andričević, R.; Destouni, G. Hydroclimatic changes and drivers in the Sava River Catchment and comparison with Swedish catchments. Ambio 2015, 44, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Franczyk, J.; Chang, H. The effects of climate change and urbanization on the runoff of the Rock Creek basin in the Portland metropolitan area, Oregon, USA. Hydrol. Process. 2009, 23, 805–815. [Google Scholar] [CrossRef]
- Guo, J.; Su, X.; Singh, V.P.; Jin, J. Impacts of climate and land use/cover change on streamflow using SWAT and a separation method for the Xiying River basin in northwestern China. Water 2016, 8, 192. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Niu, T.; Kejia, D.; Zhou, Q.; Ma, T.; Gao, Y. Ecological restoration and its effects on a regional climate: The source region of the Yellow River, China. Environ. Sci. Technol. 2015, 49, 5897–5904. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, F. Changes in the Freshwater System: Distinguishing Climate and Landscape Drivers. Ph.D. Thesis, Stockholm University, Stockholm, Sweden, 2015. [Google Scholar]
- Adam, J.C.; Haddeland, I.; Su, F.; Lettenmaier, D.P. Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei, and Ob’ rivers. J. Geophys. Res. Atmos. 2007, 112, D24114. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.; Bierkens, M.F. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhang, L.; Zhu, R.; Liu, C.; Sato, Y.; Fukushima, Y. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River basin. Water Resour. Res. 2009, 45, 641–648. [Google Scholar] [CrossRef]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47, W00J12. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, H.; Yang, D.; Jayawardena, A. Quantifying the effect of vegetation change on the regional water balance within the Budyko framework. Geophys. Res. Lett. 2016, 43, 1140–1148. [Google Scholar] [CrossRef]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, 89–97. [Google Scholar] [CrossRef]
- Liu, X.; Liu, C.; Luo, Y.; Zhang, M.; Xia, J. Dramatic decrease in streamflow from the headwater source in the central route of China’s water diversion project: Climatic variation or human influence? J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Huang, J.; Wen, J.; Hinokidani, O.; Yasuda, H. Runoff and water budget of the liudaogou catchment at the wind-water erosion crisscross region on the Loess Plateau of China. Environ. Earth Sci. 2014, 72, 3623–3633. [Google Scholar]
- Zhang, X.; Zhang, L.; McVicar, T.R.; Van Niel, T.G.; Li, L.T.; Li, R.; Yang, Q.K.; Wei, L. Modelling the impact of afforestation on average streamflow in the Loess Plateau, China. Hydrol. Process. 2007, 22, 1996–2004. [Google Scholar] [CrossRef]
- Zhang, P.; Shao, G.; Zhao, G.; Master, D.C.L.; Parker, G.R.; Dunning, J.B.J.; Li, Q. China’s forest policy for the 21st century. Science 2000, 288, 2135–2136. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, K.; Lin, Y.; Shi, W.; Song, Y.; He, X. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Piao, S.; Lu, Y.; Ciais, P.; Feng, X.; Wang, Y. Reduced sediment transport in the yellow river due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Piao, S.; Yin, G.; Tan, J.; Cheng, L.; Huang, M.; Li, Y.; Liu, R.; Mao, J.; Myneni, R.B.; Peng, S. Detection and attribution of vegetation greening trend in China over the last 30years. Glob. Chang. Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, Y.; Liu, X.; Bai, P.; Liang, K. Impact of vegetation change on water transformation in the middle Yellow River. Yellow River 2016, 38, 1–12. (In Chinese) [Google Scholar]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lu, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016. [Google Scholar] [CrossRef]
- Cao, S. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ. Sci. Technol. 2008, 42, 1826–1831. [Google Scholar] [CrossRef] [PubMed]
- XinhuaNet. New Task for Grain for Green Project in 2014. Available online: http://news.xinhuanet.com/energy/2014-09/27/c_127041568_2.htm (accessed on 27 September 2014).
- Huang, M.; Zhang, L.; Gallichand, J. Runoff responses to afforestation in a watershed of the Loess Plateau, China. Hydrol. Process. 2003, 17, 2599–2609. [Google Scholar] [CrossRef]
- Li, L.J.; Zhang, L.; Wang, H.; Wang, J.; Yang, J.W.; Jiang, D.J.; Li, J.Y.; Qin, D.Y. Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China. Hydrol. Process. 2007, 21, 3485–3491. [Google Scholar] [CrossRef]
- Li, Y.; Liang, K.; Bai, P.; Feng, A.; Liu, L.; Dong, G. The spatiotemporal variation of reference evapotranspiration and the contribution of its climatic factors in the Loess Plateau, China. Environ. Earth Sci. 2016, 75, 1–14. [Google Scholar] [CrossRef]
- Maliva, R.G.; Missimer, T.M. Arid Lands Water Evaluation and Management; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Jia, N.; Zhou, W.; Zhang, S.; Li, R.; Yan, C. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Nemani, R.R.; Myneni, R.B. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 2013, 5, 927–948. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1948. [Google Scholar]
- Li, Y.; Liang, K.; Liu, C.; Liu, W.; Bai, P. Evaluation of different evapotranspiration products in the middle Yellow River basin, China. Hydrol. Res. 2016, 47. [Google Scholar] [CrossRef]
- Fathian, F.; Dehghan, Z.; Bazrkar, M.H.; Eslamian, S. Trends in hydrological and climatic variables affected by four variations of the Mann-Kendall approach in Urmia Lake basin, Iran. Hydrol. Sci. J. 2016, 61, 892–904. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Roma, Italy, 1998. [Google Scholar]
- Liu, C.; Zhang, D.; Liu, X.; Zhao, C. Spatial and temporal change in the potential evapotranspiration sensitivity to meteorological factors in China (1960–2007). J. Geogr. Sci. 2012, 22, 3–14. [Google Scholar] [CrossRef]
- Schaake, J.C.; Waggoner, P. From Climate to Flow, in Climate Change and U.S. Water Resources; John Wiley: New York, NY, USA, 1990. [Google Scholar]
- Liu, X.; Liu, W.; Xia, J. Comparison of the streamflow sensitivity to aridity index between the Danjiangkou Reservoir basin and Miyun Reservoir basin, China. Theor. Appl. Climatol. 2013, 111, 683–691. [Google Scholar] [CrossRef]
- Choudhury, B. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J. Hydrol. 1999, 216, 99–110. [Google Scholar] [CrossRef]
- Xue, B.; Wang, L.; Li, X.; Yang, K.; Chen, D.; Sun, L. Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method. J. Hydrol. 2013, 492, 290–297. [Google Scholar] [CrossRef]
- Hobbins, M.T.; Ramírez, J.A.; Brown, T.C. The complementary relationship in estimation of regional evapotranspiration: An enhanced advection-aridity model. Water Resour. Res. 2001, 37, 1389–1403. [Google Scholar] [CrossRef]
- Zhang, Y.; Leuning, R.; Chiew, F.H.; Wang, E.; Zhang, L.; Liu, C.; Sun, F.; Peel, M.C.; Shen, Y.; Jung, M. Decadal trends in evaporation from global energy and water balances. J. Hydrometeorol. 2012, 13, 379–391. [Google Scholar] [CrossRef]
- Budyko, M.I. Evaporation under Natural Conditions, Gidrometeoizdat, Leningrad 1948; English Translation by Israel Program for Scientific Translations; IPST: Jerusalem, Israel, 1963. [Google Scholar]
- Patterson, L.A.; Lutz, B.; Doyle, M.W. Climate and direct human contributions to changes in mean annual streamflow in the South Atlantic, USA. Water Resour. Res. 2013, 49, 7278–7291. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Greve, P.; Seneviratne, S.I. The sensitivity of water availability to changes in the aridity index and other factors—A probabilistic analysis in the budyko-space. Geophys. Res. Lett. 2016, 43, 6985–6994. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res. 2011, 47, W00G07. [Google Scholar] [CrossRef]
- Yang, D.; Shao, W.; Yeh, P.J.F.; Yang, H.; Kanae, S.; Oki, T. Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water Resour. Res. 2009, 45, W00A14. [Google Scholar] [CrossRef]
- Gottschalk, L.; Weingartner, R. Distribution of peak flow derived from a distribution of rainfall volume and runoff coefficient, and a unit hydrograph. J. Hydrol. 1998, 208, 148–162. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D.; Lei, Z.; Sun, F. New analytical derivation of the mean annual water-energy balance equation. Water Resour. Res. 2008, 44, W03410. [Google Scholar] [CrossRef]
- Liu, X.; Luo, Y.; Zhang, D.; Zhang, M.; Liu, C. Recent changes in pan-evaporation dynamics in China. Geophys. Res. Lett. 2011, 38, L13404. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Hong, H. Assessing the effect of climate change on reference evapotranspiration in China. Stoch. Environ. Res. Risk Assess. 2013, 27, 1871–1881. [Google Scholar] [CrossRef]
- Yang, H.; Qi, J.; Xu, X.; Yang, D.; Lv, H. The regional variation in climate elasticity and climate contribution to runoff across China. J. Hydrol. 2014, 517, 607–616. [Google Scholar] [CrossRef]
- Falkenmark, M.; Rockström, J. The new blue and green water paradigm: Breaking new ground for water resources planning and management. J. Water Resour. Plan. Manag. 2006, 132, 129–132. [Google Scholar] [CrossRef]
- Jaramillo, F.; Destouni, G. Comment on “planetary boundaries: Guiding human development on a changing planet”. Science 2015, 348, 1217. [Google Scholar] [CrossRef] [PubMed]
- Bearup, L.A.; Maxwell, R.M.; Clow, D.W.; McCray, J.E. Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds. Nat. Clim. Chang. 2014, 4, 481–486. [Google Scholar] [CrossRef]
- Zhang, Y.; Peña-Arancibia, J.L.; Mcvicar, T.R.; Chiew, F.H.S.; Jai, V.; Liu, C.; Lu, X.; Zheng, H.; Wang, Y.; Liu, Y.Y.; et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 2016, 6, 19124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dijk, A.I.J.M.; Bruijnzeel, L.A. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 2. Model validation for a tropical upland mixed cropping system. J. Hydrol. 2001, 247, 239–262. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Lettenmaier, D.P.; Famiglietti, J.S. Hydrology: Water from on high. Nature 2006, 444, 562–563. [Google Scholar] [CrossRef] [PubMed]
- Szilagyi, J.; Zlotnik, V.A.; Jozsa, J. Net recharge vs. Depth to groundwater relationship in the Platte River Valley of Nebraska, United States. Groundwater 2013, 51, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y. Groundwater in the earth’s critical zone: Relevance to large-scale patterns and processes. Water Resour. Res. 2015, 51, 3052–3069. [Google Scholar] [CrossRef]
- Maxwell, R.M.; Kollet, S.J. Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat. Geosci. 2008, 1, 665–669. [Google Scholar] [CrossRef]
- Condon, L.E.; Maxwell, R.M. Analyzing the impact of groundwater flow and storage changes on budyko relationships across the continental US. Hydrol. Earth Syst. Sci. Discuss. 2016. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Ma, T.; Kejia, D.; Zhou, Q.; Yao, B.; Niu, T. Retrieval of the surface evapotranspiration patterns in the alpine grassland–wetland ecosystem applying SEBAL model in the source region of the Yellow River, China. Ecol. Model. 2013, 270, 64–75. [Google Scholar] [CrossRef]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Good, S.P.; Noone, D.; Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 2015, 349, 175–177. [Google Scholar] [CrossRef] [PubMed]
Basin ID | River Name | Station Name | Area (km2) | Robs (mm·year−1) | Pre (mm·year−1) | ET0 (mm·year−1) | AI |
---|---|---|---|---|---|---|---|
1 | Kuye River | Wenjiachuan | 8515 | 42.83 | 379 | 942 | 2.59 |
2 | Tuwei River | Gaojiachuan | 3253 | 79.56 | 396 | 950 | 2.48 |
3 | Jialu River | Shenjiawan | 1121 | 33.06 | 412 | 953 | 2.38 |
4 | Wuding River | Baijiachuan | 29,662 | 30.63 | 389 | 964 | 2.56 |
5 | Qingjian River | Yanchuan | 3468 | 35.87 | 460 | 927 | 2.09 |
6 | Qiushui River | Linjiaping | 1873 | 21.87 | 449 | 932 | 2.14 |
7 | Sanchuan River | Houdacheng | 4102 | 39.55 | 460 | 916 | 2.06 |
8 | Fen River | Hejin | 38,728 | 13.52 | 477 | 896 | 1.93 |
9 | Beiluo River | Zhuangtou | 25,645 | 27.74 | 515 | 868 | 1.74 |
10 | Jing River | Zhangjiashan | 43,216 | 31.52 | 484 | 859 | 1.84 |
11 | Wei River | Linjiacun | 30,661 | 48.94 | 491 | 786 | 1.65 |
12 | Yiluo River | Heishiguan | 18,563 | 113.47 | 677 | 889 | 1.37 |
Basin ID | River Name | Robs (mm·year−2) | Rdiv (mm·year−2) | Rnatural (mm·year−2) | Rcoeff (× 10−2) | ET0 (mm·year−2) | Pre (mm·year−2) | AI (× 10−2) |
---|---|---|---|---|---|---|---|---|
1 | Kuye River | −1.56 *** | 0.12 *** | −1.45 *** | −0.46 *** | 1.09 | 1.59 | −0.52 |
2 | Tuwei River | −1.33 *** | 0.10 *** | −1.23 *** | −0.42 *** | 1.59 * | 1.90 | −0.56 |
3 | Jialu River | −0.61 *** | 0.09 *** | −0.51 *** | −0.19 *** | 1.89 * | 1.81 | −0.35 |
4 | Wuding River | −0.30 *** | 0.23 *** | −0.07 | −0.11 *** | 0.59 | 1.42 | −0.57 |
5 | Qingjian River | −0.27 | 0.10 *** | −0.17 | −0.06 | 1.25 | 0.24 | 0.24 |
6 | Qiushui River | −0.37 ** | 0.59 *** | 0.22 | −0.09 ** | 1.48 | 1.38 | −0.20 |
7 | Sanchuan River | −0.39 | 0.38 *** | −0.01 | −0.11 ** | 1.63 | 1.27 | −0.11 |
8 | Fen River | −0.16 | 0.34 ** | 0.18 | −0.03 | 1.30 | 0.68 | 0.01 |
9 | Beiluo River | −0.48 ** | 0.02 * | −0.46 ** | −0.08 *** | 2.36 * | −0.56 | 0.55 |
10 | Jing River | −0.62 ** | −0.01 | −0.63 ** | −0.12 *** | 2.45 * | −0.42 | 0.54 |
11 | Wei River | −1.67 *** | −0.05 | −1.73 *** | −0.32 *** | 1.93 ** | −0.49 | 0.40 |
12 | Yiluo River | −1.94 | 0.06 | −1.88 | −0.22 | 1.76 | −1.65 | 0.66 |
Period I | Period II | Change Rate (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
ID | εET0 | εPre | εn | εET0 | εPre | εn | ∆εET0 | ∆εPre | ∆εn |
1 | −1.15 | 2.15 | −1.97 | −1.82 | 2.82 | −2.61 | 59.02 | 31.53 | 32.75 |
2 | −0.85 | 1.85 | −1.62 | −1.16 | 2.16 | −1.90 | 36.13 | 16.59 | 17.25 |
3 | −1.56 | 2.56 | −2.28 | −1.98 | 2.98 | −2.59 | 26.43 | 16.12 | 13.25 |
4 | −1.51 | 2.51 | −2.36 | −1.67 | 2.67 | −2.41 | 10.45 | 6.29 | 2.33 |
5 | −1.82 | 2.82 | −2.24 | −2.10 | 3.10 | −2.42 | 15.25 | 9.84 | 7.94 |
6 | −1.83 | 2.83 | −2.33 | −1.85 | 2.85 | −2.26 | 1.43 | 0.92 | −2.73 |
7 | −1.60 | 2.60 | −2.07 | −1.77 | 2.77 | −2.12 | 11.12 | 6.84 | 2.23 |
8 | −2.01 | 3.01 | −2.24 | −2.07 | 3.07 | −2.24 | 3.36 | 2.25 | 0.30 |
9 | −2.54 | 3.54 | −2.26 | −2.83 | 3.83 | −2.49 | 11.50 | 8.25 | 10.08 |
10 | −2.13 | 3.13 | −2.13 | −2.51 | 3.51 | −2.48 | 17.9 | 12.17 | 16.16 |
11 | −1.73 | 2.73 | −1.72 | −2.36 | 3.36 | −2.12 | 35.85 | 22.74 | 23.5 |
12 | −1.40 | 2.40 | −1.26 | −1.61 | 2.61 | −1.36 | 14.86 | 8.68 | 8.27 |
Area (km2) | ||||
---|---|---|---|---|
Land Use | Before 1999 | After 1999 | Change | Change Rate (%) |
Cultivated | 202,527 | 202,019 | −508 | −0.25 |
Forest | 91,251 | 100,593 | 9342 | 10.24 |
Grassland | 270,619 | 257,767 | −12,852 | −4.75 |
Water bodies | 8126 | 8554 | 428 | 5.27 |
Residential | 13,572 | 16,335 | 2763 | 20.36 |
Unused | 40,907 | 41,756 | 849 | 2.08 |
Basin ID | n1 | n2 | ∆ (%) | ∆LAI (%) |
---|---|---|---|---|
1 | 1.41 | 2.03 | 44.35 | 77.93 |
2 | 1.14 | 1.43 | 26.29 | 85.82 |
3 | 1.81 | 2.21 | 21.62 | 109.46 |
4 | 1.74 | 1.90 | 9.41 | 73.67 |
5 | 2.11 | 2.38 | 12.52 | 95.68 |
6 | 2.10 | 2.14 | 2.12 | 48.69 |
7 | 1.90 | 2.09 | 9.97 | 32.39 |
8 | 2.32 | 2.39 | 3.18 | 36.75 |
9 | 2.91 | 3.16 | 8.68 | 35.8 |
10 | 2.49 | 2.81 | 13.02 | 54.5 |
11 | 2.18 | 2.75 | 26.30 | 33.8 |
12 | 1.98 | 2.19 | 10.74 | 38.87 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, C.; Zhang, D.; Liang, K.; Li, X.; Dong, G. Reduced Runoff Due to Anthropogenic Intervention in the Loess Plateau, China. Water 2016, 8, 458. https://doi.org/10.3390/w8100458
Li Y, Liu C, Zhang D, Liang K, Li X, Dong G. Reduced Runoff Due to Anthropogenic Intervention in the Loess Plateau, China. Water. 2016; 8(10):458. https://doi.org/10.3390/w8100458
Chicago/Turabian StyleLi, Yanzhong, Changming Liu, Dan Zhang, Kang Liang, Xinan Li, and Guotao Dong. 2016. "Reduced Runoff Due to Anthropogenic Intervention in the Loess Plateau, China" Water 8, no. 10: 458. https://doi.org/10.3390/w8100458
APA StyleLi, Y., Liu, C., Zhang, D., Liang, K., Li, X., & Dong, G. (2016). Reduced Runoff Due to Anthropogenic Intervention in the Loess Plateau, China. Water, 8(10), 458. https://doi.org/10.3390/w8100458