Estimating Water Footprints of Vegetable Crops: Influence of Growing Season, Solar Radiation Data and Functional Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determining the WFs of Crops on the Steenkoppies Aquifer
2.1.1. Crop Water Use Modelling
2.1.2. Crop Parameters
2.1.3. Verification of SWB Results
2.1.4. Water Footprint Calculations
2.2. Challenges Encountered and Approaches Adopted to Deal with Them
2.2.1. Inter-Seasonal and Inter-Annual Variation in WFs
- Summer: November to February, using 7 November as planting date
- Autumn: March and April, using 1 March as planting date
- Winter: May to August, using 7 May as planting date
- Spring: September and October, using 1 September as planting date.
2.2.2. The Importance of Standardised Weather Datasets
2.2.3. Using Different Functional Units for WF Assessments
3. Results
3.1. SWB Results
3.2. Water Footprints of the Selected Crops
4. Discussion
5. Conclusions
- Incorporate beneficial uses of crop residues in the WF.
- Calculate WFs using other functional units, such as economic gain and job creation.
- Improve the understanding of the fate of N for grey WF calculations.
- Improve the understanding of how initial soil water content at planting could impact the blue versus green WF.
- Determine how significant the variation in WFs is between different crop cultivars.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ET | Evapotranspiration |
ETo | Reference Evapotranspiration |
FAO | Food and Agriculture Organization of the United States |
HPA | High Plains Aquifer |
N | Nitrogen |
P | Phosphorus |
SWB | Soil Water Balance crop water use model |
WF | Water Footprint |
WFN | Water Footprint Network |
References
- Department of Water Affairs. National Water Resource Strategy; Department of Water Affairs: Pretoria, South Africa, 2013.
- Backeberg, G.R.; Reinders, F.B. Institutional reform and modernisation of irrigation systems in South Africa. In Proceedings of the 5th Asian Regional Conference of ICID, New Delhi, India, 6–11 December 2009.
- South Africa Yearbook 2014/15; Government Communication and Information System (GCIS): Pretoria, South Africa, 2015.
- Nieuwoudt, W.L.; Backeberg, G.R.; Du Plessis, H.M. The value of water in the south african economy: Some implications. Agrekon 2004, 43, 162–183. [Google Scholar] [CrossRef]
- De Jager, E. South Africa annual Total Rainfall General Information; South African Weather Services: Pretoria, South Africa, 2016.
- Crop Estimates Committee. Preliminary Area Planted and Preliminary Production Forecast—Summer Crops; Department of Agriculture, Forestry and Fisheries (DAFF): Pretoria, South Africa, 2016.
- Nditwani, T.; Basson, T.; Rossouw, J. Water Reconciliation Strategy for the Crocodile (West) River catchment. Civ. Eng. 2009, 17, 14–18. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Routledge: London, UK, 2011. [Google Scholar]
- Deurer, M.; Green, S.R.; Clothier, B.E.; Mowat, A. Can product water footprints indicate the hydrological impact of primary production?—A case study of New Zealand kiwifruit. J. Hydrol. 2011, 408, 246–256. [Google Scholar] [CrossRef]
- Postel, S. Pillar of Sand: Can the Irrigation Miracle Last? W.W. Norton & Company United States of America: New York, NY, USA, 1999. [Google Scholar]
- Mostafa, M.E. Water in arid agriculture: Salinity and waterlogging in the near-east region. Ambio 1977, 6, 36–39. [Google Scholar]
- Zilberman, D.; Chakravorty, U.; Shah, F. Efficient management of water in agriculture. In Decentralization and Coordination of Water Resource Management; Parker, D.D., Tsur, Y., Eds.; Springer: Boston, MA, USA, 1997; pp. 221–246. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Nyambo, P.; Wakindiki, I.I. Water footprint of growing vegetables in selected smallholder irrigation schemes in South Africa. Water SA 2015, 41, 571–578. [Google Scholar] [CrossRef]
- Scheepers, M.E.; Jordaan, H. Assessing the blue and green water footprint of lucerne for milk production in South Africa. Sustainability 2016, 8, 49. [Google Scholar] [CrossRef]
- Van der Laan, M.; Jumman, A.; Perret, S. Environmental benefits of improved water and nitrogen management in irrigated sugar cane: A combined crop modelling and life cycle assessment approach. Irrig. Drain. 2015, 64, 241–252. [Google Scholar] [CrossRef]
- Jongschaap, R.; Blesgraaf, R.; Bogaard, T.; Van Loo, E.; Savenije, H. The water footprint of bioenergy from Jatropha curcas l. Proc. Natl. Acad. Sci. USA 2009, 106, E92. [Google Scholar] [CrossRef] [PubMed]
- SABMiller; WWF. Water Footprinting: Identifying & Addressing Water Risks in the Value Chain; SABMiller: Woking, UK; WWF: Woking, UK, 2009. [Google Scholar]
- Pegasys. Water Footprint Analysis for the Breede Catchment, South Africa Draft Report; Breede Overberg Catchment Management Agency: Cape Town, South Africa, 2012. [Google Scholar]
- Pahlow, M.; Snowball, J.; Fraser, G. Water footprint assessment to inform water management and policy making in South Africa. Water SA 2015, 41, 300–313. [Google Scholar] [CrossRef]
- Ranchod, N.; Sheridan, C.M.; Pint, N.; Slatter, K.; Harding, K.G. Assessing the blue-water footprint of an opencast platinum mine in South Africa. Water SA 2015, 41, 287–293. [Google Scholar] [CrossRef]
- Department of Water and Sanitation. Long Term Flow Data for the Maloneys’ Eye. Available online: https://www.dwa.gov.za/Hydrology/hymain.aspx (accessed on 1 June 2014).
- Vahrmeijer, J.; Annandale, J.; Bristow, K.; Steyn, J.; Holland, M. Drought as a catalyst for change: A case study of the steenkoppies dolomitic aquifer. In Drought in Arid and Semi-Arid Regions; Springer: New York, NY, USA, 2013; pp. 251–268. [Google Scholar]
- Water Research Commission. WRC Knowledge Review for 2013/14; Water Research Commission: Pretoria, South Africa, 2014. [Google Scholar]
- AgroClimatology Staff. ARC-ISCW Climate Information System; ARC-Institute for Soil, Climate and Water: Pretoria, South Africa, 2014. [Google Scholar]
- Ridoutt, B.G.; Pfister, S. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob. Environ. Chang. 2010, 20, 113–120. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K. Globalization of Water: Sharing the Planet’s Freshwater Resources; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Annandale, J.; Benade, N.; Jovanovic, N.; Steyn, J.; Du Sautoy, N. Facilitating Irrigation Scheduling by Means of the Soil Water Balance Model; Water Research Commission Report. No. 753/1/99; Water Research Commission: Pretoria, South Africa, 1999. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Annandale, J.; Campbell, G.; Olivier, F.; Jovanovic, N. Predicting crop water uptake under full and deficit irrigation: An example using pea (Pisum sativum L. Cv. Puget). Irrig. Sci. 2000, 19, 65–72. [Google Scholar] [CrossRef]
- Annandale, J.G.; Stirzaker, R.J.; Singels, A.; Van der Laan, M.; Laker, M.C. Irrigation scheduling research: South african experiences and future prospects. Water SA 2011, 37, 751–763. [Google Scholar] [CrossRef]
- Jovanovic, N.; Annandale, J. Crop growth model parameters of 19 summer vegetable cultivars for use in mechanistic irrigation scheduling models. Water SA 2000, 26, 67–76. [Google Scholar]
- Jovanovic, N.; Annandale, J.; Mhlauli, N. Field water balance and swb parameter determination of six winter vegetable species. Water SA 1999, 25, 191–196. [Google Scholar]
- Vahrmeijer, J. Improved Management of Groundwater in Irrigated Catchments under Stress. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2016. [Google Scholar]
- Jovanovic, N.; Ehlers, L.; Bennie, A.; Du Preez, C.; Annandale, J. Modelling the contribution of root accessible water tables towards crop water requirements. S. Afr. J. Plant Soil 2004, 21, 171–181. [Google Scholar] [CrossRef]
- Nagar, B.; Datta, M.; Khakhar, M. Eutrophication and recovery in experimental lakes: Implications for lake management. Science 1974, 184, 897–899. [Google Scholar]
- Schindler, D.W. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 2006, 51, 356–363. [Google Scholar] [CrossRef]
- Schindler, D.; Fee, E. Experimental lakes area: Whole-lake experiments in eutrophication. J. Fish. Res. Board Can. 1974, 31, 937–953. [Google Scholar] [CrossRef]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Karl, E.; Lancelot, C.; Gene, E. Controlling eutrophication: Nitrogen and phosphorus. Science 2009, 123, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
- Walton, G. Survey of literature relating to infant methemoglobinemia due to nitrate-contaminated water. Am. J. Public Health Nations Health 1951, 41, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Smolders, A.J.; Lucassen, E.C.; Bobbink, R.; Roelofs, J.G.; Lamers, L.P. How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: The sulphur bridge. Biogeochemistry 2010, 98, 1–7. [Google Scholar] [CrossRef]
- Sims, J.T.; Simard, R.R.; Joern, B.C. Phosphorus loss in agricultural drainage: Historical perspective and current research. J. Environ. Qual. 1998, 27, 277–293. [Google Scholar] [CrossRef]
- Gleeson, T.; Alley, W.M.; Allen, D.M.; Sophocleous, M.A.; Zhou, Y.; Taniguchi, M.; VanderSteen, J. Towards sustainable groundwater use: Setting long-term goals, backcasting, and managing adaptively. Ground Water 2012, 50, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Chapagain, A.; Hoekstra, A. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol. Econ. 2011, 70, 749–758. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A global assessment of the water footprint of farm animal products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef]
- Mekonnen, M.; Hoekstra, A. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol. Earth Syst. Sci. 2010, 14, 1259–1276. [Google Scholar] [CrossRef] [Green Version]
- Department of Water Affairs and Forestry (DWAF). General and Special Limits Applicable to Discharge of Wastewater into a Water Resource; Government Gazette 20526; DWAF: Pretoria, South Africa, 1999.
- Department of Water Affairs (DWA). Water Quality Data for the Maloney’s Eye; Monitoring Point ID 90163; DWA: Pretoria, South Africa, 2014.
- Franke, N.A.; Boyacioglu, H.; Hoekstra, A.Y. Grey Water Footprint Accounting: Tier 1 Supporting Guidelines; Value of Water Research Report Series No. 65; UNESCO-IHE: Delft, The Netherlands, 2013. [Google Scholar]
- Van Suid Afrika, M. Bemestingshandleiding, 7th ed.; FSSA-MVSA: Pretoria, South Africa, 2007. [Google Scholar]
- Petek, M.; Custic, M.H.; Nina, T.; Slunjski, S.; Lepomir, C.; Pavlovic, I.; Karazija, T.; Lazarevic, B.; Cvetkovi, S. Nitrogen and crude proteins in beetroot (Beta vulgaris var. conditiva) under different fertilization treatments. Not. Bot. Horti Agrobot. 2012, 40, 215–219. [Google Scholar]
- Sorensen, J. Nitrogen effects on vegetable crop production and chemical composition. In Proceedings of the International Workshop on Ecological Aspects of Vegetable Fertilization in Integrated Crop Production, Warwick, UK, 27–31 July 1998; pp. 41–50.
- Australian and New Zealand Environment and Conservation Council (ANZECC); Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ). Australian and New Zealand Guidelines for Fresh and Marine Water Quality; ANZECC: Canberra, Australia; ARMCANZ: Canberra, Australia, 2000.
- Alexandrova, P.; Donov, D. Nitrogen content and its uptake by maize as influenced by some meteorological elements and fertilization. Int. Agrophys. 2003, 17, 41–46. [Google Scholar]
- Mossé, J.; Huet, J.; Baudet, J. The amino acid composition of wheat grain as a function of nitrogen content. J. Cereal Sci. 1985, 3, 115–130. [Google Scholar] [CrossRef]
- Allan, J.A. Virtual water: A strategic resource global solutions to regional deficits. Ground Water 1998, 36, 545–546. [Google Scholar] [CrossRef]
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.-P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef] [PubMed]
- Schau, E.M.; Fet, A.M. LCA studies of food products as background for environmental product declarations. Int. J. Life Cycle Assess. 2008, 13, 255–264. [Google Scholar] [CrossRef]
- Ingwersen, W.W. Life cycle assessment of fresh pineapple from costa rica. J. Clean. Prod. 2012, 35, 152–163. [Google Scholar] [CrossRef]
- United States Department of Agriculture. National Nutrient Database for Standard Reference. Available online: http://ndb.nal.usda.gov/ (accessed on 2 June 2015).
- Mahan, L.K.; Escott-Stump, S. Krause’s Food, Nutrition, & Diet Therapy, 11th ed.; Elsevier: New York, NY, USA, 2004. [Google Scholar]
- Wiegmans, F.; Holland, M.; Janse van Rensburg, H. Groundwater Resource Directed Measures for Maloney’s Eye Catchment; Report No. 14/14/5/2; Water Research Commission Report No. K8/970; Water Research Commission: Pretoria, South Africa, 2013. [Google Scholar]
- Multsch, S.; Pahlow, M.; Ellensohn, J.; Michalik, T.; Frede, H.-G.; Breuer, L. A hotspot analysis of water footprints and groundwater decline in the high plains aquifer region, USA. Reg. Environ. Chang. 2016. [Google Scholar] [CrossRef]
- Sun, S.; Wu, P.; Wang, Y.; Zhao, X. Temporal variability of water footprint for maize production: The case of beijing from 1978 to 2008. Water Resour. Manag. 2013, 27, 2447–2463. [Google Scholar] [CrossRef]
- Zhuo, L.; Mekonnen, M.; Hoekstra, A. Sensitivity and uncertainty in crop water footprint accounting: A case study for the yellow river basin. Hydrol. Earth Syst. Sci. 2014, 18, 2219–2234. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Pfister, S. A new water footprint calculation method integrating consumptive and degradative water use into a single stand-alone weighted indicator. Int. J. Life Cycle Assess. 2013, 18, 204–207. [Google Scholar] [CrossRef]
- Wichelns, D. Assessing water footprints will not be helpful in improving water management or ensuring food security. Int. J. Water Resour. Dev. 2011, 27, 607–619. [Google Scholar] [CrossRef]
- Perry, C. Water footprints: Path to enlightenment, or false trail? Agric. Water Manag. 2014, 134, 119–125. [Google Scholar] [CrossRef]
- Witthueser, K.; Leyland, R.; Holland, M. Vulnerability of dolomite aquifers in South Africa. In Sustainable Groundwater Resources in Africa: Water Supply and Sanitation Environment; Xu, Y., Braune, E., Eds.; CRC Press: Roggebaai, South Africa, 2009; pp. 119–131. [Google Scholar]
Parameters | Carrots | Cabbage | Beetroot | Broccoli | Lettuce | Maize | Wheat | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Summer & Spring | Autumn & Winter | Summer & Spring | Autumn & Winter | Summer | Spring | Autumn & Winter | Summer & Spring | Autumn & Winter | All Seasons | Summer | Winter | |
Extinction Coefficient | 0.76 | 0.76 | 0.78 | 0.62 | 0.64 | 0.64 | 0.64 | 0.77 | 0.81 | 0.92 | 0.56 | 0.55 |
Dry-Matter-Water Ratio (Pa) | 8 | 8 | 9 | 6 | 7 | 7 | 7 | 6 | 7 | 9 | 4 | 4 |
Conversion Efficiency (kg·MJ−1) | 0.00087 | 0.00087 | 0.00094 | 0.00094 | 0.0012 | 0.0012 | 0.0012 | 0.001 | 0.001 | 0.0009 | 0.0012 | 0.0017 |
Base temperature (°C) | 7.2 | 7.2 | 4.4 | 2 | 4.4 | 4.4 | 4.4 | 0 | 0 | 7.2 | 10 | 4 |
Temperature Optimal Light (°C) | 15 | 15 | 15 | 10 | 15 | 15 | 15 | 15 | 10 | 15 | 25 | 15 |
Cut Off Temperature (°C) | 23.9 | 23.9 | 23.9 | 23.9 | 23.9 | 23.9 | 23.9 | 23.9 | 23.9 | 23.9 | 30 | 25 |
Emergence Day Degrees (°C) | 103 | 103 | 130 | 50 | 64 | 64 | 64 | 123 | 95 | 71 | 50 | 50 |
Flowering Day Degrees (°C) | 200 | 200 | 800 | 750 | 200 | 200 | 500 | 1100 | 650 | 175 | 900 | 750 |
Maturity Day Degrees (°C) | 1450 | 1300 | 1300 | 1445 | 1300 | 1000 | 1356 | 1700 | 1200 | 529 | 1700 | 1500 |
Transition Day Degrees (°C) | 1238 | 1238 | 400 | 500 | 700 | 700 | 700 | 500 | 1200 | 475 | 10 | 400 |
Maximum Leaf Age | 1450 | 1300 | 1300 | 1445 | 1300 | 1000 | 1356 | 1700 | 1200 | 529 | 900 | 900 |
Max Height (m) | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.5 | 0.4 | 0.3 | 2.2 | 1 |
Maximum Root Depth (m) | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.4 |
Stem to Grain Translation | 0.5 | 0.5 | 0.05 | 0.05 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.01 | 0.05 | 0.01 |
Canopy Storage (mm) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Minimum Leaf Water Potential (kPa) | −1500 | −1500 | −1500 | −1500 | −1500 | −1500 | −1500 | −1500 | −1500 | −1500 | −2000 | −1500 |
Maximum Transpiration (mm·day−1) | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
Specific Leaf Area (m2·kg−1) | 17.9 | 17.9 | 11 | 9.5 | 13 | 13 | 13 | 10.5 | 9.5 | 20 | 15 | 12 |
Leaf Stem Partition (m2·kg−1) | 3.08 | 3.08 | 1.55 | 0.56 | 3.02 | 3.02 | 3.02 | 1.54 | 1.54 | 6.33 | 0.8 | 1.2 |
Total Dry Mass at Emergence or Transplanting (kg·m−2) | 0.0005 | 0.0005 | 0.005 | 0.01 | 0.003 | 0.003 | 0.003 | 0.001 | 0.007 | 0.0008 | 0.0019 | 0.0019 |
Root Fraction | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.01 | 0.02 |
Root Growth Rate | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 4 | 7 |
Stress Index | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
Crops | Application (kg·N·ha−1) | N content of Fresh Mass (%) |
---|---|---|
Beetroot | 140 | 0.2% [51] |
Carrots | 190 | 0.12% [52] |
Cabbage | 190 | 0.2% [52] |
Broccoli | 190 | 0.4% [52] |
Lettuce | 130 | 0.19% [53] |
Maize | 220 | 0.9% [54] |
Wheat | 240 | 1.5% [55] |
Crops | Percentage Dry Matter |
---|---|
Carrots | 10% 1 |
Cabbage | 7% 1 |
Beetroot | 13% 2 |
Broccoli | 13% 1 |
Lettuce | 4% 2 |
Maize | 90% 2 |
Wheat | 87% 2 |
Nutrient | RDA of a Man Aged 31 to 50 |
---|---|
Proteins | 56 g |
Carbohydrates | 130 g |
Iron | 8 mg |
Magnesium | 420 mg |
Zinc | 11 mg |
Crop | Month | Average Seasonal WF of Crop (m3·Tonnes−1) | WFs (m3·Tonnes−1) Reported in the Literature [13] | Percentage Difference between Local and Published Blue + Green WFs | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Blue | Green | Blue + Green | Grey | Blue | Green | Blue + Green | Grey | |||
Carrots | Summer | 36 | 25 | 61 | 48 | 28 | 106 | 134 | 61 | 120% |
Autumn | 104 | 12 | 116 | 60 | 15% | |||||
Winter | 88 | 7 | 95 | 52 | 41% | |||||
Spring | 45 | 17 | 62 | 39 | 116% | |||||
Cabbage | Summer | 38 | 29 | 66 | 65 | 26 | 181 | 207 | 73 | 212% |
Autumn | 53 | 11 | 64 | 30 | 224% | |||||
Winter | 77 | 1 | 79 | 18 | 163% | |||||
Spring | 63 | 16 | 79 | 45 | 162% | |||||
Beetroot | Summer | 60 | 40 | 100 | 92 | 26 | 82 | 108 | 25 | 8% |
Autumn | 87 | 14 | 101 | 33 | 7% | |||||
Winter | 121 | 3 | 124 | 19 | −13% | |||||
Spring | 104 | 15 | 118 | 95 | −9% | |||||
Broccoli | Summer | 142 | 120 | 262 | 182 | 21 | 189 | 210 | 75 | −20% |
Autumn | 225 | 76 | 301 | 570 | −30% | |||||
Winter | 322 | 5 | 327 | 535 | −36% | |||||
Spring | 170 | 44 | 214 | 212 | −2% | |||||
Lettuce | Summer | 31 | 24 | 56 | 99 | 28 | 133 | 161 | 77 | 256% |
Autumn | 51 | 20 | 71 | 130 | 169% | |||||
Winter | 93 | 1 | 93 | 55 | 108% | |||||
Spring | 56 | 6 | 62 | 79 | 212% | |||||
Maize | Summer | 452 | 254 | 707 | 373 | 81 | 947 | 1028 | 194 | 45% |
Wheat | Winter | 732 | 31 | 762 | 439 | 342 | 1277 | 1619 | 207 | 120% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roux, B.L.; Van der Laan, M.; Vahrmeijer, T.; Annandale, J.G.; Bristow, K.L. Estimating Water Footprints of Vegetable Crops: Influence of Growing Season, Solar Radiation Data and Functional Unit. Water 2016, 8, 473. https://doi.org/10.3390/w8100473
Roux BL, Van der Laan M, Vahrmeijer T, Annandale JG, Bristow KL. Estimating Water Footprints of Vegetable Crops: Influence of Growing Season, Solar Radiation Data and Functional Unit. Water. 2016; 8(10):473. https://doi.org/10.3390/w8100473
Chicago/Turabian StyleRoux, Betsie Le, Michael Van der Laan, Teunis Vahrmeijer, John G. Annandale, and Keith L. Bristow. 2016. "Estimating Water Footprints of Vegetable Crops: Influence of Growing Season, Solar Radiation Data and Functional Unit" Water 8, no. 10: 473. https://doi.org/10.3390/w8100473
APA StyleRoux, B. L., Van der Laan, M., Vahrmeijer, T., Annandale, J. G., & Bristow, K. L. (2016). Estimating Water Footprints of Vegetable Crops: Influence of Growing Season, Solar Radiation Data and Functional Unit. Water, 8(10), 473. https://doi.org/10.3390/w8100473