Potential for Combined Biocontrol Activity against Fungal Fish and Plant Pathogens by Bacterial Isolates from a Model Aquaponic System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of Samples
2.2. In Vitro Screening for Antagonistic Activity against P. ultimum and S. parasitica
3. Results
3.1. Bacterial Isolates
3.2. In Vitro Screening Test against Plant Pathogen
3.3. In Vitro Screening Test against Fish Pathogen
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Food and Agricultural Organization. Feeding the World, Eradicating Hunger. In World Summit on Food Security; WSFS 2009/INF/2; Food and Agricultural Organization of the United Nations: Rome, Italy, 2009; pp. 1–18. [Google Scholar]
- Van Woensel, L.; Archer, G.; Panades-Estruch, L.; Vrscaj, D. Ten Technologies Which Could Change Our Lives; European Union: Brussels, Belgium, 2015. [Google Scholar]
- Rakocy, J.E.; Masser, M.P.; Losordo, T.M. Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture; Southern Regional Aquaculture Centre: Stoneville, MS, USA, 2006; pp. 1–16. [Google Scholar]
- Graber, A.; Junge, R. Aquaponic systems: Nutrient recycling from fish wastewater by vegetable production. Desalination 2009, 246, 147–156. [Google Scholar]
- Bittsánszky, A.; Gyulai, G.; Junge, R.; Schmautz, Z.; Komives, T. Plant protection in ecocycle-based agricultural systems: Aquaponics as an example. In Proceedings of the International Plant Protection Congress (IPPC), Berlin, Germany, 24–27 August 2015.
- Rakocy, J.E. Ten guidelines for aquaponic systems. Aquaponics J. 2007, 46, 14–17. [Google Scholar]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Haas, D.; Défago, G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 2005, 3, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.M. Introduction: Some consequences of microbial rhizosphere competence for plant and soil. In The Rhizosphere; Lynch, J.M., Ed.; Wiley: Chichester, UK, 1990; pp. 1–10. [Google Scholar]
- Lugtenberg, B.; Kamilova, F. Plant-growth-promoting rhizobacteria. Ann. Rev. Microbiol. 2009, 63, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Burr, T.J.; Schroth, M.N.; Suslow, T. Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology 1978, 68, 1377–1383. [Google Scholar] [CrossRef]
- Kloepper, J.W.; Schroth, M.N. Plant growth-promoting rhizobacteria on radishes. In Proceedings of the 4th International Conference on Plant Pathogenic Bacteria. Station de Pathologie Végétale et de Phytobactériologie, Angers, France, 27 August–2 September 1978; pp. 879–882.
- Suslow, T.V.; Schroth, M.N. Rhizobacteria of sugar beets: Effects of seed application and root colonization on yield. Phytopathology 1982, 72, 199–206. [Google Scholar] [CrossRef]
- Schippers, B.; Bakker, A.W.; Bakker, P.A.H.M. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Ann. Rev. Phytopathol. 1987, 25, 339–358. [Google Scholar] [CrossRef]
- Chabot, R.; Antoun, H.; Cescas, M. Stimulation de la croissance du maïs et de la laitue romaine par des microorganismes dissolvant le phosphore inorganique. Can. J. Microbiol. 1993, 39, 941–947. (In French) [Google Scholar] [CrossRef]
- Bouizgarne, B. Bacteria for plant growth promotion and disease management. In Bacteria in Agrobiology: Disease Management; Maheshwari, D.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 15–47. [Google Scholar]
- Trias, R.; Baneras, L.; Montesinos, E.; Badosa, E. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int. Microbiol. 2008, 11, 231–236. [Google Scholar] [PubMed]
- Lutz, M.; Michel, V.; Camps, C. Lactic acid bacteria for use in the biological control of soil-borne pathogens. IOBC/WPRS Bull. 2012, 78, 285–288. [Google Scholar]
- Eissa, N.; Abou El-Ghiet, E.N. Efficacy of Pseudomonas fluorescens as biological control agents against Aeromonas hydrophila infection in Oreochromis niloticus. World J. Fish Mar. Sci. 2012, 3, 564–569. [Google Scholar]
- Mohideen, M.M.A.; Mohanb, T.S.; Mashrooraa, K.R.F.; Lakshmic, K.K.; Hussain, M.I.Z. Pseudomonas fluorescens is an effective probiotic against fish–pathogenic Vibrio sp. Int. J. Biol. Technol. 2010, 1, 118–123. [Google Scholar]
- Carbajal-González, M.T.; Fregeneda-Grandes, J.M.; Gonzalez-Palacios, C.; Aller-Gancedo, J.M. Adhesion to brown trout skin mucus, antagonism against cyst adhesion and pathogenicity to rainbow trout of some inhibitory bacteria against Saprolegnia parasitica. Dis. Aquat. Organ. 2013, 104, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Aghaei Moghaddam, A.; Hajimoradloo, A.; Ghiasi, M.; Ghorbani, R. In vitro inhibition of growth in Saprolegnia sp. isolated from the eggs of Persian sturgeon Acipenser persicus (Pisces: Acipenseriformes) by Pseudomonas aeroginosa (PTCC:1430). Casp. J. Environ. Sci. 2013, 11, 233–240. [Google Scholar]
- Schmautz, Z.; Graber, A.; Jaenicke, S.; Goesmann, A.; Junge, R.; Smits, T.H.M. Microbial diversity in different compartments of an aquaponics system. Arch. Microbiol. 2016, submitted. [Google Scholar]
- Raaijmakers, J.M.; Weller, D.M.; Thomashow, L.S. Frequency of antibiotic-producing Pseudomonas spp. in natural environment. Appl. Environ. Microbiol. 1997, 63, 881–887. [Google Scholar] [PubMed]
- De Man, J.C.; Rogosa, M.; Sharpe, E.M. A medium for the cultivation of Lactobacilli. J. Appl. Bacteriol. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- Naseby, D.C.; Pascual, J.A.; Lynch, J.M. Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. J. Appl. Microbiol. 2000, 88, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Lemanceau, P.; Alabouvette, C. Suppression of Fusarium-wilts by fluorescent pseudomonads: Mechanisms and applications. Biocontrol Sci. Technol. 1993, 3, 219–234. [Google Scholar] [CrossRef]
- Mrabet, M.; Djebali, N.; Elkahoui, S.; Miloud, Y.; Saïdi, S.; Tarhouni, B.; Mhamdi, R. Efficacy of selected Pseudomonas strains for biocontrol of Rhizoctonia solani in potato. Phytopathol. Mediterr. 2013, 52, 449–456. [Google Scholar]
- Nurhajati, J.; Aryantha, I.N.P.; Indah, D.G. The curative action of Lactobacillus plantarum FNCC 226 to Saprolegnia parasitica A3 on catfish (Pangasius hypophthalamus Sauvage). Int. Food Res. J. 2012, 19, 1723–1727. [Google Scholar]
- Vallance, J.; Déniel, F.; Le Floch, G.; Guérin-Dubrana, L.; Blancard, D.; Rey, P. Pathogenic and benecial microorganisms in soilless cultures. Agron. Sustain. Dev. 2011, 31, 191–203. [Google Scholar]
- Rurangwa, E.; Verdegem, M.C.J. Microorganisms in recirculating aquaculture systems and their management. Rev. Aquac. 2015, 7, 117–130. [Google Scholar] [CrossRef]
- Verschere, L.; Rombaut, G.; Sorgeloos, P.; Verstraete, W. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev. 2000, 64, 655–671. [Google Scholar] [CrossRef]
Compartment | King’s B Medium | MRS Medium | ||||
---|---|---|---|---|---|---|
Total | Strong Inhibitive | Percentage | Total | Strong Inhibitive | Percentage | |
Fish tanks | 144 | 7 | 4.9% | 12 | 0 | - |
Tomato roots | 144 | 21 | 14.6% | 0 | - | - |
Biofilter | 144 | 13 | 9.0% | 24 | 0 | - |
Sump water | 144 | 15 | 10.4% | 17 | 0 | - |
Tilapia scales | 168 | 6 | 3.6% | 0 | - | - |
Tilapia faeces | 180 | 24 | 13.3% | 48 | 1 | 2.1% |
Total | 924 | 86 | 9.3% | 101 | 1 | 1.0% |
Compartment | Total | Strong Inhibitive | Percentage |
---|---|---|---|
Fish tank | 4 | 4 | 100% |
Tomato roots | 11 | 9 | 81.8% |
Biofilter | 1 | 0 | - |
Sump water | 5 | 4 | 80.0% |
Tilapia scales | 6 | 5 | 83.3% |
Tilapia faeces | 23 | 20 | 87.0% |
Total | 50 | 42 | 84.0% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirakov, I.; Lutz, M.; Graber, A.; Mathis, A.; Staykov, Y.; Smits, T.H.M.; Junge, R. Potential for Combined Biocontrol Activity against Fungal Fish and Plant Pathogens by Bacterial Isolates from a Model Aquaponic System. Water 2016, 8, 518. https://doi.org/10.3390/w8110518
Sirakov I, Lutz M, Graber A, Mathis A, Staykov Y, Smits THM, Junge R. Potential for Combined Biocontrol Activity against Fungal Fish and Plant Pathogens by Bacterial Isolates from a Model Aquaponic System. Water. 2016; 8(11):518. https://doi.org/10.3390/w8110518
Chicago/Turabian StyleSirakov, Ivaylo, Matthias Lutz, Andreas Graber, Alex Mathis, Yordan Staykov, Theo H. M. Smits, and Ranka Junge. 2016. "Potential for Combined Biocontrol Activity against Fungal Fish and Plant Pathogens by Bacterial Isolates from a Model Aquaponic System" Water 8, no. 11: 518. https://doi.org/10.3390/w8110518
APA StyleSirakov, I., Lutz, M., Graber, A., Mathis, A., Staykov, Y., Smits, T. H. M., & Junge, R. (2016). Potential for Combined Biocontrol Activity against Fungal Fish and Plant Pathogens by Bacterial Isolates from a Model Aquaponic System. Water, 8(11), 518. https://doi.org/10.3390/w8110518