Impact of Demographic Growth on Seawater Intrusion: Case of the Tripoli Aquifer, Lebanon
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Tripoli Aquifer
2.2. Observation Data Set
2.3. Mathematical Formulation
- The Tripoli aquifer is an unconfined aquifer.
- The flow direction is mainly horizontal.
- The interface between freshwater and saltwater is assumed to be a sharp interface (the two fluids are considered as immiscible). This is applicable when the thickness of the transition zone is small. The interface is considered as representative of the lower percentile (50%) of the advection-dispersion approach.
- The sharp interface approach is applicable considering the pumping rate. Based on [19] the sharp interface is more compatible to the realistic case when the pumping rate is higher than 0.07 m per day and up to 0.15 m per day also when the wells are relatively deep. This is the case in the lower Tripoli aquifer where the wells are deep (about 100 m) and the pumping rate is about 33,600 m per day justifying the application of the sharp interface approximation.
- The fluxes in the saltwater zone are considered as negligible and the saltwater is considered in hydro-static conditions.
- An average sea water level is considered. Thus tides effects are not considered.
- The pumping occurs in the freshwater zone. Saltwater adapts to the pressure in the freshwater, and pumping is stopped when the saltwater wedge is reached.
2.4. Model Verification in Schematic Domain
2.5. Model Setup and Calibration
2.6. Scenario Build-up
- ”NOP”: refers to the no-pumping scenario.
- ”REC”: refers to scenario with a 120 L per capita as recommended by the water authorities.
- ”10 Y”: refers to a 10 years projection with the current pumping rate of 250 L per capita.
- ”20 Y”: refers to a 20 years projection with the current pumping rate of 250 L per capita.
3. Results and Discussion
3.1. Status of Saltwater Intrusion in Tripoli
3.2. Impact of Demographic Growth on Saltwater Intrusion
4. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ergil, M.E. The salination problem of the Guzelyurt aquifer, Cyprus. Water Res. 2000, 34, 1201–1214. [Google Scholar] [CrossRef]
- Barlow, P.M.; Reichard, E.G. Saltwater intrusion in coastal regions of North America. Hydrogeol. J. 2010, 18, 247–260. [Google Scholar] [CrossRef]
- Cardona, A.; Carrillo-Rivera, J.J.; Huizar-Alvarez, R.; Graniel-Castro, E. Salinization in coastal aquifers of arid zones: An example from Santo Domingo, Baja California Sur, Mexico. Environ. Geol. 2004, 45, 350–366. [Google Scholar] [CrossRef]
- Narayan, K.A.; Schleeberger, C.; Bristow, K.L. Modelling seawater intrusion in the Burdekin Delta irrigation area, North Queensland, Australia. Agric. Water Manag. 2007, 89, 217–228. [Google Scholar] [CrossRef]
- Walther, M.; Delfs, J.O.; Grundmann, J.; Kolditz, O.; Liedl, R. Saltwater intrusion modeling: Verification and application to an agricultural coastal arid region in Oman. J. Comput. Appl. Math. 2012, 236, 4798–4809. [Google Scholar] [CrossRef]
- Halwani, J.; Omar, W.; Alkadi, F. Intrusion Saline à Tripoli, Internal Report; Lebanese University: Tripoli, Lebanon, 2010. [Google Scholar]
- Pachauri, R.K.; Reisinger, A. IPCC Fourth Assessment Report; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Bear, J. Dynamics of Fluids in Porous Media; American Elsevier: New York, NY, USA; London, UK; Amsterdam, The Netherlands, 1972. [Google Scholar]
- Diersch, H.J.; Kolditz, O. Variable-density flow and transport in porous media: Approaches and challenges. Adv. Water Resour. 2002, 25, 899–944. [Google Scholar] [CrossRef]
- Tek, M.R. Development of a generalized Darcy equation. J. Pet. Technol. 1957, 9, 45–47. [Google Scholar] [CrossRef]
- Diersch, H.J. FEFLOW Reference Manual; Institute for Water Resources Planning and Systems Research Ltd.: Berlin, Germany, 2002; p. 278. [Google Scholar]
- Voss, C.I. USGS SUTRA code History, practical use, and application in Hawaii. In Seawater Intrusion in Coastal Aquifers-Concepts, Methods and Practices; Springer: Dordrecht, The Netherlands, 1999; pp. 249–313. [Google Scholar]
- Kolditz, O.; Bauer, S.; Bilke, L.; Böttcher, N.; Delfs, J.O.; Fischer, T.; Zehner, B. OpenGeoSys: An open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ.Earth Sci. 2012, 67, 589–599. [Google Scholar] [CrossRef]
- Ackerer, P.; Younes, A.; Mose, R. Modeling variable density flow and solute transport in porous medium: 1. Numerical model and verification. Transp. Porous Media 1999, 35, 345–373. [Google Scholar] [CrossRef]
- Badon-Ghyben, W. Nota in verband met de voorgenomen putboring nabij Amsterdam (Notes on the probable results of well drilling near Amsterdam). In Tijdschrift van het Kononklijk Instituut van Ingenieurs; The Hague: Amsterdam, Netherlands, 1888; Volume 9, pp. 8–22. [Google Scholar]
- Herzberg, A. Die Wasserversorgung einiger Nordseebader (the water supply of parts of the North Sea coast in Germany). J. Gasbeleucht. Wasserversorg 1901, 44, 815–819. [Google Scholar]
- Bear, J. Hydraulics of Groundwater; Mc Grraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- Llopis-Albert, C.; Pulido-Velazquez, D. Discussion about the validity of sharp-interface models to deal with seawater intrusion in coastal aquifers. Hydrol. Process. 2014, 28, 3642–3654. [Google Scholar] [CrossRef]
- Mehdizadeh, S.S.; Vafaie, F.; Abolghasemi, H. Assessment of sharp-interface approach for saltwater intrusion prediction in an unconfined coastal aquifer exposed to pumping. Environ. Earth Sci. 2015, 73, 8345–8355. [Google Scholar] [CrossRef]
- Kacimov, A.R.; Sherif, M.M.; Perret, J.S.; Al-Mushikhi, A. Control of sea-water intrusion by salt-water pumping: Coast of Oman. Hydrogeol. J. 2009, 17, 541–558. [Google Scholar] [CrossRef]
- Telesca, L.; Shaban, A.; Gascoin, S.; Darwich, T.; Drapeau, L.; El Hage, M.; Faour, G. Characterization of the time dynamics of monthly satellite snow cover data on Mountain Chains in Lebanon. J. Hydrol. 2014, 519, 3214–3222. [Google Scholar] [CrossRef]
- Wetzel, R. Délégation Générale de France au Levant, Section Géologique. Carte Géologique au 1:50,000 Feuille de Tripoli (Liban), Tracés Géoloqique. Ing Géologique Univ de Strasbourg; Dessiné et Publié par l’Armée Libanaise en Colaboration avec l’Université de Strasbourg: Beirut, Lebanon, 1963. [Google Scholar]
- Amin, I.E. Groundwater mining in the Tripoli area, Lebanon. In Proceedings of the Denver Annual Meeting, Denver, CO, USA, 27–30 October 2002.
- Khair, K.; Khawlie, M.; Haddad, F.; Barazangi, M.; Chaimov, T.; Seber, D. Gravity modeling and geologic setting and tectonics of the central segment of the Dead Sea fault zone. Geology 1993, 21, 739–742. [Google Scholar]
- Haramadiyan, D. Report to the Municipality of Tripoli; Tripoli municipality: Tripoli, Lebanon, 2004. [Google Scholar]
- Likens, G.E. Biogeochemistry of a Forested Ecosystem; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Ward, J.C. Turbulent Flow in Porous Media. J. Hydraul. Div. Proc. ASCE 1964, 5, 1–12. [Google Scholar]
- Irmay, S. On the theoretical derivation of Darcy and Forchheimer formulas. Eos Trans. Am. Geophys. Union 1958, 39, 702–707. [Google Scholar] [CrossRef]
- Brutsaert, W.; Nieber, J.L. Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour. Res. 1977, 13, 637–643. [Google Scholar] [CrossRef]
- Jazar, M.; Monneau, M. Derivation of seawater intrusion models by formal asymptotic. SIAM J. Appl. Math. 2014, 74, 1152–1173. [Google Scholar]
- Hecht, F.; Pironneau, O.; Ohtsuka, K. FreeFem++, version 3.9-2; Laboratoire JL Lions, Université Pierre et Marie Curie: Paris, France, 2010. [Google Scholar]
- Hecht, F.; Pironneau, O.; Le Hyaric, A.; Ohtsuka, K. FreeFem++ Manual; Laboratoire JL Lions, Université Pierre et Marie Curie: Paris, France, 2005. [Google Scholar]
- Al Bitar, A.; Ababou, R. Random field approach to seawater intrusion in heterogeneous coastal aquifers: Unconditional simulations and statistical analysis. In Geostatistics for Environmental Applications; Springer: Berlin, Germany; Heidelberg, Germany, 2005; pp. 233–248. [Google Scholar]
- Ababou, R.; Bagtzoglou, A. BIGFLOW: A Numerical Code for Simulating Flow in Variably Saturated Heterogeneous Geologic Media (Theory and User’s Manual); Report NUREG/CR-6028; US Nuclear Regulatory Commission: Washington, DC, USA, 1993. [Google Scholar]
- Henry, H.R. Salt Intrusion into Coastal Aquifers. Ph.D. Dissertation, Columbia University, New York, NY, USA, 1960. [Google Scholar]
- Al Bitar, A. Modélisation des Écoulements en Milieu Poreux Hétérogenes 2D/3D, avec Couplages Surface/Souterrain et Densitaires; Institut National Polytechnique de Toulouse: Toulouse, France, 2007. [Google Scholar]
- Elder, J.W. Steady free convection in a porous medium heated from below. J. Fluid Mech. 1967, 27, 29–48. [Google Scholar] [CrossRef]
- Goswami, R.R.; Clement, T.P. Laboratory-scale investigation of saltwater intrusion dynamics. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Khayat, Z. Assessment of the National Groundwater Resources of Lebanon Implemented by Joint-Venture ELARD BURGEAP-IGIP and Ribeka on Behalf of the UNDP; Ministry of Energy and Water: Beirut, Lebanon, 2014.
- Kerrou, J.; Renard, P.; Cornaton, F.; Perrochet, P. Stochastic forecasts of seawater intrusion towards sustainable groundwater management: Application to the Korba aquifer (Tunisia). Hydrogeol. J. 2013, 21, 425–440. [Google Scholar] [CrossRef]
Parameter | Symbol | Unit | Dimension |
---|---|---|---|
Ground level | a | m | - |
Hydraulic head | h | m | - |
Freshwater/saltwater interface position | g | m | - |
Substratum level | b | m | 0 |
Specific yield of the freshwater zone | |||
Specific yield of the saltwater zone | |||
Freshwater source term | S | 33,600 | |
Seawater source term | 0 | ||
Sea level | m | 200 | |
Hydraulic permeability | m·s | ||
Well radius | r | m | |
Specific flux | ψ | m·m··s | - |
Area of pump zone | A | m | - |
Coefficient for pumping rate | λ | m·m·day | - |
Root mean square deviation | RMSD | m | - |
Aquifer length | km | 2 | |
Saltwater wedge penetration length | km | ||
Density of freshwater | kg·m | 1000 | |
Density of seawater | kg·m | 1025 |
Well | Pumping Rate (m/h) |
---|---|
Bhsas | 195 |
Malouleh | 136 |
El-Jisr | 204 |
Interface | Without Pumping | With Pumpinp | |
---|---|---|---|
RMSE (Analytic) | RMSE (BFSWIM) | RMSE (BFSWIM) | |
h | |||
g |
Pump Zone | (m·Day) | (m) | (m·Day) |
---|---|---|---|
Private wells | 3,000,000 | 21,000 | |
Bhsas | 5024 | 4680 | |
Malouleh | 314 | 3264 | |
El-Jisr | 314 | 4896 |
Year | Number of Inhabitants |
---|---|
2008 | 82,000 |
2018 | 95,000 |
2028 | 110,000 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalaoun, O.; Al Bitar, A.; Gastellu-Etchegorry, J.-P.; Jazar, M. Impact of Demographic Growth on Seawater Intrusion: Case of the Tripoli Aquifer, Lebanon. Water 2016, 8, 104. https://doi.org/10.3390/w8030104
Kalaoun O, Al Bitar A, Gastellu-Etchegorry J-P, Jazar M. Impact of Demographic Growth on Seawater Intrusion: Case of the Tripoli Aquifer, Lebanon. Water. 2016; 8(3):104. https://doi.org/10.3390/w8030104
Chicago/Turabian StyleKalaoun, Omar, Ahmad Al Bitar, Jean-Philippe Gastellu-Etchegorry, and Mustapha Jazar. 2016. "Impact of Demographic Growth on Seawater Intrusion: Case of the Tripoli Aquifer, Lebanon" Water 8, no. 3: 104. https://doi.org/10.3390/w8030104
APA StyleKalaoun, O., Al Bitar, A., Gastellu-Etchegorry, J. -P., & Jazar, M. (2016). Impact of Demographic Growth on Seawater Intrusion: Case of the Tripoli Aquifer, Lebanon. Water, 8(3), 104. https://doi.org/10.3390/w8030104