Spatial and Temporal Variations of Streambed Vertical Hydraulic Conductivity in the Weihe River, China
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Measurement of Streambed Vertical Hydraulic Conductivity
3.2. Sediment Sampling and Grain Size Analysis
3.3. Statistical Analyses
4. Results
4.1. Spatial Variation of Streambed Kv
4.2. Statistical Distribution of Kv
4.3. Temporal Variation of Streambed Kv
4.4. The Variation of Streambed Kv with Depth
5. Discussion
5.1. Spatial Variation of Streambed Kv and Grain Size
5.2. Temporal Variation of Streambed Kv and Grain Size
5.3. The Variation of Streambed Kv with Depth
5.4. Correlation between Water Depth and Streambed Kv
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Calver, A. Riverbed permeabilities: Information from pooled data. Groundwater 2001, 39, 546–553. [Google Scholar] [CrossRef]
- Cardenas, M.B.; Zlotnik, V.A. A simple constant-head injection test for streambed hydraulic conductivity estimation. Groundwater 2003, 41, 867–871. [Google Scholar] [CrossRef]
- Landon, M.K.; Rus, D.L.; Harvey, F.E. Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds. Groundwater 2001, 39, 870–885. [Google Scholar] [CrossRef]
- Dong, W.H.; Chen, X.H.; Wang, Z.W.; Ou, G.X.; Liu, C. Comparison of vertical hydraulic conductivity in a streambed-point bar system of a gaining stream. J. Hydrol. 2012, 450–451, 9–16. [Google Scholar] [CrossRef]
- Genereux, D.P.; Leahy, S.; Mitasova, H.; Kennedy, C.D.; Corbett, D.R. Spatial and temporal variability of streambed hydraulic conductivity in West Bear Creek, North Carolina, USA. J. Hydrol. 2008, 358, 332–353. [Google Scholar] [CrossRef]
- Min, L.L.; Yu, J.J.; Liu, C.M.; Zhu, J.T.; Wang, P. The spatial variability of streambed vertical hydraulic conductivity in an intermittent river, northwestern China. Environ. Earth. Sci. 2013, 69, 873–883. [Google Scholar] [CrossRef]
- Chen, X.H. Statistical and geostatistical features of streambed hydraulic conductivities in the Platte River, Nebraska. Environ. Geol. 2005, 48, 693–701. [Google Scholar] [CrossRef]
- Springer, A.E.; Petroutson, W.D.; Semmens, B.A. Spatial and temporal variability of hydraulic conductivity in active reattachment bars of the Colorado River, Grand Canyon. Groundwater 1999, 37, 338–344. [Google Scholar] [CrossRef]
- Chen, X.H.; Mi, H.C.; He, H.M.; Liu, R.C.; Gao, M.; Huo, A.D.; Cheng, D.H. Hydraulic conductivity variation within and between layers of a high floodplain profile. J. Hydrol. 2014, 515, 147–155. [Google Scholar] [CrossRef]
- Ryan, R.J.; Boufadel, M.C. Evaluation of streambed hydraulic conductivity heterogeneity in an urban watershed. Stoch. Environ. Res. Risk A 2006, 21, 309–316. [Google Scholar] [CrossRef]
- Sebok, E.; Duque, C.; Engesgaard, P.; Boegh, E. Spatial variability in streambed hydraulic conductivity of contrasting stream morphologies: Channel bend and straight channel. Hydrol. Processes 2015, 29, 458–472. [Google Scholar] [CrossRef]
- Hatch, C.E.; Fisher, A.T.; Ruehl, C.R.; Stemler, G. Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods. J. Hydrol. 2010, 389, 276–288. [Google Scholar] [CrossRef]
- Chen, X.H. Streambed hydraulic conductivity for rivers in south-central Nebraska. J. Am. Water Resour. Assoc 2004, 40, 561–573. [Google Scholar] [CrossRef]
- Blaschke, A.P.; Steiner, K.H.; Schmalfuss, R.; Gutknecht, D.; Sengschmitt, D. Clogging processes in hyporheic interstices of an impounded river, the Danube at Vienna, Austria. Int. Rev. Hydrobiol. 2003, 88, 397–413. [Google Scholar] [CrossRef]
- Wu, G.; Shu, L.; Lu, C.; Chen, X.; Zhang, X.; Appiah-Adjei, E.K.; Zhu, J. Variations of streambed vertical hydraulic conductivity before and after a flood season. Hydrol. J. 2015, 23, 1603–1615. [Google Scholar] [CrossRef]
- Song, J.X.; Chen, X.H.; Cheng, C.; Wang, D.M.; Wang, W.K. Variability of streambed vertical hydraulic conductivity with depth along the Elkhorn River, Nebraska, USA. Chin. Sci. Bull. 2010, 55, 992–999. [Google Scholar] [CrossRef]
- Leek, R.; Wu, J.Q.; Wang, L.; Hanrahan, T.P.; Barber, M.E.; Qiu, H.X. Heterogeneous characteristics of streambed saturated hydraulic conductivity of the Touchet River, south eastern Washington, USA. Hydrol. Process. 2009, 23, 1236–1246. [Google Scholar] [CrossRef]
- Song, J.X.; Chen, X.H.; Cheng, C.; Summerside, S.; Wen, F.J. Effects of hyporheic processes on streambed vertical hydraulic conductivity in three rivers of Nebraska. Geophys. Res. Lett. 2007, 34, L07409. [Google Scholar] [CrossRef]
- Chen, X. Depth-dependent hydraulic conductivity distribution patterns of a streambed. Hydrol. Process. 2011, 25, 278–287. [Google Scholar] [CrossRef]
- Jiang, W.W.; Song, J.X.; Zhang, J.L.; Wang, Y.Y.; Zhang, N.; Zhang, X.H.; Long, Y.Q.; Li, J.X.; Yang, X.G. Spatial variability of streambed vertical hydraulic conductivity and its relation to distinctive stream morphologies in the Beiluo River, Shaanxi Province, China. Hydrol. J. 2015, 23, 1617–1626. [Google Scholar] [CrossRef]
- Levy, J.; Birck, M.D.; Mutiti, S.; Kilroy, K.C.; Windeler, B.; Idris, O.; Allen, L.N. The impact of storm events on a riverbed system and its hydraulic conductivity at a site of induced infiltration. J. Environ. Manag. 2011, 92, 1960–1971. [Google Scholar] [CrossRef] [PubMed]
- Nowinski, J.D.; Cardenas, M.B.; Lightbody, A.F. Evolution of hydraulic conductivity in the floodplain of a meandering river due to hyporheic transport of fine materials. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Cheng, D.H.; Chen, X.H.; Huo, A.D.; Gao, M.; Wang, W.K. Influence of bedding orientation on the anisotropy of hydraulic conductivity in a well-sorted fluvial sediment. Int. J. Sediment Res. 2013, 28, 118–125. [Google Scholar] [CrossRef]
- Li, J.; Shi, C.; Xu, X.; Fu, Z. Mechanism and effect of channel evolution at estuary of Weihe River to Huanghe River. Chin. Geograph. Sci. 2006, 16, 122–126. [Google Scholar] [CrossRef]
- He, H.M.; Zhang, Q.F.; Zhou, J.; Fei, J.; Xie, X.P. Coupling climate change with hydrological dynamic in Qinling Mountains, China. Clim. Chang. 2009, 94, 409–427. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Tian, P.; Wang, F.; Gao, P. Climate changes and their impacts on water resources in semiarid regions: A case study of the Wei River Basin, China. Hydrol. Process. 2013, 27, 3852–3863. [Google Scholar] [CrossRef]
- Jiao, J.; Ma, X.; Wang, F.; Wang, W. Regional variation features of sediment yields intensity in Wei River Basin. Res. Soil Water Conserv. 2004, 11, 60–63. [Google Scholar]
- Qiao, Y.S.; Guo, Z.T.; Hao, Q.Z.; Yin, Q.Z.; Yuan, B.Y.; Liu, D.S. Particle distribution characteristics and its depositional indication of a mid-miocene and paleosoil profile. Sci. China Ser. D Earth Sci. 2006, 36, 646–653. [Google Scholar]
- Feng, P.L.; Wang, L.L.; Ma, X.Y.; Chen, N.L. Sedimentology and siltation of the streambed for the lintong reach of the Weihe River. Yellow River 2012, 34, 22–25. [Google Scholar]
- Li, J.K.; Li, H.E.; Shen, B.; Li, Y.J. Effect of non-point source pollution on water quality of the Weihe River. Int. J. Sediment Res. 2011, 26, 50–61. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, B.S.; Wang, G.Q. Fluvial processes and morphological response in the yellow and weihe rivers to closure and operation of sanmenxia dam. Geomorphology 2007, 91, 65–79. [Google Scholar] [CrossRef]
- Yazdandoost, F.; Attari, J. Hydraulics of Dams and River Structures; CRC Press: Tehran, Iran, 2004. [Google Scholar]
- Song, J.X.; Xu, Z.X.; Hui, Y.H.; Li, H.E.; Li, Q. Instream flow requirements for sediment transport in the lower weihe river. Hydrol. Process. 2010, 24, 3547–3557. [Google Scholar] [CrossRef]
- Du, J.; Shi, C.X. Effects of climatic factors and human activities on runoff of the weihe river in recent decades. Quat. Int. 2012, 282, 58–65. [Google Scholar] [CrossRef]
- Wang, W.K.; Kong, J.L.; Duan, L.; Wang, Y.L.; Ma, X.D. Research on the conversion relationships between the river and groundwater in the yellow river drainage area. Sci. China Ser. E Technol. Sci. 2004, 47, 25–41. [Google Scholar] [CrossRef]
- Hvorslev, M.J. Time Lag and Soil Permeability in Ground-Water Observations; U.S. Army Bulletin: Vicksburg, MS, USA, 1951. [Google Scholar]
- Freeze, R.; Cherry, J. Groundwater; Prentice-Hall: Englewood Cliffs, NJ, USA, 1979. [Google Scholar]
- Davis, R.A. Depositional Systems: A Genetic Approach to Sedimentary Geology; Prentice-Hall: Englewood Cliffs, NJ, USA, 1983. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org (accessed on 3 July 2015).
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; Elsevier: Amsterdam, The Netherlands, 1992; Volume 49. [Google Scholar]
- Bonferroni Correction. From MathWorld—A Wolfram Web Resource. Available online: http://mathworld.wolfram.com/BonferroniCorrection.html (accessed on 9 November 2015).
- Sprent, P.; Smeeton, N.C. Applied Nonparametric Statistical Methods; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Cox, D.R.; Stuart, A. Some quick sign tests for trend in location and dispersion. Biometrika 1955, 42, 80–95. [Google Scholar] [CrossRef]
- Chen, X.H.; Burbach, M.; Cheng, C. Electrical and hydraulic vertical variability in channel sediments and its effects on streamflow depletion due to groundwater extraction. J. Hydrol. 2008, 352, 250–266. [Google Scholar] [CrossRef]
- Lin, X.Z.; Jiang, N.Q.; Liang, Z.Y.; Yue, D.J. Study on Instream Flow Requirement for Transportation of Sediment in the Lower Weihe River; The Yellow River Press: Zhengzhou, China, 2005. [Google Scholar]
- Wu, G.D.; Shu, L.C.; Lu, C.P.; Chen, X.H. The heterogeneity of 3-d vertical hydraulic conductivity in a streambed. Hydrol. Res. 2015. [Google Scholar] [CrossRef]
Test Site | Date | Number of Kv Measurements | Mean Flow Velocity (cm/s) | Mean Water Depth (cm) | Min. Kv (m/d) | Max. Kv (m/d) | Average Kv (m/d) | Median Kv (m/d) |
---|---|---|---|---|---|---|---|---|
Meixian | 31 October 2011 | 17 | 9 | 47 | 9.87E-02 | 5.04 | 1.21 | 5.88E-01 |
6 November 2012 | 9 | 10 | 40 | 3.31E-01 | 9.34 | 3.12 | 1.79 | |
22 March 2013 | 13 | 10 | 38 | 2.92E-03 | 6.09E-02 | 1.70E-02 | 9.34E-03 | |
2 June 2013 | 14 | 26 | 42 | 1.56E-02 | 3.86 | 9.48E-01 | 1.00E-01 | |
19 December 2013 | 9 | NA | 43 | 5.87E-04 | 2.03E-01 | 3.78E-02 | 1.01E-03 | |
6 July 2014 | 3 | 20 | 70 | 3.65E-02 | 9.79E-02 | 5.88E-02 | 4.20E-02 | |
6 November 2014 | 6 | 66 | 57 | 2.57E-02 | 5.31E-02 | 3.83E-02 | 3.45E-02 | |
October 2011–November 2014 | 71 | 24 | 48 | 5.87E-04 | 9.34 | 7.76E-01 | 9.05E-02 | |
Xianyang | 17 October 2011 | 11 | 28 | 53 | 7.40E-02 | 1.17 | 4.29E-01 | 2.21E-01 |
3 November 2012 | 12 | 29 | 80 | 2.40E-02 | 2.09E-01 | 9.43E-02 | 7.49E-02 | |
19 March 2013 | 20 | 13 | 76 | 1.99E-02 | 2.37E-01 | 8.19E-02 | 6.23E-02 | |
20 December 2013 | 9 | 5 | 46 | 1.07E-03 | 2.07 | 3.82E-01 | 6.63E-03 | |
16 June 2014 | 3 | 26 | 48 | 7.40E-03 | 2.26E-02 | 1.53E-02 | 1.60E-02 | |
10 November 2014 | 6 | 43 | 89 | 4.00E-02 | 6.58E-02 | 4.92E-02 | 4.46E-02 | |
October 2011 November 2014 | 61 | 24 | 65 | 1.07E-03 | 2.07 | 1.75E-01 | 5.75E-02 | |
Caotan | 19 November 2011 | 34 | 44 | 73 | 5.07E-01 | 61.3 | 19.4 | 18.7 |
1 November 2012 | 33 | 18 | 34 | 4.19 | 61.3 | 21.5 | 17.7 | |
12 March 2013 | 16 | 13 | 20 | 8.24E-01 | 21.9 | 9.46 | 7.47 | |
25 June 2013 | 16 | 28 | 42 | 3.62E-01 | 2.17 | 7.85E-01 | 5.36E-01 | |
23 December 2013 | 2 | 2 | 7 | 3.52E-02 | 4.24E-02 | 3.88E-02 | 3.88E-02 | |
26 June 2014 | 3 | 41 | 97 | 4.31E-01 | 6.50E-01 | 5.39E-01 | 5.35E-01 | |
9 November 2014 | 6 | 41 | 36 | 5.36E-01 | 6.32 | 2.68 | 1.44 | |
October 2011 November 2014 | 110 | 27 | 44 | 3.52E-02 | 61.3 | 7.77 | 10.2 | |
Lintong | 18 October 2011 | 16 | 38 | 46 | 4.49E-01 | 5.81 | 2.44 | 2.17 |
28 October 2012 | 8 | 10 | 45 | 2.61E-02 | 1.49E-01 | 8.43E-02 | 8.89E-02 | |
14 March 2013 | 18 | 14 | 83 | 2.33E-01 | 3.53 | 9.88E-01 | 6.82E-01 | |
19 July 2013 | 17 | 35 | 33 | 1.58E-02 | 3.05E-02 | 2.58E-02 | 2.68E-02 | |
22 December 2013 | 9 | 29 | 67 | 1.18E-02 | 9.60E-02 | 4.99E-02 | 3.60E-02 | |
12 June 2014 | 3 | 36 | 43 | 1.84E-02 | 2.33E-02 | 2.14E-02 | 2.24E-02 | |
8 November 2014 | 6 | 28 | 64 | 2.67E-02 | 7.99E-02 | 4.94E-02 | 4.26E-02 | |
October.2011 November 2014 | 77 | 27 | 54 | 1.18E-02 | 5.81 | 5.23E-01 | 9.54E-02 | |
Huaxian | 19 October 2011 | 2 | 25 | 45 | 4.95E-02 | 5.92E-02 | 5.43E-02 | 5.43E-02 |
5 November 2012 | 12 | 25 | 31 | 2.14E-02 | 1.80 | 4.80E-01 | 9.88E-02 | |
20 March 2013 | 20 | 15 | 22 | 8.09E-02 | 18.4 | 3.90 | 1.24 | |
25 June 2013 | 14 | 34 | 42 | 1.24E-01 | 7.42E-01 | 3.06E-01 | 2.50E-01 | |
21 December 2013 | 9 | 24 | 81 | 4.32E-02 | 3.12E-01 | 1.52E-01 | 1.46E-01 | |
11 June 2014 | 3 | 46 | 38 | 3.71E-02 | 3.79E-01 | 1.90E-01 | 1.53E-01 | |
5 November 2014 | 6 | 48 | 77 | 5.58E-01 | 7.77E-01 | 6.48E-01 | 6.30E-01 | |
October 2011 November 2014 | 66 | 31 | 48 | 2.14E-02 | 18.4 | 8.19E-01 | 3.14E-01 | |
All | October 2011 November 2014 | 385 | 26 | 51 | 5.87E-04 | 61.3 | 2.06 | 1.62E-01 |
Sampling Time | Number of Kv Measurements | Sites | Shapiro-Wilk | Lilliefors Test | ln(Sites) | Shapiro-Wilk | Lilliefors Test |
---|---|---|---|---|---|---|---|
October 2011 | 80 | all | no | no | ln(all) | no | yes |
November 2012 | 74 | all | no | no | ln(all) | no | no |
March 2013 | 87 | all | no | no | ln(all) | no | yes |
June 2013 | 61 | all | no | no | ln(all) | no | no |
December 2013 | 38 | all | no | no | ln(all) | no | yes |
June 2014 | 15 | all | no | no | ln(all) | yes | yes |
November 2014 | 30 | all | no | no | ln(all) | no | no |
October 2011–November 2014 | 385 | all | no | no | ln(all) | no | no |
71 | Meixian | no | no | ln(Meixian) | no | no | |
61 | Xianyang | no | no | ln(Xianyang) | yes | yes | |
110 | Caotan | no | no | ln(Caotan) | no | no | |
77 | Lintong | no | no | ln(Lintong) | no | no | |
66 | Huaxian | no | no | ln(Huaxian) | yes | yes |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Song, J.; Zhang, B.; Guo, H.; Jiang, W.; Wen, M.; Zhang, G. Spatial and Temporal Variations of Streambed Vertical Hydraulic Conductivity in the Weihe River, China. Water 2016, 8, 70. https://doi.org/10.3390/w8030070
Wang L, Song J, Zhang B, Guo H, Jiang W, Wen M, Zhang G. Spatial and Temporal Variations of Streambed Vertical Hydraulic Conductivity in the Weihe River, China. Water. 2016; 8(3):70. https://doi.org/10.3390/w8030070
Chicago/Turabian StyleWang, Liping, Jinxi Song, Bo Zhang, Hongtao Guo, Weiwei Jiang, Ming Wen, and Guotao Zhang. 2016. "Spatial and Temporal Variations of Streambed Vertical Hydraulic Conductivity in the Weihe River, China" Water 8, no. 3: 70. https://doi.org/10.3390/w8030070
APA StyleWang, L., Song, J., Zhang, B., Guo, H., Jiang, W., Wen, M., & Zhang, G. (2016). Spatial and Temporal Variations of Streambed Vertical Hydraulic Conductivity in the Weihe River, China. Water, 8(3), 70. https://doi.org/10.3390/w8030070