Developing Public Policy Options for Access to Drinking Water in Peripheral, Disaster and Polluted Rural Areas: A Case Study on Environment-Friendly and Conventional Technologies
Abstract
:1. Introduction
2. Goals and novelty
3. Methods
4. Theoretical framework
5. Results and Discussion
5.1. Defining and Analyzing the Public Policy Issues
5.2. Determination of the Evaluation Criteria for the Public Policy
5.3. Identifying Alternative Policies to Provide Access to Drinking Water in PDP Rural Areas of the NW Development Region of Romania
5.4. Evaluation of the Alternative Public Policies
5.5. Selection of the Preferred Public Policy Alternative
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Employment in agriculture (% of total employment). Available online: http://data.worldbank.org/indicator/SL.AGR.EMPL.ZS (accessed on 9 November 2015).
- Streiu, V.; Otiman, P.I.; Radulescu, A.; Hera, C.; Toncea, V.; Vincze, M.; Nicolaescu, I.M.; Van, I.; Tudor, S.; Lup, A.; et al. Cadrul National Strategic Pentru Dezvoltarea Durabila a Sectorului Agroalimentar si a Spatiului Rural in Perioada 2014–2020–2030. Cadrul National Strategic Rural; Comisia Prezidentiala pentru Politici Publice de Dezvoltare a Agriculturii: Bucharest, Romania, 2013. (In Romanian) [Google Scholar]
- Ogunniyi, L.T.; Sanusi, W.A.; Ezekiel, A.A. Determinants of rural household willingness to pay for safe water in Kwara State, Nigeria. AACL Bioflux 2011, 4, 660–669. [Google Scholar]
- Burger, R. The Analysis of Information Policy. Libr. Trends 1986, 35, 171–182. [Google Scholar]
- Jenkins, W.I. Policy Analysis: A Political and Organisational Perspective; Martin Robertson: London, UK, 1987. [Google Scholar]
- Government of Romania. Romanian Governmental Decision No. 870/2006 (HG 870/2006); Official Gazette, No 637 of 24.07.2006; Official Gazette: Bucharest, Romania, 2006.
- Miroiu, A. Introduction to Public Policy Analysis. Introducere in Analiza Politicilor Publice; Punct: Bucharest, Romania, 2001. (In Romanian) [Google Scholar]
- Gabelich, C.; Yun, T.; Coffey, B.; Suffet, I. Pilot-scale testing of reverse osmosis using conventional treatment and microfiltration. Desalination 2003, 154, 207–223. [Google Scholar] [CrossRef]
- Ghernaout, D. The best available technology of water/wastewater treatment and seawater desalination: Simulation of the open sky seawater distillation. Green Sustain. Chem. 2013, 3, 68–88. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, G.; Lu, X. Characteristics of DOM and Removal of DBPs Precursors across O3-BAC Integrated Treatment for the Micro-Polluted Raw Water of the Huangpu River. Water 2013, 5, 1472–1486. [Google Scholar] [CrossRef]
- Young, E.; Quinn, L. Writing effective public policy papers: A guide for policy advisers in Central and Eastern Europe; OSI/LGI: Budapest, Hungary, 2002. [Google Scholar]
- Patton, C.V.; Sawicki, D.S. Basic Methods of Policy Analysis and Planning, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1993. [Google Scholar]
- Petrescu-Mag, R.M. Protectia Mediului in Contextul Dezvoltarii Durabile. Legislatie si Institutii; EFES: Cluj-Napoca, Romania, 2013. [Google Scholar]
- Popescu, L.G. Administratie si Politici Publice; Economica: Bucharest, Romania, 2006. (In Romanian) [Google Scholar]
- Profiroiu, M.C. Politici Publice—Teorie, Analiza, Practica; Economica: Bucharest, Romania, 2006. (In Romanian) [Google Scholar]
- Mike, K.; Sandor, D.S.; Garboan, R.; Cobarzan, B. Analiza Politicilor Publice si Evaluarea Programelor in Administratia Publica; Babes-Bolyai University: Cluj-Napoca, Romania, 2011. (In Romanian) [Google Scholar]
- Hodgson, G. Behind methodological individualism. Camb. J. Econ. 1986, 10, 211–224. [Google Scholar]
- Dye, T. Understanding Public Policy, 2nd ed.; Prentince Hall: London, UK, 1975. [Google Scholar]
- Dogaru, T.C. Abordarea Rationala a Politicilor Publice. Ph.D. Thesis, National University of Political Studies and Public Administration, Bucharest, Romania, 2012. [Google Scholar]
- Banski, J. Suburban and peripheral rural areas in Poland: The balance of development in the transformation period. Geogr. Časopis 2005, 57, 117–130. [Google Scholar]
- Romanian Parliament. Law No. 351 of 6th of July 2001 on the Approval of the National Landscaping Plan—Section IV Network Localities; Official Gazette No. 408/24.07.2001; Official Gazette: Bucharest, Romania, 2001.
- Sencovici, M. Aspecte privind impactul exploatărilor petroliere asupra vegetaţiei în arealul Moreni—Jud. Dâmboviţa. Analele Univ. Valahia Târgovişte 2003, 3, 185–189. (In Romanian) [Google Scholar]
- Muntean, O.; Dragut, L.; Baciu, N.; Man, T.; Buzila, L.; Ferencik, I. Environmental impact assessment as a tool for environmental restoration: The case study of Copşa-Mică area, Romania. In Use of Landscape Sciences for the Assessment of Environmental Security; NATO Science for Peace and Security Series C: Environmental Security; Springer Netherlands: Houten, The Netherlands, 2007; pp. 461–474. [Google Scholar]
- Odagiu, A.; Oroian, I.; Mihaiescu, R.; Sotropa, A.; Petrescu-Mag, I.V.; Burdugos, P.; Balint, C. Municipality of cluj-napoca—The quality of wastewaters. Note 2. Monitoring turbidity. ProEnvironment 2010, 3, 84–88. [Google Scholar]
- García-Rubio, M.A.; Ruiz-Villaverde, A.; González-Gómez, F. Urban Water Tariffs in Spain: What needs to be done? Water 2015, 7, 1456–1479. [Google Scholar] [CrossRef]
- Dunn, W.N. Public Policy Analysis. An Introduction, 4th ed.; Pearson: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Gerston, L.N. Public Policymaking in a Democratic Society. A Guide to Civic Engagement, 2nd ed.; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Planul de dezvoltare al Regiunii de Nord-Vest 2014–2020. Transilvania de Nord 2020 (version April 2015). Agentia de Devoltare Regionala Nord-Vest. Available online: http://www.nord-vest.ro/Document_Files/Planul-de-dezvoltare-regionala-2014-2020/00001724/7r238_PDR_2014_2020.pdf (accessed on 3 October 2015). (In Romanian)
- Prezentarea Regiunii Nord-Vest (Transilvania de Nord). Available online: http://www.nord-vest.ro/DESPRE-NOIAgentia-de-Dezvoltare-Regionala-Nord-Vest/REGIUNEA-TRANSILVANIA-DE-NORD/Prezentare-Regiune.html (accessed on 13 November 2015).
- Ioja, C.I.; Patroescu, M.; Rozylowicz, L.; Popescu, V.D.; Verghelet, M.; Zotta, M.I.; Felciuc, M. The efficacy of romania’s protected areas network in conserving biodiversity. Biol. Conserv. 2010, 143, 2468–2476. [Google Scholar] [CrossRef]
- Regiunea Nord—Vest (Cluj-Napoca) Clearing House Mechanism Romania. Available online: http://biodiversitate.mmediu.ro/romanian-biodiversity/despre-arii-protejate/arpm/regiunea-nord-vest-cluj-napoca/ (accessed on 12 November 2015).
- Calin, D.I.; Rosu, C. Drinking Water Quality Assessment of Rural Wells from Aiud Area. AES Bioflux 2011, 3, 108–122. [Google Scholar]
- Bardach, E.A. A Practical Guide for Policy Analysis. The Eightfold Path to More Effective Problem Solving; CQ Press: Washington, DC, USA, 2009. [Google Scholar]
- KPMG. EU Funds in Central and Easter Europe, Progress Report 2007–2013; KPMG: Amstelveen, The Netherlands, 2014. [Google Scholar]
- Anderson, C. The place of principles in policy analysis. Am. Polit. Sci. Rev. 1979, 73, 711–723. [Google Scholar] [CrossRef]
- Caputo, R.K. Policy Analysis for Social Workers; Sage: Riverside, CA, USA, 2014. [Google Scholar]
- Council. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption; Official Journal of the European Communities L 330; European Union: Brussels, Belgium, 1998. [Google Scholar]
- Petrescu-Mag, R.M.; Petrescu, D.C. Drinking Water: Legislation, Policy, Economic Aspects. Case Studies from Cluj-Napoca (Romania); Presa Universitară Clujeană: Cluj-Napoca, Romania, 2014; pp. 1–101. [Google Scholar]
- Palaniappan, M.; Gleick, P.H.; Allen, P.H.; Allen, L.; Cohen, M.J.; Christian-Smith, J.; Smith, C. Clearing the Waters. A Focus on Water Quality Solutions; UNEP: Nairobi, Kenya, 2010. [Google Scholar]
- Kraft, M.E.; Furlong, S.R. Public Policy: Politics, Analysis, and Alternatives, 3rd ed.; CQ Press: Washington, DC, USA, 2010. [Google Scholar]
- Chambers, D.E.; Wedel, K.R. Social Policy and Social Programs: A Method for the Practical Public Policy Analyst, 5th ed.; Pearson Education: Boston, MA, USA, 2008. [Google Scholar]
- Rossell, C. Using multiple criteria to evaluate public policies. The case of school desegregation. Am. Policy Quaterly 1993, 12, 155–184. [Google Scholar]
- Petrescu, D.C.; Gavriletea, D.M.; Petrescu-Mag, I.V. Integrative Negotiation for Sustainable Water Management; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011; pp. 14–21. [Google Scholar]
- Conte, G.; Bolognesi, A.; Bragalli, C.; Branchini, S.; Carli, A.D.; Lenzi, C.; Masi, F.; Massarutto, A.; Pollastri, M.; Principi, I. Innovative urban water management as a climate change adaptation strategy: Results from the implementation of the project “Water Against Climate Change (WATACLIC)”. Water 2012, 4, 1024–1038. [Google Scholar] [CrossRef]
- Bellinger, W.K. The Economic Analysis of Public Policy; Routlege: New York, NY, USA, 2007. [Google Scholar]
- European Union. Treaty on the Functioning of the European Union—Consolidated Version; Official Journal of the European Union C 326; European Union: Brussels, Belgium, 2012. [Google Scholar]
- Petrescu-Mag, R.M.; Burny, P. The Principle of Environmental Integration under Scrutiny. An Analytical Legal Framework on How EU Policies are Becoming Green; Accent: Cluj-Napoca, Romania, 2015. [Google Scholar]
- Bran, F.; Radulescu, C.V.; Ioan, I. Measures of Environmental Performance. Rev. Int. Comp. Manag. 2011, 12, 893–900. [Google Scholar]
- Wallerstein, I. The End of the World as We Know It; University of Minnesota Press: Minneapolis, Minnesota, 1999. [Google Scholar]
- World Health Organization. Water Sanitation Health; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Rivadeneyra, A.; García-Ruiz, M.J.; Delgado-Ramos, F.; González-Martínez, A.; Osorio, F.; Rabaza, O. Feasibility study of a simple and low-cost device for monitoring trihalomethanes presence in water supply systems based on statistical models. Water 2014, 6, 3590–3602. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J.; Mireille, B.T.; Eaton, N.E.; Fawell, J.; Elliott, P. Chlorination disinfection by-products in water and their association with adverse reproductiveout comes: A revier. Occup Environ. Med. 2001, 57, 73–85. [Google Scholar] [CrossRef]
- Teodosiu, C. Technology of Drinking and Industrial Water [in Romanian: Tehnologia apei Potabile și Industriale]; Matrix: Bucharest, Romania, 2001. [Google Scholar]
- ICPE Bistrita. Report on the Automatic Modules for Drinking Water Using Advanced Oxidation Processes and Bio-Filters (Multiple Barriers); Internal; ICPE Bistrita: Bistrita, Romania, 2014. [Google Scholar]
- Romanian Paliament. Law No. 458 of 8th of July of 2002 on the Drinkin Water Quality; Official Gazette No. 552/29.07.2002; Official Gazette: Bucharest, Romania, 2002.
- Romanian Ministry of Regional Development and Public Administration. Order No. 2901/2013 on the Aproval of the Romanian Standard on the Design, Execution and Operation of Water Supply and Sewerage Systems of Localities Indicative NP 133/2013; Official Gazette No. 660/28.10.2013; Official Gazette: Bucharest, Romania, 2013.
- Weimer, D.; Vining, A. Policy Analysis: Concepts and Practice; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Therivel, R. Strategic Environmental Assessment in Action, 2nd ed.; Routledge: New York, NY, USA, 2012. [Google Scholar]
- Briggs, S.; Petersone, B.; Smits, K. Manual de Metode Folosite în Planificarea Politicilor Publice și Evaluarea Impactului; Guvernului României: Bucharest, Romania, 2006. (In Romanian) [Google Scholar]
- Acasa/Compania de Apa Somes S.A. Available online: http://www.casomes.ro/ (accessed on 13 November 2015).
- Bran, F.; Radulescu, C.V.; Ioan, I. Values and Environmental Ethics—Pillars of Changing Human Behaviour toward Sustainable Development. J. Knowl. Manag. Econ. Inf. Technol. 2013, 3, 194–202. [Google Scholar]
Parameter | Chlorine Based Technology | O3BioFilter |
---|---|---|
It is adapted to field conditions of the remote, polluted and disaster areas; it supports contaminated waters with iron ions, hydrogen sulfide, arsenic, manganese, ammonium, nitrites, nitrates, humic acids, pesticides, herbicides, petroleum products, residues of drugs, and cosmetics. | No | Yes |
It reduces disease incidence or epidemics caused by the possible induction of specific diseases by the consumption of improperly processed water, with hardly quantifiable results and major effects on people (especially children). | Yes | Yes |
Less expensive costs than other methods, included for hardly accessible water sources. | Yes | Yes |
It reduces accidental pollution caused by improper handling of chemicals used for drinking water treatment. The risk is practically zero because all the oxidants are generated “in situ” for O3BioFilter. | No | Yes |
It generates no odor. | No | Yes |
The lifespan of the system. | > 10 years | >15 years |
It is very safe, being fully automatic, there is no need for special measures. It does not require a human operator, providing a valuable advantage in its implementation in the mentioned areas. | Yes | Yes |
It has a higher adaptability to customer needs: flow, charge, space, etc. | No | Yes |
It does not present high levels of toxic secondary by-products (see Table 2) | No | Yes |
Parameter | Concentration Obtained with a Station Using Chlorine (mg/L) | Concentration Obtained with O3BioFilter (mg/L) | Maximum Allowed Concentration (Laws 458/2002, 311/2004; mg/L) |
---|---|---|---|
Ammonium | 0.2–1 | 0.2 | 0.5 |
Nitrite | 0.5 | 0.1 | 0.5 |
Nitrate | 10–50 | 10 | 50 |
Oxidability (CCOMn-potassium permanganate method) | 3–5 | 3 | 5 |
Iron | 0.2 | 0.1 | 0.2 |
Manganese | 0.05 | 0.03 | 0.05 |
Aluminum | 0.1–0.2 | 0.1 | 0.2 |
Sulfates | 250 | 150 | 250 |
Residual chlorine | 0.33 | 0.2 | ≥0.1 ≤0.5 |
Consumptions | Chlorine Technology (Drink Water Flow: 20m3/h) | O3BioFilter (Drink Water Flow: 20 m3/h) | ||
---|---|---|---|---|
Consumption of chemical reagents | Chlorine | 0.8–1 mg/L | Chlorine | 0.3 mg/L * |
Aluminum sulfate | 30–200 mg/L | Aluminum sulfate | No | |
Chlorine dioxide | 2–3 mg/L | Chlorine dioxide | No | |
Polyelectrolyte | 0.1–0.5 mg/L | Polyelectrolyte | No | |
Calcium hydroxide | 5–20 mg/L | Calcium hydroxide | No | |
Consumption of electric power ** | 6.75 kW/h | 4.5 kW/h |
Policy option | Stakeholder | Environment Protection | Equity | Technical performance | Economic Efficiency | Political Feasibility |
---|---|---|---|---|---|---|
Conventional (Chlorine) | Local administration | 8 | 7 | 10 | 7 | 5 |
7 | 7 | 10 | 8 | 5 | ||
6 | 8 | 10 | 6 | 4 | ||
Water companies | 7 | 10 | 10 | 8 | 9 | |
6 | 10 | 10 | 8 | 9 | ||
7 | 10 | 10 | 8 | 10 | ||
Water potabilization technologies providers | 7 | 10 | 8 | 4 | 10 | |
9 | 10 | 8 | 4 | 10 | ||
5 | 10 | 10 | 7 | 10 | ||
NGOs | 4 | 10 | 8 | 3 | 10 | |
4 | 10 | 9 | 3 | 10 | ||
6 | 10 | 8 | 3 | 10 | ||
Average score of conventional (Chlorine) policy option for each criterion | (8 + 7 + 6 + … + 6)/12 = 6 | (7 + 7 + 8 + … + 10)/12 = 9 | (10 + 10 + 10 + … + 8)/12 = 9 | (7 + 8 + 6 + …+ 3)/12 = 6 | (5 + 5 + 4 + … + 10)/12 = 9 | |
General average score of conventional (Chlorine) policy for all criteria | (6 + 9 + 9 + 6 + 9)/5 = 7.8 | |||||
O3BioFilter | Local administration | 8 | 7 | 9 | 8 | 4 |
7 | 7 | 10 | 9 | 5 | ||
7 | 8 | 8 | 10 | 5 | ||
Water companies | 5 | 8 | 8 | 8 | 9 | |
5 | 9 | 8 | 8 | 9 | ||
7 | 9 | 9 | 8 | 10 | ||
Water potabilization technologies providers | 8 | 9 | 10 | 10 | 10 | |
8 | 10 | 10 | 10 | 10 | ||
7 | 9 | 8 | 9 | 10 | ||
NGOs | 10 | 10 | 10 | 10 | 10 | |
10 | 10 | 10 | 10 | 10 | ||
10 | 10 | 10 | 10 | 10 | ||
Average score of O3BioFilter policy option for each criterion | (8 + 7 + 7 + … + 10)/12 = 8 | (7 + 7 + 8 +… + 10)/12 = 9 | (9 + 10 + 8 + … + 10)/12 = 9 | (8 + 9 + 10 + … + 10)/12 = 9 | (4 + 5 + 5 + … + 10)/12 = 9 | |
General average score of O3BioFilter policy for all criteria | (8 + 9 + 9 + 9 + 9)/5 = 8.8 | |||||
“Do nothing” | Local administration | 4 | 6 | 2 | 2 | 5 |
4 | 6 | 2 | 2 | 5 | ||
4 | 5 | 2 | 2 | 5 | ||
Water companies | 4 | 2 | 1 | 1 | 2 | |
3 | 2 | 1 | 1 | 3 | ||
4 | 3 | 1 | 1 | 2 | ||
Water potabilization technologies providers | 4 | 1 | 1 | 1 | 2 | |
3 | 3 | 1 | 1 | 2 | ||
3 | 2 | 1 | 1 | 3 | ||
NGOs | 3 | 2 | 1 | 1 | 1 | |
2 | 1 | 1 | 1 | 2 | ||
2 | 1 | 1 | 1 | 2 | ||
Average score of “do nothing” policy option for each criterion | (4 + 4 + 4 +… + 2)/12 = 3 | (6 + 6 + 5 + … + 1)/12 = 3 | (2 + 2 + 2 + … + 1)/12 = 1 | (2 + 2 + 2 + 2 … + 1)/12 = 1 | (5 + 5 + 5 + … + 2)/12 = 3 | |
General average score of “do nothing” policy for all criteria | (3 + 3 + 1 + 1 + 3)/5 = 2.2 |
Stakeholders/Criteria | Environment Protection | Equity | Technical Performance | Economic Efficiency | Political Feasibility |
---|---|---|---|---|---|
Local administration | 7 | 6 | 10 | 10 | 10 |
6 | 8 | 10 | 10 | 10 | |
7 | 6 | 10 | 10 | 10 | |
Water companies | 8 | 6 | 10 | 10 | 8 |
8 | 8 | 10 | 10 | 9 | |
8 | 7 | 10 | 10 | 7 | |
Water potabilization technologies providers | 10 | 8 | 10 | 10 | 7 |
10 | 7 | 10 | 10 | 6 | |
9 | 8 | 10 | 10 | 7 | |
NGOs | 10 | 10 | 10 | 10 | 10 |
10 | 10 | 10 | 10 | 10 | |
10 | 10 | 10 | 10 | 10 | |
Average importance | (7 + 6 + 7 + … + 10)/12 = 8.6 | (6 + 8 + 6 + … + 10)/12 = 7.8 | (10 + 10 + 10 + … + 10)/12 = 10 | (10 + 10 + 10 + … + 10)/12 = 10 | (10 + 10 + 10 + … + 10)/12 = 8.8 |
Average Importance and Average score | Environment Protection | Equity | Technical Performance | Economic Efficiency | Political Feasibility | Weighted Average Score | Cost-Effectiveness Using the Acquisition Price | Cost-effectiveness Using Annual Costs |
---|---|---|---|---|---|---|---|---|
Average importance of criterion (from Table 5) | 8.6 | 7.8 | 10 | 10 | 8.8 | - | - | - |
Average score of conventional (Chlorine) policy option for each criterion (from Table 4) | 6 | 9 | 9 | 6 | 9 | (8.6 × 6 + … + 8.8 × 9)/5 = 70 | 112,000/70 = 1600 | 67,000/70 = 957 |
Average score of O3BioFilter policy option for each criterion (from Table 4) | 8 | 9 | 9 | 9 | 9 | (8.6 × 8 + … + 8.8 × 9)/5 = 79 | 90,000/79 = 1139 | 39,920/79 = 505 |
Average score of “do nothing” policy option for each criterion (from Table 4) | 3 | 3 | 1 | 1 | 3 | (8.6 × 3 + … + 8.8 × 3)/5 = 20 | 0 | 0 |
Costs, Selling Price, and Break-even Point | Based on Chlorine (20 m3/h) | O3BioFilter (20 m3/h) |
---|---|---|
Fix costs: | 47,800 Euro/year | 31700 Euro/year |
-Maintenance | 15,000 | 9300 |
-Amortization (linear; 5 years) | 22,400 (selling price: 112,000 Euro) | 18000 (selling price: 90,000 Euro) |
-Administrative taxes | 400 | 400 |
-Service | 1000 | 1000 |
-Personnel | 9000 (3000 Euro/year × 3 persons) | 3000 (3000 Euro/year × 3 pers.) |
Variable costs (maximum capacity: continuous flow, high charges of contaminants) | 0.11 Euro/ m3 | 0.04 Euro/ m3 |
-Materials | 0.06 Euro/ m3 | 0.01 Euro/ m3 |
- Aluminum sulfate: 3000 Euro/year - Sodium hypoclorite: 5000 Euro/year - Sodium chloride for ionic exchange: 1000 Euro/year - Flocculant for mud: 1000 Euro/year - pH correction lime: 200 Euro/year | - Sodium chloride: 100 Euro/year - Nitrification bacteria: 120 Euro/year - Sodium hypochlorite: 2000 Euro/year | |
-Energy | 0.05 Euro/ m3 | 0.03 Euro/ m3 |
Selling price / m3 of drinking water | 1.1 Euro/ m3 | 1.1 Euro/ m3 |
Break-even point | 48283 m3/ year | 29906 m3/ year |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrescu-Mag, R.M.; Petrescu, D.C.; Safirescu, O.C.; Hetvary, M.; Oroian, I.G.; Vâju, D. Developing Public Policy Options for Access to Drinking Water in Peripheral, Disaster and Polluted Rural Areas: A Case Study on Environment-Friendly and Conventional Technologies. Water 2016, 8, 80. https://doi.org/10.3390/w8030080
Petrescu-Mag RM, Petrescu DC, Safirescu OC, Hetvary M, Oroian IG, Vâju D. Developing Public Policy Options for Access to Drinking Water in Peripheral, Disaster and Polluted Rural Areas: A Case Study on Environment-Friendly and Conventional Technologies. Water. 2016; 8(3):80. https://doi.org/10.3390/w8030080
Chicago/Turabian StylePetrescu-Mag, Ruxandra Mălina, Dacinia Crina Petrescu, Ovidiu Călin Safirescu, Mihaela Hetvary, Ioan Gheorghe Oroian, and Dumitru Vâju. 2016. "Developing Public Policy Options for Access to Drinking Water in Peripheral, Disaster and Polluted Rural Areas: A Case Study on Environment-Friendly and Conventional Technologies" Water 8, no. 3: 80. https://doi.org/10.3390/w8030080
APA StylePetrescu-Mag, R. M., Petrescu, D. C., Safirescu, O. C., Hetvary, M., Oroian, I. G., & Vâju, D. (2016). Developing Public Policy Options for Access to Drinking Water in Peripheral, Disaster and Polluted Rural Areas: A Case Study on Environment-Friendly and Conventional Technologies. Water, 8(3), 80. https://doi.org/10.3390/w8030080