The Potential Growth of Sugarcane in Constructed Wetlands Designed for Tertiary Treatment of Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Procedures
2.2. Data Analysis
2.3. Constructed Wetlands’ Filling Materials
2.4. Pilot-Scale Constructed Wetlands
2.5. Cultivation Details and Plant Growth
3. Results and Discussion
3.1. Sugarcane Growth Indicators
3.2. CW Performance for Nutrient Removal from Wastewater
4. Conclusions
- Sugarcane can be grown in the usual conditions of CWs with subsurface continuous flow of secondary treated wastewater;
- Sugarcane plants grow healthy in CWs filled with mineral waste materials from construction activities;
- The degree of removal of nutrients from the wastewater, particularly of TP, is similar to that obtained in traditional CWs;
- The Brix value of the sugarcane plants produced in these CWs is similar to that obtained in the usual farm sugarcane for plants only one year old;
- The productivity of the clay brick fragments filled CW during the trial period was equivalent to 107 tons of sugarcane and nine tons of sucrose per hectare, which is within the range obtained with the traditional cultivation methods in soils;
- In the conditions used, it is possible to treat 150,000 m3/year of secondary type wastewater per hectare of subsurface sugarcane planted CWs.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CBF | Clay Brick Fragments |
COD | Chemical Oxygen Demand |
CW | Constructed Wetlands |
FML | Fragmented Moleanos Limestone |
TN | Total Nitrogen |
TP | Total Phosphorous |
References
- Balat, M.; Balat, H.; Öz, C. Progress in bioethanol processing. Prog. Energ. Combust. 2008, 34, 551–573. [Google Scholar] [CrossRef]
- Rahman, M.M.; Mostafiz, S.B.; Paatero, J.V.; Lahdelma, R. Extension of energy crops on surplus agricultural lands: A potentially viable option in developing countries while fossil fuels reserves are diminishing. Renew. Sustain. Energy Rev. 2014, 29, 108–119. [Google Scholar] [CrossRef]
- Koçar, G.; Civaş, N. An overview of biofuels from energy crops: Current status and future prospects. Renew. Sustain. Energy Rev. 2013, 28, 900–916. [Google Scholar] [CrossRef]
- Vohra, M.; Manwar, J.; Manmode, R.; Padgilwar, S.; Patil, S. Bioethanol production: Feedstock and current technologies. J. Environ. Chem. Eng. 2014, 2, 573–584. [Google Scholar] [CrossRef]
- Su, M.-H.; Huang, C.-H.; Li, W.-Y.; Tso, C.-T.; Lur, H.-S. Water footprint analysis of bioethanol energy crops in Taiwan. J. Clean Prod. 2015, 88, 132–138. [Google Scholar] [CrossRef]
- He, M.; Hu, Q.; Zhu, Q.; Pan, K.; Li, Q. The feasibility of using constructed wetlands plants to produce bioethanol. Environ. Prog. Sustain. Energy 2015, 34, 276–281. [Google Scholar] [CrossRef]
- Mateus, D.M.R.; Vaz, M.M.N.; Capela, I.; Pinho, H.J.O. Sugarcane as constructed wetland vegetation: Preliminary studies. Ecol. Eng. 2014, 62, 175–178. [Google Scholar] [CrossRef]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 21th ed.; APHA: Washington, DC, USA, 2005. [Google Scholar]
- Catálogo de Rochas Ornamentais Portuguesas (Portuguese ornamental stones catalogue), Instituto Nacional de Engenharia, Tecnologia e Inovação. Avaliable online: http://rop.ineg.pt/rop/ index-en.php (accessed on 19 February 2016).
- Coroado, J.F.; Ferraz, E.; Gomes, C.F.; Rocha, F. Clays from Vila Nova da Raínha (Portugal): Appraisal of their relevant properties in order to be used in construction ceramics. Acta Geodyn. Geomater. 2010, 7, 189–200. [Google Scholar]
- European Committee for Standardization. Tests for Geometrical Properties of Aggregates—Part 1: Determination of Particle Size Distribution—Sieving Method; European Norm 933-1:1997; European Committee for Standardization: Brussels, Belgium, 2012. [Google Scholar]
- European Committee for Standardization. Tests for Mechanical and Physical Properties—Part 6: Determination of Particle Density and Water Absorption; European Norm 1097-6:2000; European Committee for Standardization: Brussels, Belgium, 2012. [Google Scholar]
- Kottec, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Ramesh, P. Effect of different levels of drought during the formative phase on growth parameters and its relationship with dry matter accumulation in sugarcane. J. Agron. Crop Sci. 2000, 185, 83–89. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Gilbert, R.A.; Perdomo, R.E.; Shine, J.M., Jr.; Powell, G.; Montes, G. Sugarcane leaf area development under field conditions in Florida, USA. Field Crops Res. 2004, 88, 171–178. [Google Scholar] [CrossRef]
- Campbell, C.R.; Plank, C.O. Preparation of plant tissue for laboratory analysis. In Handbook of Reference Methods for Plant Analysis; Kalra, Y.P., Ed.; CRC Press: New York, NY, USA, 1998; pp. 37–49. [Google Scholar]
- Muchow, R.C.; Robertson, M.J.; Wood, A.W.; Keating, B.A. Effect of nitrogen on the time-course of sucrose accumulation in sugarcane. Field Crop. Res. 1996, 47, 143–153. [Google Scholar] [CrossRef]
- Silva, T.G.F.; Moura, M.S.B.; Zolnier, S.; Carmo, J.F.A.; Souza, L.S.B. Biometrics of the sugarcane shoot during irrigated ratoon cycle in the submedio of the Vale do São Francisco. Rev. Cienc. Agron. 2012, 43, 500–509. [Google Scholar] [CrossRef]
- Oliveira, R.A.; Daros, E.; Zambon, J.L.C.; Weber, H.; Ido, O.T.; Zuffellato-Ribas, K.C.; Koehler, H.S.; da Silva, D.K.T. Growth development of three varieties of sugarcane, in cane-plant, in the Paraná state: Growth indexs. Sci. Agraria 2005, 6, 85–89. [Google Scholar]
- Santos, V.R.; Filho, G.M.; Albuquerque, A.W.; Costa, J.P.V.; Santos, C.G.; Santos, A.C.I. Growth and yield of sugarcane under different phosphorus sources. Rev. Bras. Eng. Agric. Ambien. 2009, 13, 389–396. [Google Scholar] [CrossRef]
- Streck, N.A.; Hanauer, J.G.; Gabriel, L.F.; Buske, T.C.; Langner, J.A. Leaf development and growth of selected sugarcane clones in a subtropical environment. Pesqui. Agropecu. Bras. 2010, 45, 1049–1057. [Google Scholar] [CrossRef]
- Robertson, M.J.; Wood, A.W.; Muchow, R.C. Growth of sugarcane under high input conditions in tropical Australia. I. Radiation use, biomass accumulation and partitioning. Field Crops Res. 1996, 48, 11–25. [Google Scholar] [CrossRef]
- Agostinho, F.; Ortega, E. Integrated food, energy and environmental services production as an alternative for small rural properties in Brazil. Energy 2012, 37, 103–114. [Google Scholar] [CrossRef]
- Caione, G.; Lange, A.; Benett, C.G.S.; Fernandes, F.M. Phosphorus sources for sugarcane forage cultivars fertilization in the Brazilian savannah. Pesqui. Agropecu. Trop. 2011, 41, 66–73. [Google Scholar]
- Muraro, G.B.; Rossi Junior, P.; Schogor, A.L.B. Forage yield of sugarcane growing in different row spacing and harvesting periods. Cienc. Agrotec. 2011, 35, 131–136. [Google Scholar] [CrossRef]
- Gilbert, R.A.; Rainbolt, C.R.; Morris, D.R.; McCray, J.M. Sugarcane growth and yield responses to a 3-month summer flood. Agric. Water Manag. 2008, 95, 283–291. [Google Scholar] [CrossRef]
- Thorburn, P.J.; Biggs, J.S.; Attard, S.J.; Kemei, J. Environmental impacts of irrigated sugarcane production: Nitrogen lost through runoff and leaching. Agric. Ecosyst. Environ. 2011, 144, 1–12. [Google Scholar] [CrossRef]
- Watson, H.K. Potential to expand sustainable bioenergy from sugarcane in southern Africa. Energ Policy 2011, 39, 5746–5750. [Google Scholar] [CrossRef]
- Maqsood, M.; Iqbal, M.; Tayyab, M. Comparative productivity performance of sugarcane (Saccharum officinarum L.) sown in diferente planting patterns at farmer´s field. Pak. J. Agric. Sci. 2005, 42, 25–28. [Google Scholar]
- Azzini, A.; Teixeira, J.P.F.; Moraes, R.M.; Camargo, J.F.P. Correlation between the soluble solid contents of the cane juice and the culm basic density. Bragantia 1980, 39, 181–183. [Google Scholar] [CrossRef]
- Tasso Júnior, L.C.; Marques, M.O.; Franco, A.; Nogueira, G.A.; Nobile, F.O.; Camilotti, F.; Silva, A.R. Yield and quality of sugar cane cultivated in sewage sludge, vinasse and mineral fertilization supplied soil. Eng. Agríc. 2007, 27, 276–283. [Google Scholar] [CrossRef]
- Mateus, D.M.R.; Pinho, H.J.O. Phosphorous removal by expanded clay—Six years of pilot-scale constructed wetlands experience. Water Environ. Res. 2010, 82, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.Y.; Wu, F.C.; Lu, Y.F.; Xiang, C.S.; Zhang, P.Y.; Jin, C.X. Phosphorus removal from agricultural runoff by constructed wetland. Ecol. Eng. 2009, 35, 402–409. [Google Scholar] [CrossRef]
- Toet, S.; Bouwman, M.; Cevaal, A.; Verhoeven, J.T.A. Nutrient removal through autumn harvest of Phragmites australis and Thypha latifolia shoots in relation to nutrient loading in a Wetland System used for polishing sewage treatment plant effluent. J. Environ. Sci. Health A 2005, 40, 1133–1156. [Google Scholar] [CrossRef]
- Oliveira, E.C.A.; Freire, F.J.; Oliveira, R.I.; Oliveira, A.C.; Freire, M.B.G.S. Accumulation and allocation of nutrients in sugar cane. Rev. Cienc. Agron. 2011, 42, 579–588. [Google Scholar]
- Lopez-Hernandez, D.; Sequera, D. Phosphorus biogeochemical cycling in a sugar cane agroecosystem. Am. J. Agric. Biol. Sci. 2012, 7, 473–481. [Google Scholar]
- Brix, H. Do macrophytes play a role in constructed treatment wetlands? Wat. Sci. Technol. 1997, 35, 11–17. [Google Scholar] [CrossRef]
- Van Antwerpen, R. Sugarcane root growth and relationships to above-ground biomass. Proc. S. Afr. Sugar Technol. Assoc. 1999, 73, 89–95. [Google Scholar]
- García, J.; Rousseau, D.P. L.; Morató, J.; Lesage, E.; Matamoros, V.; Bayona, J.M. Contaminant removal processes in subsurface-flow constructed wetlands: A review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 561–661. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Jinadasa, K.B.S.N.; Gersberg, R.G.; Liu, Y.; Ng, W.J.; Tan, S.K. Application of constructed wetlands for wastewater treatment in developing countries—A review of recent developments (2000–2013). J. Environ. Manag. 2014, 141, 116–131. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Bhatia, M.; Goyal, D. Analyzing remediation potential of wastewater through wetland plants: A review. Environ. Prog. Sustain. Energy 2014, 33, 9–27. [Google Scholar] [CrossRef]
- Shelef, O.; Gross, A.; Rachmilevitch, S. Role of plants in a constructed wetland: Current and new perspectives. Water 2013, 5, 405–419. [Google Scholar] [CrossRef]
- Vymazal, J. Plants used in constructed wetlands with horizontal subsurface flow: A review. Hydrobiologia 2011, 674, 133–156. [Google Scholar] [CrossRef]
- Collison, R.S.; Grismer, M.E. Nitrogen and COD removal from septic tank wastewater in subsurface flow constructed wetlands: Plants effects. Water Environ. Res. 2015, 87, 1999–2007. [Google Scholar] [CrossRef] [PubMed]
- Grismer, M.E.; Shepherd, H.L. Plants in constructed wetlands help to treat agricultural processing wastewater. Calif. Agric. 2011, 65, 73–79. [Google Scholar] [CrossRef]
- García, J.A.; Paredes, D.; Cubillos, J.A. Effect of plants and the combination of wetland treatment type systems on pathogen removal in tropical climate conditions. Ecol. Eng. 2013, 58, 57–62. [Google Scholar] [CrossRef]
- Sarmento, A.P.; Borges, A.C.; Matos, T. Effect of cultivated species and retention time on the performance of constructed wetlands. Environ. Technol. 2013, 34, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Sehar, S.; Sumera, S.; Naeem, S.; Perveen, I.; Ali, N.; Ahmed, S. A comparative study of macrophytes influence on wastewater treatment through subsurface flow hybrid constructed wetland. Ecol. Eng. 2015, 81, 62–69. [Google Scholar] [CrossRef]
- Bezbaruah, A.N.; Zhang, T.C. Quantification of oxygen release by Bulrush (Scirpus validus) roots in a constructed treatment wetland. Biotechnol. Bioeng. 2005, 89, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Colmer, T.D. Long-distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 2003, 26, 17–36. [Google Scholar] [CrossRef]
CW | Above Ground Biomass a (kg) | Number of New Shoots | New Shoots Fraction of Biomass | Stalks Fraction of Biomass | °Brix | Estimated Sucrose Production (kg) | P in the Plants’ Aerial Parts (g) |
---|---|---|---|---|---|---|---|
T1 (CBF) | 16.2 | 10 | 30.7% | 77.8% | 13.25 | 1.4 | 8.2 |
T3 (FML) | 10.4 | 2 | 11.5% | 74.3% | 13.67 | 0.8 | 5.4 |
Analyzed Parameters | CW T1 | CW T2 | CW T3 | CW T4 |
---|---|---|---|---|
Clay Brick Fragments Filling. Sugarcane Planted CW. | Clay Brick Fragments Filling. Unplanted CW. | Fragmented Moleanos Limestone Filling. Sugarcane Planted CW. | Fragmented Moleanos Limestone Filling. Unplanted CW. | |
TP removal (%) | 77 ± 4 | 69 ± 2 | 68 ± 3 | 58 ± 2 |
TN removal (%) | 60 ± 12 | 55 ± 12 | 58 ± 7 | 51 ± 14 |
COD removal (%) | 58 ± 18 | 66 ± 13 | 64 ± 14 | 77 ± 17 |
pH at output stream | 7.6 ± 0.2 | 7.8 ± 0.1 | 7.8 ± 0.2 | 7.8 ± 0.1 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateus, D.M.R.; Vaz, M.M.N.; Capela, I.; Pinho, H.J.O. The Potential Growth of Sugarcane in Constructed Wetlands Designed for Tertiary Treatment of Wastewater. Water 2016, 8, 93. https://doi.org/10.3390/w8030093
Mateus DMR, Vaz MMN, Capela I, Pinho HJO. The Potential Growth of Sugarcane in Constructed Wetlands Designed for Tertiary Treatment of Wastewater. Water. 2016; 8(3):93. https://doi.org/10.3390/w8030093
Chicago/Turabian StyleMateus, Dina M. R., Mafalda M. N. Vaz, Isabel Capela, and Henrique J. O. Pinho. 2016. "The Potential Growth of Sugarcane in Constructed Wetlands Designed for Tertiary Treatment of Wastewater" Water 8, no. 3: 93. https://doi.org/10.3390/w8030093
APA StyleMateus, D. M. R., Vaz, M. M. N., Capela, I., & Pinho, H. J. O. (2016). The Potential Growth of Sugarcane in Constructed Wetlands Designed for Tertiary Treatment of Wastewater. Water, 8(3), 93. https://doi.org/10.3390/w8030093