Irrigation Water Quality Standards for Indirect Wastewater Reuse in Agriculture: A Contribution toward Sustainable Wastewater Reuse in South Korea
Abstract
:1. Introduction
2. Considerations of Water Quality Standards for Indirect Wastewater Reuse
2.1. Irrigation Water Quality Criteria
2.1.1. Salinity
2.1.2. Nutrients
2.1.3. Organic Matters
2.1.4. Hydrogen Ion Concentration
2.1.5. Trace Elements
2.2. Conditions of Water Quality for Wastewater Reuse
3. Guidelines and Standards for Agricultural Wastewater Reuse
3.1. WHO
3.2. US EPA
3.3. Cyprus
3.4. France
3.5. Greece
3.6. Israel
3.7. Italy
3.8. Portugal
3.9. Spain
4. Water Quality Standards for Indirect Wastewater Reuse
4.1. Comparison and Importance of Each Water Quality Criteria
4.1.1. Coliform Bacteria
4.1.2. Salinity
4.1.3. Turbidity or Suspended Solids
4.1.4. Organic Matter
4.1.5. Nutrients
4.1.6. pH
4.1.7. Trace Elements
4.1.8. Odor
4.1.9. Level of Treatment
4.2. Draft Water Quality Standards for Indirect Wastewater Reuse in South Korea
4.2.1. Differentiation by Crop Type
4.2.2. Probabilistic Consideration
4.2.3. Draft Water Quality Standards
4.3. Implication of the Proposed Standards
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Winpenny, J.; Heinz, I.; Koo-Oshima, S. The Wealth of Waste: The Economics of Wastewater Use in Agriculture; Water Reports; Food and Agriculture Organization: Rome, Italy, 2010. [Google Scholar]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.M.; Choi, J.Y.; Nam, W.H.; Kang, M.S.; Jang, J.R. Monitoring nutrient accumulation and leaching in plastic greenhouse cultivation. Agric. Water Manag. 2014, 146, 11–23. [Google Scholar] [CrossRef]
- Nam, W.H.; Choi, J.Y.; Hong, E.M. Irrigation vulnerability assessment on agricultural water supply risk for adaptive management of climate change in South Korea. Agric. Water Manag. 2015, 152, 173–187. [Google Scholar] [CrossRef]
- Bixio, D.; Thoeye, C.; De Koning, J.; Joksimovic, D.; Savic, D.; Wintgens, T.; Melin, T. Wastewater reuse in Europe. Desalination 2006, 187, 89–101. [Google Scholar] [CrossRef]
- Huertas, E.; Salgot, M.; Hollender, J.; Weber, S.; Dott, W.; Khan, S.; Schafer, A.; Messalem, R.; Bis, B.; Aharoni, A.; Chikurel, H. Key objectives for water reuse concepts. Desalination 2008, 218, 120–131. [Google Scholar] [CrossRef]
- Pedrero, F.; Kalavrouziotis, I.; Alarcon, J.J.; Koukoulakis, P.; Asano, T. Use of treated municipal wastewater in irrigated agriculture-review of some practices in Spain and Greece. Agric. Water Manag. 2010, 97, 1233–1241. [Google Scholar] [CrossRef]
- Chavez, A.; Rodas, K.; Prado, B.; Thompson, R.; Jimenez, B. An evaluation of the effects of changing wastewater irrigation regime for the production of alfalfa (Medicago sativa). Agric. Water Manag. 2012, 113, 76–84. [Google Scholar] [CrossRef]
- Jang, T.I.; Kim, H.K.; Seong, C.H.; Lee, E.J.; Park, S.W. Assessing nutrient losses of reclaimed wastewater irrigation in paddy fields for sustainable agriculture. Agric. Water Manag. 2012, 104, 235–243. [Google Scholar] [CrossRef]
- Jeong, H.S.; Jang, T.I.; Seong, C.H.; Park, S.W. Assessing nitrogen fertilizer rates and split applications using the DSSAT model for rice irrigated with urban wastewater. Agric. Water Manag. 2014, 141, 1–9. [Google Scholar] [CrossRef]
- Hamilton, A.J.; Stagnitti, F.; Xiong, X.; Kreidil, S.L.; Benke, K.K.; Maher, P. Wastewater irrigation: The state of play. Vadose Zone J. 2007, 6, 823–840. [Google Scholar] [CrossRef]
- Guidelines for the Safe Use of Wastewater, Excreta and Greywater; World Health Organization: Geneva, Switzerland, 2006.
- Rutkowski, T.; Raschid-Sally, L.; Buechler, S. Wastewater irrigation in the developing world-Two case studies from the Kathmandu Valley in Nepal. Agric. Water Manag. 2007, 88, 83–91. [Google Scholar] [CrossRef]
- Jeong, H.; Kim, H.; Jang, T.; Park, S. Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model. Agric. Water Manag. 2016, 163, 393–402. [Google Scholar] [CrossRef]
- Mohammad, M.J.; Mazahreh, N. Changes in soil fertility parameters in response to irrigation of forage crops with secondary treated wastewater. Commun. Soil Sci. Plant Anal. 2003, 34, 1281–1294. [Google Scholar] [CrossRef]
- Xu, J.; Wu, L.; Chang, A.C.; Zhang, Y. Impact of long term reclaimed wastewater irrigation on agricultural soils: A preliminary assessment. J. Hazard. Mater. 2010, 183, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Rhee, H.P.; Yoon, C.G.; Jung, K.W.; Son, J.W. Microbial risk assessment using E. coli in UV disinfected wastewater irrigation on paddy. Environ. Eng. Res. 2009, 14, 120–125. [Google Scholar] [CrossRef]
- Forslund, A.; Ensink, J.H.J.; Battilani, A.; Kljujev, I.; Gola, S.; Raicevic, V.; Jovanovic, Z.; Stikic, R.; Sandei, L.; Fletcher, T.; et al. Faecal contamination and hygiene aspect associated with the use of treated wastewater and canal water for irrigation of potatoes. Agric. Water Manag. 2010, 98, 440–450. [Google Scholar] [CrossRef]
- Banon, S.; Miralles, J.; Ochoa, J.; Franco, J.A.; Sanchez-Blanco, M.J. Effects of diluted and undiluted treated wastewater on the growth, physiological aspects and visual quality of potted lantana and polygala plants. Sci. Hortic. 2011, 129, 869–876. [Google Scholar] [CrossRef]
- Jeong, H.S.; Park, J.H.; Seong, C.H.; Jang, T.I.; Kang, M.S.; Park, S.W. Effects of indirect wastewater reuse on water quality and soil environment in paddy fields. J. Korean Soc. Agric. Eng. 2013, 55, 91–104. (In Korean) [Google Scholar] [CrossRef]
- Song, J.H.; Jeong, H.S.; Park, J.H.; Song, I.H.; Kang, M.S.; Park, S.W. Analysis of water quality and soil environment in paddy fields partially irrigated with untreated wastewater. J. Korean Soc. Agric. Eng. 2014, 56, 19–29. (In Korean) [Google Scholar] [CrossRef]
- Kim, J.H.; Jeong, H.S.; Kang, M.S.; Song, I.H.; Park, S.W. Simulation of 10-day irrigation water quality using SWAT-QUALKO2 linkage model. J. Korean Soc. Agric. Eng. 2012, 54, 53–63. (In Korean) [Google Scholar] [CrossRef]
- Angelakis, A.N.; Marecos do Monte, M.H.F.; Bontoux, L.; Asano, T. The status of wastewater reuse practice in the Mediterranean basin: Need for guidelines. Water Res. 1999, 33, 2201–2217. [Google Scholar] [CrossRef]
- Brissaud, F. Criteria for water recycling and reuse in the Mediterranean countries. Desalination 2008, 218, 24–33. [Google Scholar] [CrossRef]
- Kalavrouziotis, I.K.; Kokkinos, P.; Oron, G.; Fatone, F.; Bolzonella, D.; Vatyliotou, M.; Fatta-Kassinos, D.; Koukoulakis, P.H.; Varnavas, S.P. Current status in wastewater treatment, reuse and research in some mediterranean countries. Desalin. Water Treat. 2015, 53, 2015–2030. [Google Scholar] [CrossRef]
- Paranychianakis, N.V.; Salgot, M.; Snyder, S.A.; Angelakis, A.N. Water reuse in EU states: Necessity for uniform criteria to mitigate human and environmental risks. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1409–1468. [Google Scholar] [CrossRef]
- Kretschmer, N.; Ribbe, L.; Gaese, H. Wastewater Reuse for Agriculture. Technol. Resour. Manag. Dev. Sci. Contrib. Sustain. Dev. 2002, 2, 37–64. [Google Scholar]
- Jimenez, B. Treatment technology and standards for agricultural wastewater reuse: A case study in Mexico. Irrig. Drain. 2005, 54, S22–S33. [Google Scholar] [CrossRef]
- Guidelines for the Safe Use of Waste Water and Excreta in Agriculture and Aquaculture: Measures for Public Health Protection; World Health Organization: Geneva, Switzerland, 1989.
- Protocol Development: Criteria and Standards for Potable Reuse and Feasible Alternatives; Environmental Protection Agency: Washington, DC, USA, 1980.
- Guidelines for Water Reuse 625/R92004; Environmental Protection Agency: Washington, DC, USA, 1992.
- Guidelines for Water Reuse 625/R-04/108; Environmental Protection Agency: Washington, DC, USA, 2004.
- Guidelines for Water Reuse 600/R-12/618; Environmental Protection Agency: Washington, DC, USA, 2012.
- Angelakis, A.N.; Durham, B.; Marecos Do Monte, M.H.F.; Salgot, M.; Witgens, T.; Thoeye, C. Wastewater recycling and reuse in Eureau countries: Trends and challenges. Desalination 2008, 218, 3–12. [Google Scholar] [CrossRef]
- Agrafioti, E.; Diamadopoulos, E. A strategic plan for reuse of treated municipal wastewater for crop irrigation on the Island of Crete. Agric. Water Manag. 2012, 105, 57–64. [Google Scholar] [CrossRef]
- Sustainable Water Integrated Management-Support Mechanism (SWIM-SM); 4th Progress Report; LDK Consulatants Engineers and Planners SA: Athens, Greece, October 2013.
- Marecos do Monte, M.H.F. Guidelines for good practice of water reuse for irrigation: Portuguese standard NP 4434. In Wastewater Reuse-Risk Assessment, Decision-Making and Environmental Security; Zaidi, M., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 253–265. [Google Scholar]
- Ortega, E.; Iglesias, R. Reuse of treated municipal wastewater effluents in Spain: Regulations and most common technologies, including extensive treatments. Desalin. Water Treat. 2009, 4, 148–160. [Google Scholar] [CrossRef]
- Blumenthal, U.J.; Peasy, A.; Ruiz-Palacios, G.; Mara, D.D. Guidelines for Wastewater Reuse in Agriculture and Aquaculture: Recommended Revisions Based on New Research Evidence; Well Resource Centre: London, UK, 2000. [Google Scholar]
- Khepar, S.D.; Yadav, A.K.; Sondhi, S.K.; Siag, M. Water balance model for paddy fields under intermittent irrigation practices. Irrig. Sci. 2000, 19, 199–208. [Google Scholar] [CrossRef]
- Barker, R.; Dawe, D.; Tuong, T.P.; Bhuiyan, S.I.; Guerra, L.C. The outlook for water resources in the year 2020: Challenges for research on water management in rice production. Southeast Asia 1999, 1, 1–5. [Google Scholar]
- Jang, T.; Lee, S.B.; Sung, C.H.; Lee, H.P.; Park, S.W. Safe application of reclaimed water reuse for agriculture in Kora. Paddy Water Environ. 2010, 8, 227–233. [Google Scholar] [CrossRef]
- Beltran, J.M. Irrigation with saline water: Benefits and environmental impact. Agric. Water Manag. 1999, 40, 183–194. [Google Scholar] [CrossRef]
- Bauder, T.A.; Waskom, R.M.; Sutherland, P.L.; Davis, J.G. Irrigation Water Quality Criteria; Colorado State University Extension: Fort Collins, CO, USA, 2011. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985. [Google Scholar]
- Setter, T.L.; Laureles, E.V.; Mazaredo, A.M. Lodging reduces yield of rice by self-shading and reductions in canopy photosynthesis. Field Crop. Res. 1997, 49, 95–106. [Google Scholar] [CrossRef]
- Chiou, R.J. Risk assessment and loading capacity of reclaimed waste-water to be reused for agricultural irrigation. Environ. Monit. Assess. 2008, 142, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Kaneki, R. Reduction of effluent nitrogen and phosphorus from paddy fields. Paddy Water Environ. 2003, 1, 133–138. [Google Scholar] [CrossRef]
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef]
- Ju, X.T.; Kou, C.L.; Zhang, F.S.; Christie, P. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environ. Pollut. 2006, 143, 117–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, Y.J.; Lee, W.M.; Yoon, C.G. Evaluation of Korean water quality standards and suggestion of additional water parameters. Korean J. Limnol. 2006, 39, 285–295. (In Korean) [Google Scholar]
- Asano, T.; Burton, F.L.; Leverenz, H.L.; Tsuchihashi, R.; Tchobanoglous, G. Water Reuse: Issues, Technologies and Applications; McGraw-Hill: New York, NY, USA, 2007. [Google Scholar]
- Gupta, U.C.; Gupta, S.C. Trace element toxicity relationships to crop production and livestock and human health: Implications for management. Commun. Soil Sci. Plant Anal. 1998, 29, 1491–1522. [Google Scholar] [CrossRef]
- Salgot, M.; Angelakis, A.N. Guidelines and regulations on wastewater reuse. In Decentralized Sanitation and Reuse: Concepts, Systems and Implementation; Lens, P., Zeeman, G., Lettinga, G., Eds.; IWA Publishing: London, UK, 2001; pp. 446–466. [Google Scholar]
- Tsagarakis, T.P.; Dialynas, G.E.; Angelakis, A.N. Water resources management in Crete (Greece) including water recycling and reuse and proposed quality criteria. Agric. Water Manag. 2004, 66, 35–47. [Google Scholar] [CrossRef]
- Nrmmc, E. National Guidelines for Water Recycling: Managing Health and Environmental Risks; the Environment Protection and Heritage Council and Natural Resource Management Ministerial Council: Canberra, Australia, 2006.
- Water Quality Standards for Treated Wastewater Based on Its Specific Purpose of Use; Ministry of Environment: Gyeonggi-do, QKorea, 2011.
- Shuval, H.; Lampert, Y.; Fattal, B. Development of a risk assessment approach for evaluating wastewater reuse standards for agriculture. Water Sci. Technol. 1997, 35, 15–20. [Google Scholar] [CrossRef]
- Raso, J. Update of the Final Report on Wastewater Reuse in the European Union. Project: Service Contract for the Support to the Follow-up of the Communication on Water Scarcity and Droughts; TYPSA Consulting Engineers and Architects: Barcelona, Spain, 2013. [Google Scholar]
- Inbar, Y. New standards for treated wastewater reuse in Israel. In Wastewater Reuse-Risk Assessment, Decision-Making and Environmental Security; Zaidi, M., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 291–296. [Google Scholar]
- Statistics of Sewerage; Ministry of Environment: Sejong, Korea, 2014.
- Petterson, S.R.; Ashbolt, N.; Sharma, A. Microbial risks from wastewater irrigation of salad crops: A screening-level risk assessment. Water Environ. Res. 2001, 72, 667–672. [Google Scholar] [CrossRef]
- Hamilton, A.J.; Stagnitti, F.; Premier, R.; Boland, A.M.; Hale, G. Quantitative microbial risk assessment models for consumption of raw vegetables irrigated with reclaimed water. Appl. Environ. Microbiol. 2006, 72, 3284–3290. [Google Scholar] [CrossRef] [PubMed]
- Yoon, C.G.; Han, J.Y.; Jung, K.W.; Jang, J.H. Quantitative microbial risk assessment of wastewater reuse for irrigation in paddy field. J. Korean Soc. Agric. Eng. 2006, 48, 77–87. (In Korean) [Google Scholar] [CrossRef]
- Kiziloglu, F.M.; Turan, M.; Sahin, U.; Kuslu, Y.; Dursun, A. Effects of untreated and treated wastewater irrigation on some chemical properties of cauliflower (Brassica olerecea L. var. botrytis) and red cabbage (Brassica olerecea L. var. rubra) grown on calcareous soil in Turkey. Agric. Water Manag. 2008, 95, 716–724. [Google Scholar] [CrossRef]
- Asch, F.; Wopereis, M.C.S. Responses of field-grown irrigated rice cultivars to varying levels of floodwater salinity in a semi-arid environment. Field Crop. Res. 2001, 70, 121–137. [Google Scholar] [CrossRef]
- Grattan, S.R.; Zeng, L.; Shannon, M.C.; Roberts, S.R. Rice is more sensitive to salinity than previously thought. Calif. Agric. 2002, 56, 189–195. [Google Scholar] [CrossRef]
- Vinten, A.J.A.; Minelgrin, U.; Yaron, B. The effect of suspended solids in wastewater on soil hydraulic conductivity: II. Vertical distribution of suspended solids. Soil Sci. Soc. Am. J. 1983, 47, 408–412. [Google Scholar] [CrossRef]
- Ragusa, S.R.; de Zoysa, D.S.; Rengasamy, P. The effect of microorganisms, salinity and turbidity on hydraulic conductivity of irrigation channel soil. Irrig. Sci. 1994, 15, 159–166. [Google Scholar] [CrossRef]
- Hidaka, S. Studies on effect of irrigation water quality upon the rice growth and soil, and its usable marginal concentration. Bull. Saitama Agric. Exp. Station 1990, 44, 1–100. (In Japanese) [Google Scholar]
- Shatanawi, M.; Fayyad, M. Effect of Khirbet As-Samra treated effluent on the quality of irrigation water in the central Jordan Valley. Water Res. 1996, 30, 2915–2920. [Google Scholar] [CrossRef]
- Vaessen, H.A.; Szteke, B. Beryllium in food and drinking water: A summary of available knowledge. Food Addit. Contam. 2000, 17, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Bustingorii, C.; Lavado, R.S. Soybean as affected by high concentrations of arsenic and fluoride in irrigation water in controlled conditions. Agric. Water Manag. 2014, 144, 134–139. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Clark, R.B. Micronutrients in crop production. Adv. Agron. 2002, 77, 185–268. [Google Scholar]
- Fageria, N.K.; Baligar, V.C.; Wright, R.J. Iron nutrition of plants: An overview on the chemistry and physiology of its deficiency and toxicity. Pesq. Agropec. Bras. 1990, 25, 553–570. [Google Scholar]
- Welch, R.M.; Allaway, W.H.; House, W.A.; Kubota, J. Geographic distribution of trace element problems. In Micronutrients in Agriculture, 2nd ed.; Mortvedt, J.J., Cox, F.R., Shuman, L.M., Welch, R.M., Eds.; Soil Science Society America: Madison, WI, USA, 1991; pp. 31–57. [Google Scholar]
- Friedler, E.; Lahav, O.; Jizhaki, H.; Lahav, T. Study of urban population attitudes towards various wastewater reuse options: Israel as a case study. J. Environ. Manag. 2006, 81, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.E.V.; Hanjra, M.A.; Jiang, Y.; Qadir, M.; Drechsel, P. Water pollution in Asia: The urgent need for prevention and monitoring. Water Qual. 2012, 9, 1–4. [Google Scholar]
- State of the Environment in Asia and the Pacific; United Nations Economic and Social Commission for Asia and the Pacific: Bangkok, Thailand, 2000.
- Global Water Resources and Water for Agricultural Use in Japan. Available online: http://www.maff.go.jp/j/nousin/keityo/mizu_sigen/pdf/mizusigen_e.pdf (accessed on 20 April 2016).
Classification | California | Florida 1 | New Jersey | North Carolina | Texas 1 | Virginia 2 | |
---|---|---|---|---|---|---|---|
Food (a) | Bacterial indicators (cfu/100 mL) | Total coliform: −2.2 (7 days median) −23 (not more than one sample exceeds this value in 30 days) −240 (max) | Fecal coliform: −75% of samples below detection −25 (max) | Fecal coliform: −2.2 (weak median) −14 (max) | Fecal coliform or E. coli: −3 (monthly mean) −25 (monthly mean) | Fecal coliform or E. coli: −20 (30-day geom) −75 (max) | Fecal coliform: −14 (monthly geom), CAT > 49 E. coli: −11 (monthly geom), CAT > 35 |
Treatment requirements | Oxidized, coagulated, filtered, disinfected | Secondary treatment, filtration, high-level disinfection | Filtration, high-level disinfection | Filtration, dual UV/chlorination (or equivalent) | NS | Secondary treatment, filtration, high-level disinfection | |
Non-food (b) | Bacterial indicators (cfu/100 mL) | NS | Fecal coliform: −200 (avg) −800 (max) | Fecal coliform: −200 (monthly geom) −400 (weak geom) | Fecal coliform or E. coli: −14 (monthly mean) −25 (daily max) | Fecal coliform or E. coli: −200 (30-day geom) −800 (max) | Fecal coliform: −200 (monthly geom), CAT > 800 E. coli: −126 (monthly geom), CAT > 235 |
Treatment requirements | Oxidized | Secondary treatment, basic disinfection | Case-by-case | Filtration (or equivalent) | NS | Secondary treatment, disinfection |
Parameters | South Korea 1 [57] | WHO 2 [12] | US EPA [33] | Cyprus 3 [26] | France [26] | Greece [35] | Israel 4 [36] | Italy [34] | Portugal [37] | Spain [38] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coliform (/100 mL) | Food Crops | ND TC | Unrestricted | E. coli (cfu) ≤ 1000 | Food crops | ND FC (median) | Cooked vegetables | FC (MPN) ≤ 100 | Unrestricted | E. coli (cfu) ≤ 250 | Unrestricted | E. coli (cfu) ≤ 5 (80%) ≤ 50 (95%) | FC (cfu) ≤ 10 | E. coli (cfu) ≤ 100 (max) ≤ 10 (80%) | Vegetables consumed raw (a) | FC (cfu) ≤ 100 | Uncooked vegetables | E. coli (cfu) ≤ 100 |
Processed food crops | TC (MPN) ≤ 200 | Restricted | E. coli (cfu) ≤ 10,000 | Processed food crops | FC (cfu) ≤ 200 (median) | Crops for human consumption | FC (MPN) ≤ 1000 | All crops except those consumed raw | E. coli (cfu) ≤ 10,000 | Restricted | E. coli (cfu) ≤ 200 (median) | Cooked vegetables | FC (cfu) ≤ 1000 | Crops for human consumption | E. coli (cfu) ≤ 1000 | |||
Turbidity (NTU) | Food crops | ≤2 | –(b) | Food crops | ≤2 (average) | – | – | Unrestricted | ≤2 (median) | – | – | – | Uncooked vegetables | ≤10 | ||||
Processed food crops | ≤5 | Processed food crops | – | Restricted | – | – | Crops for human consumption | – | ||||||||||
Suspended solids (mg/L) | – | – | Food crops | – | Cooked vegetables | ≤15 | Unrestricted | <15 | Unrestricted | ≤10 (80%) | TSS ≤ 10 | TSS ≤ 10 | TSS ≤ 60 | Uncooked vegetables | ≤20 | |||
Processed food crops | TSS ≤ 30 | Crops for human consumption | ≤45 | All crops except those consumed raw | Varies (c) | Restricted | ≤35 | Crops for human consumption | ≤35 | |||||||||
BOD (mg/L) | ≤8 | – | Food crops | ≤10 | Cooked vegetables | ≤15 | – | Unrestricted | ≤10 (80%) | ≤10 | ≤20 | – | – | – | ||||
Processed food crops | ≤30 | Crops for human consumption | ≤30 | Restricted | ≤25 | – | – | |||||||||||
COD (mg/L) | – | – | – | – | Unrestricted | <60 | – | ≤100 | ≤100 | – | – | |||||||
All crops except those consumed raw | Varies | |||||||||||||||||
Odor | Do not unpleasant | – | – | – | – | – | – | – | – | – | ||||||||
T-N (mg/L) | – | – | – | – | – | – | ≤25 | ≤15 | – | – | ||||||||
T-P (mg/L) | – | – | – | – | – | – | ≤5 | ≤2 | – | – | ||||||||
Intestinal nematodes (No./L) | – | ≤1 | – | ND | – | – | – | – | ≤1 | ≤1(/10 L) | ||||||||
pH | 5.8–8.5 | – | 6.0–9.0 | – | – | – | 6.5–8.5 | 6.0–9.5 | 6.5–8.4 | – | ||||||||
EC (μs/cm) | Food crops | ≤700 | – | – | – | – | – | ≤1400 | ≤3000 | ≤1000 | – | |||||||
Processed food crops | ≤2,000 |
Type of Irrigation | E. coli (cfu/100 mL) (Arithmetic Mean) | Helminth Eggs (No./L) (Arithmetic Mean) |
---|---|---|
Unrestricted 1 | ||
Root crops (a) | ≤103 | ≤1 |
Leaf crops (b) | ≤104 | |
Drip irrigation, low-growing crops | ≤103 | |
Drip irrigation, high-growing crops (c) | ≤105 | - (d) |
Restricted 2 | ||
Labor-intensive, high-contact agriculture | ≤104 | ≤1 |
Highly mechanized agriculture | ≤105 | ≤1 |
Pathogen removal in a septic tank | ≤106 | ≤1 |
Parameters | Korea [56] | FAO [45] | US EPA [33] | Cyprus [25] | Greece [25] | Israel [36] | Italy [34] |
---|---|---|---|---|---|---|---|
Aluminum, Al | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 1.0 |
Arsenic, As | 0.05 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.02 |
Beryllium, Be | - (a) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | - |
Boron, B | 0.75 | 0.7 | 0.75 | 0.75 | 2.0 | 0.4 | 1.0 |
Cadmium, Cd | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.005 |
Chromium, Cr | 0.05 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Cobalt, Co | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Copper, Cu | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 1.0 |
Cyanide, CN | ND (b) | – | – | – | – | 0.1 | 0.05 |
Fluoride, F | – | 1.0 | 1.0 | – | 1.0 | 2.0 | 1.5 |
Iron, Fe | – | 5.0 | 5.0 | 5.0 | 3.0 | 2.0 | 2.0 |
Lead, Pb | 0.1 | 5.0 | 5.0 | 5.0 | 0.1 | 0.1 | 0.1 |
Lithium, Li | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | – |
Manganese, Mn | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Mercury, Hg | 0.001 | – | – | – | 0.002 | 0.002 | 0.001 |
Molybdenum, Mo | – | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | – |
Nickel, Ni | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Selenium, Se | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 |
Tin, Sn | – | – | – | – | – | – | 3.0 |
Thallium, Tl | – | – | – | – | – | – | 0.001 |
Vanadium, V | – | 0.1 | 0.2 | 2.0 | 0.1 | 0.1 | 0.1 |
Zinc, Zn | 2.0 | 2.0 | 2.0 | 0.005 | 2.0 | 2.0 | 0.5 |
Parameters | Upland Irrigation | Rice Paddy Irrigation (a) | |
---|---|---|---|
Food Crops | Processed Food Crops | ||
E. coli (MPN/100 mL) | ≤10 (b) | ≤10 (monthly mean) ≤ 200 (max) | ≤1000 (max) |
EC (μs/cm) | ≤700 (max) | ≤2000 (max) | ≤2000 (max) |
Turbidity (NTU) | ≤2 (monthly mean) | – (c) | – |
Suspended solids (mg/L) | – | ≤15 (monthly mean) | – |
BOD (mg/L) | ≤8 (monthly mean) | ||
pH | 6.0–8.5 | ||
Odor | Do not unpleasant | ||
Al, As, B, Cd, Cr, Co, Cu, CN, Pb, Li, Mn, Hg, Ni, Se, Zn | Korean standards for direct wastewater reuse standards (d) | ||
Be, F, Fe, Mo, V | FAO standards (e) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, H.; Kim, H.; Jang, T. Irrigation Water Quality Standards for Indirect Wastewater Reuse in Agriculture: A Contribution toward Sustainable Wastewater Reuse in South Korea. Water 2016, 8, 169. https://doi.org/10.3390/w8040169
Jeong H, Kim H, Jang T. Irrigation Water Quality Standards for Indirect Wastewater Reuse in Agriculture: A Contribution toward Sustainable Wastewater Reuse in South Korea. Water. 2016; 8(4):169. https://doi.org/10.3390/w8040169
Chicago/Turabian StyleJeong, Hanseok, Hakkwan Kim, and Taeil Jang. 2016. "Irrigation Water Quality Standards for Indirect Wastewater Reuse in Agriculture: A Contribution toward Sustainable Wastewater Reuse in South Korea" Water 8, no. 4: 169. https://doi.org/10.3390/w8040169
APA StyleJeong, H., Kim, H., & Jang, T. (2016). Irrigation Water Quality Standards for Indirect Wastewater Reuse in Agriculture: A Contribution toward Sustainable Wastewater Reuse in South Korea. Water, 8(4), 169. https://doi.org/10.3390/w8040169