Constructed Wetlands for Agricultural Wastewater Treatment in Northeastern North America: A Review
Abstract
:1. Introduction
2. Constructed Wetland Design
2.1. Vegetation
2.2. Aeration
3. Recognized Challenges
3.1. Cold Climate Considerations
3.2. Phosphorous Management
4. Treatment Performance
4.1. Areal Rate Constant
4.2. Wetland Treatment Performance
4.3. BOD5
4.4. Total Suspended Solids
4.5. Nitrogen
4.6. Phosphorus
4.7. Pathogens
5. Conclusions
- Aeration can increase DO and improve treatment performance (specifically NH4+-N removal) in certain cases, but the benefits need to outweigh the costs
- Continuous loading throughout the year results in better treatment performance compared to storing the wastewater and loading it only during summer months
- Phosphorous removal remains one of the main weaknesses of CWs, but there is much promising research being conducted on different adsorptive materials that could be used in or in conjunction with CW systems
- It is crucial to properly characterize the wastewater before designing a CW and to consider the maximum loading possible rather than relying on averages
- There is no one CW design (SF, H-SSF, and V-SSF) that is the most effective for agricultural wastewater, but, rather, each design has strengths and weaknesses so hybrid designs may prove to be the most practical
- More research is needed to increase the understanding of CW hydrology and the effects of the various hydrological inputs and outputs on treatment performance and the determination of areal rate constants
Acknowledgments
Conflicts of Interest
References
- Knight, R.L.; Payne, V.W.; Borer, R.E.; Clarke, R.A.; Pries, J.H. Constructed wetlands for livestock wastewater management. Ecol. Eng. 2000, 15, 41–55. [Google Scholar] [CrossRef]
- Werker, A.; Dougherty, J.; McHenry, J.; Van Loon, W. Treatment variability for wetland wastewater treatment design in cold climates. Ecol. Eng. 2002, 19, 1–11. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for wastewater treatment. Water 2010, 2, 530–549. [Google Scholar] [CrossRef]
- Cronk, J.K. Constructed wetlands to treat wastewater from dairy and swine operations: A review. Agric. Ecosyst. Environ. 1996, 58, 97–114. [Google Scholar] [CrossRef]
- Vymazal, J. The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecol. Eng. 2002, 18, 633–646. [Google Scholar] [CrossRef]
- Rousseau, D.P.L.; Vanrolleghem, P.A.; De Pauw, N. Constructed wetlands in Flanders: A performance analysis. Ecol. Eng. 2004, 23, 151–163. [Google Scholar] [CrossRef]
- Brix, H.; Schierup, H.; Arias, C.A. Twenty years experience with constructed wetland systems in Denmark—What did we learn? Water. Sci. Technol. 2007, 56, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R.; Cochrane, L.; Jamieson, R.; DeHaan, R.; Boyd, N.; Glass, V. Constructed Wetlands for the Treatment of Agricultural Wastewater in Atlantic Canada; Atlantic Committee on Land and Engineering: Atlantic Provinces Agricultural Services Coordinating Council: Halifax, NS, Canada, 2005. [Google Scholar]
- Cooper, P. The Constructed Wetland Association UK database of constructed wetland systems. Water Sci. Technol. 2007, 56, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ghermandi, A.; Bixio, D.; Thoeye, C. The role of free water surface constructed wetlands as polishing step in municipal wastewater reclamation and reuse. Sci. Total Environ. 2007, 380, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 2007, 4, 439–473. [Google Scholar] [CrossRef]
- U.S. Climate Data. 2016. Historical climate data for Augusta, Maine. Available online: http://www.usclimatedata.com/climate/augusta/maine/united-states/usme0013 (accessed on 4 April 2016).
- Government of Canada. 2016a. Canadian climate normals and averages: Toronto, ON. Available online: http://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?stnID=5051&lang=e&StationName=toronto (accessed on 4 April 2016).
- Government of Canada. 2016b. Canadian climate normals and averages: Halifax, NS. Available online: http://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?stnID=6357&lang=e&StationName=halifax (accessed on 4 April 2016).
- National Agricultural Statistics Service (NASS). State Agriculture Overview (Maine); United States Department of Agriculture: Concord, NH, USA, 2012.
- National Agricultural Statistics Service (NASS). State Agriculture Overview (Vermont); United States Department of Agriculture: Concord, NH, USA, 2012.
- Statistics Canada. Census of Agriculture; Government of Canada: Ottawa, ON, USA, 2011.
- Loehr, R.C. Agricultural Waste Management: Problems, Processes, and Approaches; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Rochon, J.; Gordon, R.; Madani, A.; Rodd, V.; Cochrane, L. Seasonal influences on constructed wetlands for treatment of agricultural wastewater in Nova Scotia. In Proceedings of the CSBE Technical Conference, Toronto, ON, Canada, 18–21 July 1999.
- Jamieson, T.S. Nitrogen and Phosphorus Removal in a Constructed Wetland Receiving Agricultural Wastewater. Master’s Thesis, Dalhousie University, Halifax, NS, Canada, 2001. [Google Scholar]
- Tattrie, S.C. Evaluation of a Subsurface Flow Constructed Wetland Treating Multi-Source Wastewaters. Master’s Thesis, Dalhousie University, Halifax, NS, USA, 2006. [Google Scholar]
- Gottschall, N.; Boutin, C.; Crolla, A.; Kinsley, C.; Champagne, P. The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada. Ecol. Eng. 2007, 29, 154–163. [Google Scholar] [CrossRef]
- Jamieson, R.; Gordon, R.; Wheeler, N.; Smith, E.; Stratton, G.; Madani, A. Determination of first order rate constants for wetlands treating livestock wastewater in cold climates. J. Environ. Eng. Sci. 2007, 6, 65–72. [Google Scholar] [CrossRef]
- Wood, J.D.; Gordon, R.; Madani, A.; Stratton, G.W. A long term assessment of phosphorus treatment by a constructed wetland receiving dairy wastewater. Wetlands 2008, 28, 715–723. [Google Scholar] [CrossRef]
- Wood, J.D.; Gordon, R.; Madani, A.; Stratton, G.W.; Bromley, H.M. Performance of seasonally and continuously loaded constructed wetlands treating dairy farm wastewater. J. Environ. Qual. 2015, 44, 1965–1973. [Google Scholar] [CrossRef] [PubMed]
- MacPhee, N.; Gordon, R.; Gagnon, G.; Stratton, G.; Blanchard, J.; Wood, J.D. Evaluation of a diffused air aeration system for a constructed wetland receiving dairy wastewater. Trans. ASABE. 2009, 52, 111–119. [Google Scholar] [CrossRef]
- McKague, K. Evaluation of a Subsurface Constructed Wetland as a Management Option for Handling Milking Centre Washwater and Solid Manure Storage Runoff; OMAFRA: Guelph, ON, Canada, 2012. [Google Scholar]
- Jolley, J.W. The Efficiency of Constructed Wetlands in the Reduction of Phosphorus and Sediment Discharges from Agricultural Wetlands. Master’s Thesis, University of Maine, Orono, ME, USA, 1990. [Google Scholar]
- Higgins, M.J. Constructed Wetland-Pond Systems for Treating Agricultural Runoff in Northern Maine. Master’s Thesis, University of Maine, Orono, ME, USA, 1992. [Google Scholar]
- Kroeger, A.; Madramootoo, C.; Enright, P.; Laflamme, C. Efficiency of a small constructed wetland in southern Québec for treatment of agricultural runoff waters. In Proceedings of the IWA Specialist Conference: Wastewater Biosolids Sustainability: Technical, Managerial, and Public Synergy, Moncton, NB, Canada, 24–27 June 2007; pp. 1057–1062.
- Haverstock, M. An Assessment of a Wetland-Reservoir Wastewater Treatment and Reuse System Receiving Agricultural Drainage Water in Nova Scotia. Master’s Thesis, Dalhousie University, Halifax, NS, Canada, 2010. [Google Scholar]
- Comeau, Y.; Brisson, J.; Rville, J.; Forget, C.; Drizo, A. Phosphorus removal from trout farm effluents by constructed wetlands. Water Sci. Technol. 2001, 44, 55–60. [Google Scholar] [PubMed]
- Snow, A.; Ghaly, A.E. A comparative study of the purification of aquaculture wastewater using water hyacinth, water lettuce and parrot's feather. Am. J. App. Sci. 2008, 5, 440. [Google Scholar]
- Carreau, R.; VanAcker, S.; VanderZaag, A.C.; Madani, A.; Drizo, A.; Jamieson, R.; Gordon, R. Evaluation of a surface flow constructed wetland treating abattoir wastewater. Appl. Eng. Agric. 2012, 28, 757–766. [Google Scholar] [CrossRef]
- Rozema, E.R.; Rozema, L.R.; Zheng, Y. A vertical flow constructed wetland for the treatment of winery process water and domestic sewage in Ontario, Canada: Six years of performance data. Ecol. Eng. 2016, 86, 262–268. [Google Scholar] [CrossRef]
- Crolla, A.M.; Kinsley, C.B. Use of kinetic models to evaluate the performance of a free water surface constructed wetland treating farmstead runoff. In Proceedings of the Eighth International Conference on Wetland Systems for Water Pollution Control, International Water Association, Arusha, Tanzania, 16–19 September 2002; pp. 774–787.
- DeHaan, R.; MacLeod, J.; Murray, B.; Raymond, B.; Duffy, T.; MacFarlane, A.; Coffin, R. Constructed Wetland Project; PEIDAF: Charlottetown, PE, Canada, 2003. [Google Scholar]
- Kostinec, R.A. Constructed Wetland Use for Treatment of Dairy Milkhouse Wastewaters in Maine. Master’s Thesis, University of Maine, Orono, ME, USA, 2001. [Google Scholar]
- Smith, E.; Gordon, R.; Madani, A.; Stratton, G. Year-round treatment of dairy wastewater by constructed wetlands in Atlantic Canada. Wetlands 2006, 26, 349–357. [Google Scholar] [CrossRef]
- Smith, E.; Gordon, R.; Madani, A.; Stratton, G. Pathogen removal by agricultural constructed wetlands in cold climates. J. Environ. Inform. 2005, 6, 46–50. [Google Scholar] [CrossRef]
- Speer, S. Hydrodynamic Pathways in a Mature Constructed Wetland. Master’s Thesis, Carleton University, Ottawa, ON, Canada, 2005. [Google Scholar]
- Meadus, D. Personal communication, Manager of conservation programs, Ducks Unlimited Canada. 2008.
- Coleman, J.; Hench, K.; Garbutt, K.; Sexstone, A.; Bissonnette, G.; Skousen, J. Treatment of domestic wastewater by three plant species in constructed wetlands. Water Air Soil Pollut. 2001, 128, 283–295. [Google Scholar] [CrossRef]
- Ouellet-Plamondon, C.; Chazarenc, F.; Comeau, Y.; Brisson, J. Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate. Ecol. Eng. 2006, 27, 258–264. [Google Scholar] [CrossRef]
- Gagnon, V.; Chazarenc, F.; Comeau, Y.; Brisson, J. Influence of macrophyte species on microbial density and activity in constructed wetlands. Water Sci. Technol. 2007, 56, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Brisson, J.; Chazarenc, F. Maximizing pollutant removal in constructed wetlands: Should we pay more attention to macrophyte species selection? Sci. Total Environ. 2009, 407, 3923–3930. [Google Scholar] [CrossRef] [PubMed]
- Comeau, Y.; Brisson, J.; Chazarenc, F. Traitement de Boues Piscicoles par Marais Artificiel et lit Filtrant de Déphosphatation; Société de Recherche et Développement en Aquaculture Continentale (SORDAC): Montreal, QC, Canada, 2006. [Google Scholar]
- Jamieson, T.S.; Stratton, G.; Gordon, R.; Madani, A. The use of aeration to enhance ammonia nitrogen removal in constructed wetlands. Can. Biosyst. Eng. 2003, 45, 1.9–1.14. [Google Scholar]
- Muñoz, P.; Drizo, A.; Cully-Hession, W. Flow patterns of dairy wastewater constructed wetlands in a cold climate. Water Res. 2006, 40, 3209–3218. [Google Scholar] [CrossRef] [PubMed]
- Drizo, A.; Seitz, E.; Twohig, E.; Weber, D.; Bird, S.; Ross, D. The role of vegetation in phosphorus removal by cold climate constructed wetland: The effects of aeration and growing season. In Wastewater Treatment, Plant Dynamics and Management in Constructed and Natural Wetlands; Vymazal, J., Ed.; Springer: Houten, The Netherlands, 2008; pp. 237–249. [Google Scholar]
- Miles, M. Assessing Residence Time in Constructed Treatment Wetlands Receiving Agricultural Wastewater. Master’s Thesis, Dalhousie University, Halifax, NS, Canada, 2008. [Google Scholar]
- Serodes, J.B.; Normand, D. Phosphorus removal in agricultural wastewater by a recently constructed wetland. Can. J. Civ. Eng. 1999, 26, 305–311. [Google Scholar] [CrossRef]
- Gorman, D. Characterization of Phosphorus Adsorption in Constructed Wetlands Receiving Agricultural Wastewater. Master’s Thesis, Dalhousie University, Halifax, NS, Canada, 2004. [Google Scholar]
- Jamieson, T.S.; Stratton, G.; Gordon, R.; Madani, A. Phosphorus adsorption characteristics of a constructed wetland soil receiving dairy farm wastewater. Can. J. Soil Sci. 2002, 82, 97–104. [Google Scholar] [CrossRef]
- Drizo, A.; Comeau, Y.; Forget, C.; Chapuis, R.P. Phosphorus saturation potential: A parameter for estimating the longevity of constructed wetland systems. Environ. Sci. Technol. 2002, 36, 4642–4648. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.; Drizo, A.; Twohig, E.; Bird, S.; Ross, D. Upgrading constructed wetlands phosphorus reduction from a dairy effluent using electric arc furnace steel slag filters. Water Sci. Technol. 2007, 56, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Bellier, N.; Chazarenc, F.; Comeau, Y. Phosphorus removal from wastewater by mineral apatite. Water Res. 2006, 40, 2965–2971. [Google Scholar] [CrossRef] [PubMed]
- Drizo, A.; Forget, C.; Chapuis, R.P.; Comeau, Y. Phosphorus removal by electric arc furnace steel slag and serpentinite. Water Res. 2006, 40, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
- Chazarenc, F.; Brisson, J.; Comeau, Y. Slag columns for upgrading phosphorus removal from constructed wetland effluents. Water Sci. Technol. 2007, 56, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Drizo, A.; Rizzo, D.M.; Druschel, G.; Hayden, N.; Twohig, E. Evaluating the efficiency and temporal variation of pilot-scale constructed wetlands and steel slag phosphorus removing filters for treating dairy wastewater. Water Res. 2010, 44, 4077–4086. [Google Scholar] [CrossRef] [PubMed]
- Bird, S. Phosphorus Removal from Milk Parlor Wastewater Using EAF Slag Filters. Master’s Thesis, University of Vermont, Burlington, VT, USA, 2008. [Google Scholar]
- Kadlec, R.H. The inadequacy of first-order treatment wetland models. Ecol. Eng. 2000, 15, 105–119. [Google Scholar] [CrossRef]
- Rousseau, D.P.L.; Vanrolleghem, P.A.; De Pauw, N. Model-based design of horizontal subsurface flow constructed treatment wetlands: A review. Water Res. 2004, 38, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands; CRC Press: Boca Rotan, FL, USA, 2008. [Google Scholar]
- Chazarenc, F.; Maltais-Landry, G.; Troesch, S.; Comeau, Y.; Brisson, J. Effect of loading rate on performance of constructed wetlands treating an anaerobic supernatant. Water Sci. Technol. 2007, 56, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Herskowitz, J. Listowel Artificial Marsh Project Report; Research Advisory Committee, Ontario Ministry of the Environment and Energy: Listowel, ON, Canada, 1986.
- Kadlec, R.H.; Reddy, K. Temperature effects in treatment wetlands. Water Environ. Res. 2001, 73, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, R.H. Constructed marshes for nitrate removal. Crit. Rev. Environ. Sci. Technol. 2012, 42, 934–1005. [Google Scholar] [CrossRef]
Study | Prov./Statea | CW Type | Area (m2) | Waste Water Source | Study Length (mo) | BOD5 (mg L−1) | TSS (mg L−1) | E. coli (CFU/100 mL) | Fecal Coliforms (CFU/100 mL) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
in | out | CR % | ka | in | out | CR % | ka | In | out | LR | ka | in | out | LR | ka | ||||||
[34] | NS | SF | 58.5 | abattoir | 24 | 704 | 44 | 94.0 | 6.8 | 114 | 39 | 66.0 | 2.5 | 9.00 × 104 | 88 | 2.01 | 13.4 | 6.00 × 105 | 3138 | 1.28 | 11.0 |
[36] | dairy | ||||||||||||||||||||
yr. 1 GS b | ON | SF | 4620 | 7 | 152 | 22 | 85.7 | 3.5 | - | - | - | - | - | - | - | - | - | - | - | - | |
yr. 2 GS | 7 | 103 | 19 | 81.4 | 3.1 | - | - | - | - | - | - | - | - | - | - | - | - | ||||
yr. 3 GS | 7 | 89 | 20 | 78.0 | 2.8 | - | - | - | - | - | - | - | - | - | - | - | - | ||||
yr. 4 GS | 7 | 99 | 21 | 78.9 | 2.8 | - | - | - | - | - | - | - | - | - | - | - | - | ||||
[37] | PE | SF | 1520 | dairy | 32 | 1955 | 178 | 90.9 | - | 828 | 191 | 76.9 | - | - | - | - | - | 1.82 × 104 | 573 | 1.50 | - |
[22]c | ON | SF | 4620 | dairy | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
[31] | NS | SF | 512 | tile drain | 15 | - | - | - | - | - | - | - | - | 122 | 42 | 0.46 | 7.7 | - | - | - | - |
[29] | dairy | ||||||||||||||||||||
yr. 1 NGSd | ME | SF | 690 | 4 | - | - | - | - | 1678 | 51 | 97.0 | 38.7 | - | - | - | - | - | - | - | - | |
yr. 2 NGS | 4 | - | - | - | - | 1401 | 51 | 96.4 | 12.1 | - | - | - | - | - | - | - | - | ||||
[20] GS | NS | SF | 1022 | dairy | 4 | 736 | 58 | 92.1 | - | - | - | - | - | - | - | - | - | - | - | - | - |
[23] | NS | SF | 100 | dairy | 38 | 1747 | 34 | 98.1 | 7.0 | 1450 | 55 | 96.2 | 5.9 | - | - | - | - | 2.17 × 105 | 3150 | 1.84 | 8.3 |
[28] GS | ME | SF | 690 | tile drain | 5 | - | - | - | - | 7700 | 368 | 95.2 | 18.1 | - | - | - | - | - | - | - | - |
[38] | dairy | ||||||||||||||||||||
site 1 | ME | SF | 360 | 11 | 2174 | 1391 | 36.0 | - | 1323 | 576 | 56.5 | - | - | - | - | - | - | - | - | - | |
site 2 NGS | SF | 270 | 4 | 2810 | 1252 | 55.4 | - | 1300 | 720 | 44.6 | - | - | - | - | - | - | - | - | - | ||
[30] | tile drain | ||||||||||||||||||||
yr. 1 GS | QC | SF | 1215 | 7 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
yr. 2 GS | 6 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||||
yr. 3 GS | 4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||||
yr. 4 GS | 6 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||||
[26] | dairy | ||||||||||||||||||||
aerated | NS | SF | 100 | 20 | 1666 | 46 | 97.2 | 4.0 | 2537 | 78 | 96.9 | 3.8 | 4.20 × 105 | 2797 | 2.18 | 5.9 | - | - | - | - | |
non-aerated | NS | SF | 100 | 20 | 1666 | 53 | 96.8 | 3.7 | 2537 | 85 | 96.7 | 3.6 | 4.20 × 105 | 3869 | 2.04 | 5.4 | - | - | - | - | |
[27] | dairy | ||||||||||||||||||||
site 1 GS | ON | VSSF | 72 | 6 | 1022 | 2.7 | 99.7 | 4.1 | 2595 | 428 | 83.5 | 1.0 | 6136 | 4.5 | 3.13 | 5.1 | - | - | - | - | |
site 1 NGS | 5 | 1231 | 3.0 | 99.8 | 4.2 | 1356 | 4.6 | 99.7 | 3.9 | 1204 | 6.4 | 2.27 | 3.6 | - | - | - | - | ||||
site 2 GS | ON | VSSF | 72 | 6 | 906 | 19 | 97.9 | 18.6 | 633 | 156 | 75.4 | 3.3 | 2.32 × 104 | 308.9 | 1.88 | 21.3 | - | - | - | - | |
site 2 NGS | 5 | 1128 | 9.4 | 99.2 | 24.1 | 546 | 99 | 81.8 | 5.1 | 1287 | 457.1 | 0.45 | 1.0 | - | - | - | - | ||||
site 3 GS | ON | VSSF | 72 | 6 | 1164 | 4.0 | 99.7 | - | 951 | 327 | 65.6 | - | 1.53 × 104 | 46.5 | 2.52 | - | - | - | - | - | |
stie 3 NGS | 5 | 863 | 40 | 95.3 | - | 317 | 15 | 95.3 | - | 29.1 | 3.8 | 0.88 | - | - | - | - | - | ||||
[19] | NS | SF | 1022 | dairy | 24 | 911 | 318 | 65.1 | - | 410 | 124 | 69.7 | - | - | - | - | - | - | - | - | - |
[35] | winery | ||||||||||||||||||||
GS | ON | VSSF | 404 | 36 | - | - | - | - | 332 | 2.7 | 98.0 | - | 7.66 × 103 | 24 | 1.60 | - | 3.34 × 104 | 343 | 1.56 | - | |
NGS | 36 | - | - | - | - | 178 | 2.9 | 97.7 | - | 405 | 0 | - | - | 1.87 × 105 | 117 | 2.52 | - | ||||
[39,40] | dairy | ||||||||||||||||||||
wetland 1 | NS | SF | 100 | 17 | 1491 | 18 | 98.8 | - | 716 | 39 | 94.6 | - | - | - | - | - | 7438 | 21 | 2.55 | - | |
wetland 2 | NS | SF | 100 | 17 | 1491 | 7.6 | 99.5 | - | 716 | 21 | 97.1 | - | - | - | - | - | 7438 | 24 | 2.49 | - | |
[41] | dairy | ||||||||||||||||||||
yr. 1 GS | ON | SF | 4620 | 7 | 341 | 51 | 85.1 | 3.4 | 463 | 80 | 82.7 | 3.2 | - | - | - | - | - | - | - | - | |
yr. 2 GS | 7 | 149 | 54 | 64.1 | 1.9 | 90 | 77 | 14.7 | 0.4 | - | - | - | - | - | - | - | - | ||||
[21] | dairy | ||||||||||||||||||||
yr. 1 | NS | HSSF | 200 | 11 | 8750 | 263 | 97.0 | 21.5 | 1063 | 32 | 97.0 | 21.5 | 2.34 × 106 | 1.53 × 105 | 1.18 | 18.7 | - | - | - | - | |
yr. 2 | 9 | 1263 | 215 | 83.0 | 11.3 | 1922 | 56 | 97.1 | 23.6 | 6.32 × 104 | 5.94 × 104 | 0.03 | −1.2 | - | - | - | - | ||||
[25] | dairy | ||||||||||||||||||||
yr. 1 GS e | NS | SF | 100 | 6 | 433 | 158 | 63.5 | 3.6 | 433 | 158 | 63.5 | 3.6 | 1.43 × 1012 | 2.05 × 1011 | 0.84 | 6.8 | - | - | - | - | |
yr. 1 NGS e | NS | SF | 100 | 6 | 433 | 57 | 86.9 | - | 433 | 57 | 86.9 | - | - | - | - | - | - | - | - | - | |
yr. 1 GS f | NS | SF | 100 | 6 | 433 | 264 | 38.9 | 0.5 | 858 | 145 | 83.1 | 2.8 | 7.52 × 1011 | 1.4 × 1010 | 1.73 | 6.6 | - | - | - | - | |
yr. 1 NGS f | NS | SF | 100 | 6 | 433 | 162 | 62.7 | 0.2 | 858 | 134 | 84.3 | 1.5 | 5.43 × 1011 | 1.17 × 1011 | 0.67 | 1.0 | - | - | - | - | |
yr. 2 GS e | NS | SF | 100 | 6 | 272 | 257 | 5.4 | 0.8 | 272 | 257 | 5.4 | 0.8 | 2.75 × 1011 | 4.99 × 109 | 1.74 | 7.0 | - | - | - | - | |
yr. 2 NGS e | NS | SF | 100 | 6 | 272 | 79 | 71.0 | - | 272 | 79 | 71.0 | - | - | - | - | - | - | - | - | - | |
yr. 2 GS f | NS | SF | 100 | 6 | 272 | 19 | 93.0 | 2.2 | 877 | 21 | 97.6 | 3.1 | 1.46 × 1011 | 3.58 x108 | 2.61 | 5.0 | - | - | - | - | |
yr. 2 NGSf | NS | SF | 100 | 6 | 272 | 33 | 88.0 | 1.3 | 877 | 40 | 95.4 | 1.9 | 5.61 × 1011 | 1.10 × 109 | 2.71 | 4.0 | - | - | - | - | |
[24] | NS | SF | 100 | dairy | 48 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Mean | 1134 | 157 | 81.1 | 6.0 | 1153 | 133 | 82.9 | 7.7 | 1.85 × 1011 | 1.71 × 1010 | 1.63 | 7.0 | 7.59 × 105 | 705 | 1.93 | 9.7 | |||||
Standard Error | 267 | 54.7 | 3.9 | 1.4 | 237 | 29.3 | 3.3 | 2.1 | 8.32 × 1010 | 1.15 × 1010 | 0.2 | 1.5 | 3.35 × 105 | 487 | 0.3 | 1.4 |
Study | Prov./Statea | CW Type | Area (m2) | Waste Water Source | Study Length (mo) | TKN | NH4+-N | NO3−-N | TP | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
in | Out | CR % | ka | in | out | CR % | ka | in | out | CR % | ka | in | out | CR % | ka | ||||||
[34] | NS | SF | 58.5 | abattoir | 24 | 123 | 21 | 83.0 | 4.7 | 68 | 6.6 | 84 | 5.4 | 0.1 | 0.96 | -9.4 | - | 3.1 | 0.58 | 81.0 | 3.7 |
[36] | dairy | ||||||||||||||||||||
yr. 1 GS b | ON | SF | 4620 | 7 | 101 | 24 | 76.5 | 2.7 | - | - | - | - | - | - | - | - | 17 | 4.3 | 74.7 | 2.5 | |
yr. 2 GS | 7 | 79 | 27 | 66.5 | 2.0 | - | - | - | - | - | - | - | - | 20 | 9.1 | 53.6 | 1.5 | ||||
yr. 3 GS | 7 | 70 | 21 | 70.4 | 2.3 | - | - | - | - | - | - | - | - | 17 | 8.7 | 48.8 | 1.3 | ||||
yr. 4 GS | 7 | 94 | 31 | 67.1 | 2.1 | - | - | - | - | - | - | - | - | 18 | 7.7 | 56.3 | 1.6 | ||||
[37] | PE | SF | 1520 | dairy | 32 | 402 | 78 | 80.6 | - | 297 | 46 | 84.5 | - | 1.7 | 1.4 | 17.6 | - | 33 | 8.7 | 73.6 | - |
[22]c | ON | SF | 4620 | dairy | 12 | 63 | 31 | 51.0 | - | 15 | 7.2 | 52.0 | - | 1.3 | 1.2 | 4.7 | - | 21 | 13 | 37.9 | - |
[31] | NS | SF | 512 | tile drain | 15 | - | - | - | - | - | - | - | - | 6.7 | 2.2 | 67.2 | 9.2 | - | - | - | - |
[29] | dairy | ||||||||||||||||||||
yr. 1 NGS d | ME | SF | 690 | 4 | - | - | - | - | - | - | - | - | - | - | - | - | 2.6 | 0.46 | 82.1 | 15.2 | |
yr. 2 NGS | 4 | - | - | - | - | - | - | - | - | - | - | - | - | 5.5 | 0.51 | 90.8 | 2.4 | ||||
[20] GS | NS | SF | 1022 | dairy | 4 | 301 | 35 | 88.5 | - | 317 | 18 | 94.4 | - | 4.8 | 0.9 | 81.3 | - | 43 | 6.3 | 85.5 | - |
[23] | NS | SF | 100 | dairy | 38 | 237 | 19 | 92.0 | 4.1 | 188 | 14 | 92.6 | 4.3 | 3.7 | 0.6 | 83.8 | -0.2 | 37 | 7.1 | 80.8 | 1.6 |
[28] GS | ME | SF | 690 | tile drain | 5 | - | - | - | - | - | - | - | - | - | - | - | - | 22 | 1.7 | 92.3 | 13.6 |
[38] | dairy | ||||||||||||||||||||
site 1 | ME | SF | 360 | 11 | 263 | 238 | 9.5 | - | - | - | - | - | - | - | - | - | 81 | 75 | 7.4 | - | |
site 2 NGS | SF | 270 | 4 | 352 | 369 | −4.8 | - | 180 | 130 | 27.8 | - | 64 | 96 | −50.0 | - | - | - | - | - | ||
[30] | tile drain | ||||||||||||||||||||
yr. 1 GS | QC | SF | 1215 | 7 | - | - | - | - | - | - | - | - | 3.1 | 2.8 | 9.7 | - | 91 | 53 | 41.9 | - | |
yr. 2 GS | 6 | - | - | - | - | - | - | - | - | 2.9 | 2.1 | 27.6 | - | 45 | 28 | 38.2 | - | ||||
yr. 3 GS | 4 | - | - | - | - | - | - | - | - | 3.9 | 3.0 | 23.1 | - | 92 | 44 | 52.4 | - | ||||
yr. 4 GS | 6 | - | - | - | - | - | - | - | - | 4.4 | 3.0 | 31.8 | - | 82 | 58 | 29.2 | - | ||||
[26] | dairy | ||||||||||||||||||||
Aerated | NS | SF | 100 | 20 | 301 | 22 | 92.7 | 2.6 | 237 | 15 | 93.6 | 2.8 | 4.1 | 1.4 | 65.9 | 0.5 | 50 | 9.0 | 81.9 | 1.4 | |
non-aerated | NS | SF | 100 | 20 | 301 | 30 | 90.0 | 2.1 | 237 | 24 | 89.7 | 2.1 | 4.1 | 0.7 | 82.9 | 1.4 | 50 | 8.6 | 82.7 | 1.4 | |
[27] | dairy | ||||||||||||||||||||
site 1 GS | ON | VSSF | 72 | 6 | 69 | 2.5 | 96.4 | 2.1 | 29 | 0.7 | 97.6 | 2.4 | 0.5 | 2.3 | - | - | 235 | 17 | 92.6 | 1.6 | |
site 1 NGS | 5 | 70 | 1.8 | 97.4 | 2.4 | 21 | 0.2 | 99.1 | 3.1 | 0.3 | 5.9 | - | - | 127 | 14 | 89.0 | 1.3 | ||||
site 2 GS | ON | VSSF | 72 | 6 | 87 | 34 | 61.4 | 0.5 | 47 | 22 | 53.2 | −0.7 | 0.1 | 5.8 | - | - | 32 | 11 | 66.6 | 1.4 | |
site 2 NGS | 5 | 112 | 9.1 | 91.9 | 10.1 | 56 | 5.5 | 90.2 | 9.0 | 0.2 | 7.6 | - | - | 32 | 12 | 63.0 | 0.8 | ||||
site 3 GS | ON | VSSF | 72 | 6 | 41 | 9.4 | 77.2 | - | 10 | 1.2 | 88.0 | - | 0.1 | 2.7 | - | - | 69 | 34 | 50.4 | - | |
stie 3 NGS | 5 | 38 | 13 | 65.6 | - | 4.4 | 4.2 | 4.5 | - | 1.0 | 0.5 | - | - | 63 | 34 | 46.8 | - | ||||
[19] | NS | SF | 1022 | dairy | 24 | 183 | 53 | 71.0 | - | 183 | 53 | 71.0 | - | 3.8 | 0.9 | 76.3 | - | 28 | 6.0 | 78.6 | - |
[35] | winery | ||||||||||||||||||||
GS | ON | VSSF | 404 | 36 | 92.2 | 0.45 | 88.7 | - | 2.18 | 0.18 | 72.7 | - | 0.01 | 2.03 | - | - | 5.0 | 0.17 | 95.9 | - | |
NGS | 36 | 13.9 | 0.04 | 98.8 | - | 0.91 | 0.02 | 98.2 | - | 0.16 | 0.83 | - | - | 2.73 | 0.23 | 71.0 | - | ||||
[39,40] | dairy | ||||||||||||||||||||
wetland 1 | NS | SF | 100 | 17 | 173 | 11 | 93.5 | - | 147 | 8.1 | 94.5 | - | 2.4 | 0.6 | 76.4 | - | 44 | 4.0 | 91.0 | - | |
wetland 2 | NS | SF | 100 | 17 | 173 | 3.8 | 97.8 | - | 147 | 1.6 | 98.9 | - | 2.5 | 0.4 | 85.7 | - | 44 | 2.2 | 95.0 | - | |
[41] | dairy | ||||||||||||||||||||
yr. 1 GS | ON | SF | 4620 | 7 | 145 | 24 | 83.2 | 3.2 | 107 | 5.3 | 95.1 | 5.4 | 11 | 1.0 | 90.9 | 4.3 | 19 | 13 | 33.2 | 0.8 | |
yr. 2 GS | 7 | - | - | - | - | 13 | 2.1 | 84.3 | 3.4 | 1.0 | 1.1 | -9.7 | -0.01 | 17 | 11 | 34.2 | 0.9 | ||||
[21] | dairy | ||||||||||||||||||||
yr. 1 | NS | HSSF | 200 | 11 | 182 | 37 | 80.0 | 10.9 | 107 | 28 | 74.1 | 9.1 | 17 | 8.7 | 49.4 | 4.4 | 78 | 10 | 86.7 | 13.7 | |
yr. 2 | 9 | 58 | 36 | 38.0 | 1.5 | 62 | 29 | 54.0 | 3.4 | 3.1 | 2.3 | 26.0 | 0.4 | 13 | 10 | 24.0 | 0.2 | ||||
[25] | dairy | ||||||||||||||||||||
yr. 1 GS e | NS | SF | 100 | 6 | 327 | 165 | 49.5 | 2.5 | 23 | 12 | 47.8 | 2.3 | - | - | - | - | 5.1 | 2.9 | 42.0 | 2.0 | |
yr. 1 NGS e | NS | SF | 100 | 6 | - | 72 | - | - | - | 3.1 | - | - | - | - | - | - | - | - | - | - | |
yr. 1 GS f | NS | SF | 100 | 6 | 333 | 75 | 77.5 | 2.2 | 12 | 3.4 | 71.3 | 1.8 | - | - | - | - | 2.6 | 1.4 | 45.4 | 0.7 | |
yr. 1 NGS f | NS | SF | 100 | 6 | 317 | 114 | 64.0 | 0.2 | 10 | 8.5 | 13.6 | −1.1 | - | - | - | - | 2.1 | 2.0 | 3.3 | -1.3 | |
yr. 2 GS e | NS | SF | 100 | 6 | 307 | 69 | 77.4 | 3.1 | 10 | 1.8 | 81.4 | 3.4 | - | - | - | - | 2.1 | 0.44 | 79.0 | 3.2 | |
yr. 2 NGS e | NS | SF | 100 | 6 | - | 41 | - | - | - | 0.5 | - | - | - | - | - | - | - | - | - | - | |
yr. 2 GS f | NS | SF | 100 | 6 | 309 | 13 | 95.7 | 2.6 | 5.3 | 0.2 | 95.9 | 2.7 | - | - | - | - | 1.1 | 0.15 | 86.5 | 1.7 | |
yr. 2 NGS f | NS | SF | 100 | 6 | 344 | 30 | 91.2 | 1.5 | 3.7 | 0.6 | 84.3 | 1.1 | - | - | - | - | 0.88 | 0.10 | 89.2 | 1.3 | |
[24] | NS | SF | 100 | dairy | 48 | - | - | - | - | - | - | - | - | - | - | - | - | 48 | 9.7 | 79.8 | 1.0 |
Mean | 184 | 50.3 | 74.5 | 3.1 | 87.6 | 14.6 | 75.5 | 3.3 | 5.3 | 5.7 | 41.6 | 2.5 | 39 | 13.1 | 64.3 | 2.9 | |||||
Standard Error | 20.4 | 12.4 | 4.2 | 0.6 | 18.0 | 4.5 | 4.8 | 0.6 | 2.3 | 3.4 | 9.0 | 1.2 | 6.9 | 2.7 | 3.9 | 0.8 |
SF | SSF | GS | NGS | |
---|---|---|---|---|
BOD5 | 76.3 ± 4.66 | 96.5 ± 2.00 | 76.0 ± 7.04 | 82.3 ± 6.05 |
TSS | 76.9 ± 5.41 | 89.1 ± 3.73 | 69.5 ± 9.54 | 86.4 ± 4.94 |
TKN | 72.3 ± 5.40 | 79.5 ± 6.21 | 76.9 ± 3.54 | 72.0 ± 13.9 |
NH+4-N | 76.7 ± 5.59 | 73.2 ± 9.36 | 80.2 ± 5.19 | 59.7 ± 16.0 |
NO−3-N | 42.0 ± 9.95 | 37.7 ± 11.7 | 36.4 ± 13.9 | - |
TP | 62.8 ± 4.68 | 68.6 ± 7.38 | 59.0 ± 4.97 | 66.9 ± 10.6 |
E. coli | 1.7 ± 0.25 | 1.5 ± 0.34 | 2.0 ± 0.25 | 1.4 ± 0.46 |
Fecal coliforms | 1.9 ± 0.26 | 2.0 ± 0.48 | - | - |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozema, E.R.; VanderZaag, A.C.; Wood, J.D.; Drizo, A.; Zheng, Y.; Madani, A.; Gordon, R.J. Constructed Wetlands for Agricultural Wastewater Treatment in Northeastern North America: A Review. Water 2016, 8, 173. https://doi.org/10.3390/w8050173
Rozema ER, VanderZaag AC, Wood JD, Drizo A, Zheng Y, Madani A, Gordon RJ. Constructed Wetlands for Agricultural Wastewater Treatment in Northeastern North America: A Review. Water. 2016; 8(5):173. https://doi.org/10.3390/w8050173
Chicago/Turabian StyleRozema, Eric R., Andrew C. VanderZaag, Jeff D. Wood, Aleksandra Drizo, Youbin Zheng, Ali Madani, and Robert J. Gordon. 2016. "Constructed Wetlands for Agricultural Wastewater Treatment in Northeastern North America: A Review" Water 8, no. 5: 173. https://doi.org/10.3390/w8050173
APA StyleRozema, E. R., VanderZaag, A. C., Wood, J. D., Drizo, A., Zheng, Y., Madani, A., & Gordon, R. J. (2016). Constructed Wetlands for Agricultural Wastewater Treatment in Northeastern North America: A Review. Water, 8(5), 173. https://doi.org/10.3390/w8050173