The Water-Energy-Food Nexus and the Transboundary Context: Insights from Large Asian Rivers
Abstract
:1. Introduction
2. Water-Energy-Food Nexus: Defining the “Nexus Approach”
2.1. The Emergence of Water-Energy-Food Nexus
2.2. Three Perspectives and Definitions for the Nexus
- A nexus-based analysis is a systematic process that explicitly includes consideration of water, energy, food and other linked sectors in either quantitative or qualitative terms with a view to better understanding their relationships and hence providing more integrated information for planning and decision making in these sectors.
- A nexus approach to governance is one that explicitly focuses on linkages between water, energy, food and linked sectors as well as their related actors in order to enhance cross-sectoral collaboration and policy coherence and ultimately promote sustainability, win-win solutions and resource use efficiency.
- The nexus is an emerging discourse that emphasizes the trade-offs and synergies across water-energy-food connections and encourages actors to cross their sectoral and disciplinary boundaries (i.e., acting as a boundary concept).
3. Comparative Nexus Analysis in Three Asian Regions with Large Transboundary River Basins
3.1. Central Asia
3.2. South Asia
3.3. Mekong Region
4. Discussion: Implications of Transboundary Water-Energy-Food Nexus
4.1. Transboundary Context’s Implications for the Nexus
4.2. Nexus’ Implications for Transboundary Issues
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Selected Water-Energy-Food Data on Three Study Regions
Central Asia | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Population | Net Energy Imports | Hydro-Electric Production | Access to Electricity | Energy Used in Agriculture and Forestry | Food Supply | Food Self-Suffiency | Area Equipped for Irrigation | Water Shortage | Water Stress | Share of Water Withdrawals | |||||||
[millions] | [% of energy use] | [% of total] | [% of population] | [% of energy use] | [kcal/cap/d] | [% of kcal requirements produced domestically] | (% of total land area) | (ha/capita) | [m3/year/capita] | [%] | Irrigation | Electricity | Manufactur. | Domestic | |||
Countries | Afghanistan | A | 28.4 | - | - | 43% | - | - | - | 5% | 0.106 | ||||||
Kazakhstan | Kz | 15.9 | −120% | 9% | 100% | 2.5% | 3225 | 196% | 1% | 0.170 | |||||||
Kyrgyz Rep. | Kg | 5.3 | 58% | 93% | 100% | 5.1% | 2771 | 79% | 6% | 0.151 | |||||||
Tajikistan | Tj | 7.6 | 26% | 99% | 100% | 17.9% | 2134 | 36% | 6% | 0.099 | |||||||
Turkmenistan | Tk | 5.0 | −166% | 0% | 100% | 2.2% | 2802 | 102% | 5% | 0.345 | |||||||
Uzbekistan | U | 27.8 | −18% | 19% | 100% | 5.5% | 2502 | 83% | 9% | 0.153 | |||||||
Basins | Amu Darya (A, Tj, Tk, U) | 30.2 | 7% | 0.140 | 1636 | 47% | 92% | 3% | 1% | 4% | |||||||
Syr Darya (Kz, Kg, Tj, U) | 26.6 | 5% | 0.163 | 1209 | 52% | 77% | 12% | 3% | 7% |
South Asia | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Population | Net Energy Imports | Hydro-Electric Production | Access to Electricity | Energy Used in Agriculture and Forestry | Food supply | Food Self-Suffiency | Area Equipped for Irrigation | Water Shortage | Water Stress | Share of Water Withdrawals | |||||||
[millions] | [% of energy use] | [% of total] | [% of population] | [% of energy use] | [kcal/cap/d] | [% of kcal requirements produced domestically] | (% of total land area) | (ha/capita) | [m3/year/capita] | [%] | Irrigation | Electricity | Manufacture | Domestic | |||
Countries | Bangladesh | Bg | 151.1 | 18% | 2% | 60% | 5.1% | 2,413 | 85% | 37% | 0.032 | ||||||
Bhutan | Bh | 0.7 | - | - | 76% | - | - | - | 1% | 0.017 | |||||||
China | Ch | 1360 | 13% | 15% | 100% | 2.1% | 2,915 | 85% | 6% | 0.047 | |||||||
India | I | 1206 | 31% | 12% | 79% | 3.9% | 2,252 | 94% | 20% | 0.053 | |||||||
Nepal | N | 26.8 | 16% | 100% | 76% | 1.2% | 2,333 | 79% | 7% | 0.039 | |||||||
Pakistan | P | 173.1 | 23% | 30% | 94% | 1.3% | 2,315 | 101% | 20% | 0.099 | |||||||
Basins | GBM (Bg, Bh, Ch, I, N) | 705.0 | 20% | 0.048 | 1,604 | 16% | 90% | 1% | 5% | 3% | |||||||
Indus (Ch, I, P) | 243.4 | 21% | 0.100 | 836 | 58% | 97% | 1% | 1% | 2% |
Mekong Region | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Population | Net energy imports | Hydro-Electric Production | Access to Electricity | Energy Used in Agriculture And Forestry | Food Supply | Food Self-Suffiency | Area Equipped for Irrigation | Water Shortage | Water Stress | Share of Water Withdrawals | |||||||
[millions] | [% of energy use] | [% of total] | [% of population] | [% of energy use] | [kcal/cap/d] | [% of kcal requirements produced domestically] | (% of total land area) | (ha/capita) | [m3/year/capita] | [%] | Irrigation | Electricity | Manufactur. | Domestic | |||
Countries | Cambodia | Cm | 14.4 | 28% | 4% | 31% | 2.5% | 2280 | 109% | 3% | 0.040 | ||||||
China | Ch | 1360 | 13% | 15% | 100% | 2.1% | 2915 | 85% | 6% | 0.047 | |||||||
Lao PDR | L | 6.4 | - | - | 70% | - | 2258 | 117% | 2% | 0.055 | |||||||
Myanmar | M | 51.9 | −47% | 70% | 52% | 1.0% | 2374 | 111% | 3% | 0.044 | |||||||
Thailand | T | 66.4 | 40% | 5% | 100% | 4.5% | 2587 | 218% | 12% | 0.097 | |||||||
Vietnam | V | 89.0 | −7% | 30% | 99% | 1.1% | 2754 | 79% | 14% | 0.051 | |||||||
Basins | Irrawaddy (M + Ch, I) | 33.0 | 4% | 0.057 | 17,352 | 1% | 94% | 2% | 1% | 3% | |||||||
Mekong (Cm, Ch, L, M, T, V) | 70.6 | 6% | 0.066 | 6057 | 4% | 79% | 10% | 4% | 6% | ||||||||
Salween (Ch, M, T) | 7.9 | 1% | 0.035 | 13,518 | 1% | 93% | 2% | 0% | 5% |
Data | Description | Data Source |
---|---|---|
Country population | UN estimates of total population by country, year 2010 | [146] |
Basin population | Gridded population data for year 2010, based on HYDE 3.1 and IIASA Population projections | [147] |
Energy imports and access to electricity | Net energy imports (% of energy use); Access to electricity (% of population) for year 2012 | [148] |
Hydroelectricity | Electricity production from hydroelectric sources, by country | [148] |
Water withdrawals and consumption | Gridded data on sectoral water withdrawals and consumption | [149] |
Energy used in agriculture and forestry | FAO data on energy use related to different sectors. | [150] |
Domestic food production & food supply | Dietary energy production by country, year 2005; based on FAOSTAT data. | [151] |
ADER | Average dietary energy requirement in kcal/cap by country, years 2004-2006 | [152] |
Area equipped for irrigation | Gridded data on area equipped for irrigation (AEI); product AEI_HYDE_FINAL_CP. | [153] |
Renewable freshwater resources | Calculations based on average annual surface runoff computed from monthly modelled runoff for years 1950–2000 | [154] |
Appendix B. Multiple “Transboundarities”: Example from the Mekong
References
- What’s the NEXUS? Messages and Policy Papers. Available online: http://www.water-energy-food.org/en/whats_the_nexus/messages_policy_recommendations.html (accessed on 20 April 2016).
- Hoff, H. Understanding the Nexus, Background Paper for the Bonn 2011 Conference. In Proceedings of the Bonn2011 Conference, The Water, Energy and Food Security Nexus: Solutions for the Green Economy, Bonn, Germany, 16–18 November 2011; Stockholm Environment Institute: Stockholm, Sweden, 2011; p. 51. [Google Scholar]
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar] [CrossRef]
- World Economic Forum. Global Risks 2011—Sixth Edition; World Economic Forum: Cologny, Switzerland, 2011. [Google Scholar]
- Atakan, E.; Bellet, L.; Bird, J.; Cramwinckel, J.; Dupont, A.; Fernandez, M.-I.; Marre, F.; Mohtar, R.; Newton, J.; Nguyen-Khoaman, S.; et al. High-Level Panel: Water, Energy & Food Security. In Proceedings of the 6th World Water Forum, Marseille, France, 12–17 March 2012.
- Granit, J.; Fogde, M.; Hoff, H.; Joyce, J.; Karlberg, L.; Kuylenstierna, J.L.; Rosemarin, A. Unpacking the water-energy-food nexus: Tools for assessment and cooperation along a continuum. In Cooperation for A Water Wise World—Partnerships for Sustainable Development; Jägerskog, A., Clausen, T.J., Lexén, K., Holmgren, T., Eds.; Stockholm International Water Institute: Stockholm, Sweden, 2013; pp. 45–50. [Google Scholar]
- United Nations, Economic and Social Commission for Asia and the Pacific (UN ESCAP). Water, Food and Energy Nexus in Asia and the Pacific; ESCAP: Bangkok, Thailand, 2013. [Google Scholar]
- Allouche, J.; Middleton, C.; Gyawali, D. Technical veil, hidden politics: Interrogating the power linkages behind the nexus. Water Altern. 2015, 8, 610–626. [Google Scholar]
- Muller, M. The “nexus” as a step back towards a more coherent water resource management paradigm. Water Altern. 2015, 8, 675–694. [Google Scholar]
- Allan, T.; Keulertz, M.; Woertz, E. The water-food-energy nexus: An introduction to nexus concepts and some conceptual and operational problems. Int. J. Water Resour. Develop. 2015, 31, 301–311. [Google Scholar] [CrossRef]
- Tickner, D. Is the Water Debate Suffering from a Language problem? Available online: http://www.theguardian.com/sustainable-business/water-debate-suffering-language-problem (accessed on 20 April 2016).
- Leck, H.; Conway, D.; Bradshaw, M.; Rees, J. Tracing the water-energy-food nexus: Description, theory and practice. Geogr. Compass 2015, 9, 445–460. [Google Scholar] [CrossRef]
- Hussey, K.; Pittock, J. The Energy-water nexus: Managing the links between energy and water for a sustainable future. Ecol. Soc. 2012, 17, 31. [Google Scholar] [CrossRef]
- Kouangpalath, P.; Meijer, K. Water-energy nexus in Shared River Basins: How hydropower shapes cooperation and coordination. Chang. Adapt. Socio-Ecol. Syst. 2015, 2, 85–87. [Google Scholar] [CrossRef]
- Waughray, D. Water Security: The Water-Food-Energy-Climate Nexus; Island Press: Washington, DC, USA, 2011. [Google Scholar]
- Pittock, J.; Hussey, K.; Dovers, S. Climate, Energy and Water: Managing Trade-Offs, Seizing Opportunities; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar]
- De Strasser, L.; Lipponen, A.; Howells, M.; Stec, S.; Bréthaut, C. A methodology to assess the water energy food ecosystems nexus in transboundary river basins. Water 2016, 8, 59. [Google Scholar] [CrossRef]
- Biggs, E.M.; Bruce, E.; Boruff, B.; Duncan, J.M.A.; Horsley, J.; Pauli, N.; McNeill, K.; Neef, A.; van Ogtrop, F.; Curnow, J.; et al. Sustainable development and the water-energy-food nexus: A perspective on livelihoods. Environ. Sci. Policy 2015, 54, 389–397. [Google Scholar] [CrossRef]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerstrom, R.; Alfstad, T.; Gielen, D.; Rogner, H.; Fischer, G.; van Velthuizen, H.; et al. Integrated analysis of climate change, land-use, energy and water strategies. Nature Clim. Chang. 2013, 3, 621–626. [Google Scholar] [CrossRef]
- Villarroel Walker, R.; Beck, M.B.; Hall, J.W.; Dawson, R.J.; Heidrich, O. The energy-water-food nexus: Strategic analysis of technologies for transforming the urban metabolism. J. Environ. Manag. 2014, 141, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Endo, A.; Burnett, K.; Orencio, P.; Kumazawa, T.; Wada, C.; Ishii, A.; Tsurita, I.; Taniguchi, M. Methods of the water-energy-food nexus. Water 2015, 7, 5806–5830. [Google Scholar] [CrossRef]
- Bach, H.; Bird, J.; Jonch Clausen, T.; Morck Jensen, K.; Baadsgarde Lange, R.; Taylor, R.; Viriyasakultorn, V.; Wolf, A. Transboundary River Basin Management: Addressing Water, Energy and Food Security; Mekong River Commission: Vientiane, Laos, 2012. [Google Scholar]
- Kibaroglu, A.; Gürsoy, S.I. Water-energy-food nexus in a transboundary context: The Euphrates-Tigris river basin as a case study. Water Int. 2015, 40, 824–838. [Google Scholar] [CrossRef]
- Scott McLachlan, N. Implementing the water-energy-food nexus at various scales: Trans-boundary challenges and solutions. Chang. Adapt. Socio-Ecol. Syst. 2015, 2, 94–96. [Google Scholar] [CrossRef]
- Lawford, R.; Bogardi, J.; Marx, S.; Jain, S.; Wostl, C.P.; Knüppe, K.; Ringler, C.; Lansigan, F.; Meza, F. Basin perspectives on the water-energy-food security nexus. Curr. Opin. Environ. Sustain. 2013, 5, 607–616. [Google Scholar] [CrossRef]
- Soliev, I.; Wegerich, K.; Kazbekov, J. The costs of benefit sharing: Historical and institutional analysis of shared water development in the Ferghana Valley, the Syr Darya Basin. Water 2015, 7, 2728–2752. [Google Scholar] [CrossRef]
- Guillaume, J.; Kummu, M.; Eisner, S.; Varis, O. Transferable principles for managing the nexus: Lessons from historical global water modelling of Central Asia. Water 2015, 7, 4200–4231. [Google Scholar] [CrossRef]
- Wegerich, K.; van Rooijen, D.; Soliev, I.; Mukhamedova, N. Water security in the Syr Darya Basin. Water 2015, 7, 4657–4684. [Google Scholar] [CrossRef]
- Jalilov, S.-M.; Varis, O.; Keskinen, M. Sharing benefits in transboundary rivers: An experimental case study of Central Asian water-energy-agriculture nexus. Water 2015, 7, 4778–4805. [Google Scholar] [CrossRef]
- Keskinen, M.; Someth, P.; Salmivaara, A.; Kummu, M. Water-energy-food nexus in a transboundary river basin: The case of Tonle Sap Lake, Mekong River Basin. Water 2015, 7, 5416–5436. [Google Scholar] [CrossRef]
- Belinskij, A. Water-energy-food nexus within the framework of international water law. Water 2015, 7, 5396–5415. [Google Scholar] [CrossRef]
- Matthews, N.; Motta, S. Chinese state-owned enterprise investment in Mekong hydropower: Political and economic drivers and their implications across the water, energy, food nexus. Water 2015, 7, 6269–6284. [Google Scholar] [CrossRef]
- Pittock, J.; Dumaresq, D.; Bassi, A. Modelling the hydropower-food nexus in large river basin. Water 2016, in press. [Google Scholar]
- Kummu, M.; Gerten, D.; Heinke, J.; Konzmann, M.; Varis, O. Climate-driven interannual variability of water scarcity in food production potential: A global analysis. Hydrol. Earth Syst. Sci. 2014, 18, 447–461. [Google Scholar] [CrossRef] [Green Version]
- Porkka, M.; Gerten, D.; Schaphoff, S.; Siebert, S.; Kummu, M. Causes and trends of water scarcity in food production. Environ. Res. Lett. 2016, 11, 015001. [Google Scholar] [CrossRef]
- Olsson, G. Water, energy and food interactions—Challenges and opportunities. Front. Environ. Sci. Eng. 2013, 7, 787–793. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Yoshihide, W.; van Beek, L.P.H.; Niko, W.; Marc, F.P.B. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett. 2013, 8, 034036. [Google Scholar]
- Varis, O. Water demands for bioenergy production. Int. J. Water Resour. Develop. 2007, 23, 519–535. [Google Scholar] [CrossRef]
- Harris, G. Energy, Water and Food-Scenarios on the Future of Sustainable Development. 2002. Available online: http://ericbestonline.com/bestpartners/pdfs/partners/gerald_harris/g_harris_energy_water_and_food_scenarios.pdf (accessed on 20 April 2016).
- Hellegers, P.; Zilberman, D.; Steduto, P.; McCornick, P. Interactions between water, energy, food and environment: Evolving perspectives and policy issues. Water Policy 2008, 10, 1–10. [Google Scholar] [CrossRef]
- Mushtaq, S.; Maraseni, T.N.; Maroulis, J.; Hafeez, M. Energy and water tradeoffs in enhancing food security: A selective international assessment. Energy Policy 2009, 37, 3635–3644. [Google Scholar] [CrossRef] [Green Version]
- European Union. Confronting Scarcity: Managing Water, Energy and Land for Inclusive and Sustainable Growth; European Report on Development 2011–2012; European Commission, International Cooperation and Development (DG DEVCO): Brussels, Belgium, 2012. [Google Scholar]
- Smajgl, A.; Ward, J. The Water-Food-Energy Nexus in the Mekong Region: Assessing Development Strategies Considering Cross-Sectoral and Transboundary Impacts; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). An Innovative Accounting Framework for the Food-Energy-Water Nexus—Application of the MuSIASEM Approach to Three Case Studies; FAO: Rome, Italy, 2013. [Google Scholar]
- International Union for Conservation of Nature (IUCN) and International Water Association (IWA). Nexus Dialogue on Water Infrastructure Solutions: Building Partnerships for Innovation in Water, Energy and Food Security; IUCN & IWA.: Gland, Swizerland; London, UK, 2012. [Google Scholar]
- Star, S.L.; Griesemer, J.R. Institutional ecology, “translations” and boundary objects: Amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology. Soc. Stud. Sci. 1989, 19, 387–420. [Google Scholar] [CrossRef]
- Mollinga, P. For a Political Sociology of Water Resources Management; ZEF Working Paper Series 31; ZEF Center for Development Research, Universität Bonn: Bonn, Germany, 2008. [Google Scholar]
- Benson, D.; Gain, A.K.; Rouillard, J.J. Water Governance in a Comparative Perspective: From IWRM to a “Nexus” Approach? Water Altern. 2015, 8, 756–773. [Google Scholar]
- Juvonen, H.-M. Nexus for What? Challenges and Opportunities in Applying the Water-Energy-Food Nexus. Master’s Thesis, Aalto University School of Engineering, Espoo, Finland, 2015. [Google Scholar]
- Foran, T. Node and Regime: Interdisciplinary Analysis of Water-Energy-Food Nexus in the Mekong Region. Water Altern. 2015, 8, 655–674. [Google Scholar]
- Gasper, D.; Apthorpe, R. Introduction: Discourse Analysis and Policy Discourse. In Arguing Development Policy: Frames And Discourses; Apthorpe, R., Gasper, D., Eds.; Frank Cass and Company Limited: London, UK, 1996. [Google Scholar]
- Keskinen, M. Bringing back the Common Sense? Integrated Approaches in Water Management: Lessons Learnt from the Mekong. Ph.D. Thesis, Aalto University, Espoo, Helsinki, Finland, 2010. [Google Scholar]
- Global Water Partnership (GWP). Integrated Water Resources Management; Technical Advisory Committee Background Paper #6; GWP: Stockholm, Sweden, 2000. [Google Scholar]
- Max-Neef, M.A. Foundations of transdisciplinarity. Ecol. Econ. 2005, 53, 5–16. [Google Scholar] [CrossRef]
- Varis, O.; Kummu, M.; Salmivaara, A. Ten major rivers in monsoon Asia-Pacific: An assessment of vulnerability. Appl. Geogr. 2012, 32, 441–454. [Google Scholar] [CrossRef]
- Varis, O.; Kummu, M. The Major Central Asian River Basins: An Assessment of Vulnerability. Int. J. Water Resour. Develop. 2012, 28, 433–452. [Google Scholar] [CrossRef]
- Keskinen, M. Water resources development and impact assessment in the Mekong Basin: Which way to go? Ambio 2008, 37, 193–198. [Google Scholar] [CrossRef]
- Keskinen, M.; Kummu, M.; Kakonen, M.; Varis, O. Mekong at the crossroads: Next step for impact assessment of large dams. Ambio 2012, 41, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Salmivaara, A.; Kummu, M.; Keskinen, M.; Varis, O. Using Global Datasets to Create Environmental Profiles for Data-Poor Regions: A Case from the Irrawaddy and Salween River Basins. Environ. Manag. 2013, 51, 897–911. [Google Scholar] [CrossRef] [PubMed]
- Kattelus, M.; Kummu, M.; Keskinen, M.; Salmivaara, A.; Varis, O. China’s southbound transboundary river basins: A case of asymmetry. Water Int. 2014, 40, 113–138. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Varis, O. Integrated water management of the Brahmaputra basin: Perspectives and hope for regional development. Nat. Resour. Forum 2009, 33, 60–75. [Google Scholar] [CrossRef]
- Varis, O.; Rahaman, M.M.; Kajander, T. Fully connected Bayesian belief networks: A modeling procedure with a case study of the Ganges river basin. Integr. Environ. Assess. Manag. 2012, 8, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Kattelus, M.; Rahaman, M.M.; Varis, O. Myanmar under reform: Emerging pressures on water, energy and food security. Nat. Resour. Forum 2014, 38, 85–98. [Google Scholar] [CrossRef]
- Keskinen, M.; Chinvanno, S.; Kummu, M.; Nuorteva, P.; Snidvongs, A.; Varis, O.; Västilä, K. Climate change and water resources in the Lower Mekong River Basin: Putting adaptation into the context. J. Water Clim. Chang. 2010, 1, 103–117. [Google Scholar] [CrossRef]
- Mehtonen, K.; Keskinen, M.; Varis, O. The Mekong: IWRM and institutions. In Managemeng of Transboundary Rivers and Lakes; Varis, O., Tortajada, C., Biswas, A.K., Eds.; Springer-Verlag Berlin: Berlin, Germany, 2008. [Google Scholar]
- Wegerich, K. Hydro-hegemony in the Amu Darya basin. Water Policy 2008, 10, 71–88. [Google Scholar] [CrossRef]
- Abdullaev, I.; Rakhmatullaev, S. Transformation of water management in Central Asia: From State-centric, hydraulic mission to socio-political control. Environ. Earth Sci. 2013, 73, 849–861. [Google Scholar] [CrossRef]
- Stucki, V.; Sojamo, S. Nouns and Numbers of the Water–Energy–Security Nexus in Central Asia. Int. J. Water Resour. Develop. 2012, 28, 399–418. [Google Scholar] [CrossRef]
- Granit, J.; Jägerskog, A.; Lindström, A.; Björklund, G.; Bullock, A.; Löfgren, R.; de Gooijer, G.; Pettigrew, S. Regional Options for Addressing the Water, Energy and Food Nexus in Central Asia and the Aral Sea Basin. Int. J. Water Resour. Develop. 2012, 28, 419–432. [Google Scholar] [CrossRef]
- Allouche, J. The Governance of Central Asian Waters: National Interests versus Regional Cooperation. Disarm. Forum 2007, 4, 45–56. [Google Scholar]
- Varis, O.; Rahaman, M.M. The Aral Sea keeps drying out but is Central Asia short of water? In Central Asian Waters: Social, Economic, Environmental and Governance Puzzle; Rahaman, M.M., Varis, O., Eds.; Water & Development Publications—Helsinki University of Technology: Helsinki, Finland, 2008; pp. 3–9. [Google Scholar]
- Abdolvand, B.; Mez, L.; Winter, K.; Mirsaeedi-Gloßner, S.; Schütt, B.; Rost, K.T.; Bar, J. The dimension of water in Central Asia: Security concerns and the long road of capacity building. Environ. Earth Sci. 2014, 73, 897–912. [Google Scholar] [CrossRef]
- Cook, S.; Fisher, M.; Tiemann, T.; Vidal, A. Water, food and poverty: Global- and basin-scale analysis. Water Int. 2011, 36, 1–16. [Google Scholar] [CrossRef]
- Sharma, B.; Amarasinghe, U.; Xueliang, C.; de Condappa, D.; Shah, T.; Mukherji, A.; Bharati, L.; Ambili, G.; Qureshi, A.; Pant, D.; et al. The Indus and the Ganges: River basins under extreme pressure. Water Int. 2010, 35, 493–521. [Google Scholar] [CrossRef]
- Rasul, G. Food, water, and energy security in South Asia: A nexus perspective from the Hindu Kush Himalayan region. Environ. Sci. Policy 2014, 39, 35–48. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Shahid, S.; Behrawan, H. Drought risk assessment in the western part of Bangladesh. Nat. Hazard. 2008, 46, 391–413. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, M.M. Hydropower ambitions of South Asian nations and China: Ganges and Brahmaputra Rivers basins. Int. J. Sustain. Soc. 2012, 4, 131–157. [Google Scholar] [CrossRef]
- Dharmadikhary, S. Mountains of Concrete: Dam Building in the Himalayas; IDEAS: Berkeley, CA, USA, 2008. [Google Scholar]
- Grumbine, R.E.; Pandit, M.K. Threats from India’s Himalaya Dams. Science 2013, 339, 36–37. [Google Scholar] [CrossRef] [PubMed]
- International Energy Agency (IEA). IEA Statistics; IEA: Paris, France, 2016. [Google Scholar]
- Lal, R. Soil degradation and environment quality in South Asia. Int. J. Ecol. Environ. Sci. 2007, 33, 91–103. [Google Scholar]
- Yang, Y.C.E.; Brown, C.; Yu, W.; Wescoat, J.; Ringler, C. Water governance and adaptation to climate change in the Indus River Basin. J. Hydrol. 2014, 519, 2527–2537. [Google Scholar] [CrossRef]
- Condon, M.; Kriens, D.; Lohani, A.; Sattar, E. Challenge and response in the Indus Basin. Water Policy 2014, 16, 58–86. [Google Scholar] [CrossRef]
- Rahaman, M.M. Principles of Transboundary Water Resources Management and Ganges Treaties: An Analysis. Int. J. Water Resour. D 2009, 25, 159–173. [Google Scholar] [CrossRef]
- Rahaman, M.M. Integrated Ganges basin management: Conflict and hope for regional development. Water Policy 2009, 11, 168–190. [Google Scholar] [CrossRef]
- Uprety, K.; Salman, S.M.A. Legal aspects of sharing and management of transboundary waters in South Asia: Preventing conflicts and promoting cooperation. Hydrol. Sci. J. 2011, 56, 641–661. [Google Scholar] [CrossRef]
- Urban, F.; Nordensvärd, J.; Khatri, D.; Wang, Y. An analysis of China’s investment in the hydropower sector in the Greater Mekong Sub-Region. Environ. Dev. Sustain. 2013, 15, 301–324. [Google Scholar] [CrossRef]
- Grumbine, R.E.; Xu, J. China Shakes the World—and Then What? Conserv. Biol. 2009, 23, 513–515. [Google Scholar] [PubMed]
- Grumbine, R.E.; Xu, J. Mekong hydropower development. Science 2011, 332, 178–179. [Google Scholar] [CrossRef] [PubMed]
- Salmivaara, A.; Kummu, M.; Varis, O.; Keskinen, M. Socio-economic changes in Cambodia's unique Tonle Sap Lake area: A spatial approach. Appl. Spat. Anal. Policy 2015. [Google Scholar] [CrossRef]
- Hortle, K.G. Consumption and the Yield of Fish and Other Aquatic Animals from the Lower Mekong Basin; MRC Technical Paper #16; Mekong River Commission: Vientiane, Laos, 2007; p. 87. [Google Scholar]
- Winemiller, K.O.; McIntyre, P.B.; Castello, L.; Fluet-Chouinard, E.; Giarrizzo, T.; Nam, S.; Baird, I.G.; Darwall, W.; Lujan, N.K.; Harrison, I.; et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 2016, 351, 128–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baran, E.; Myschowoda, C. Dams and fisheries in the Mekong Basin. Aquat. Ecosyst. Health Manag. 2009, 12, 227–234. [Google Scholar] [CrossRef]
- Mekong River Commission (MRC). State of the Basin Report 2010; MRC: Vientiane, Laos, 2010. [Google Scholar]
- Hennig, T.; Wang, W.; Feng, Y.; Ou, X.; He, D. Review of Yunnan's hydropower development. Comparing small and large hydropower projects regarding their environmental implications and socio-economic consequences. Renew. Sustain. Energy Rev. 2013, 27, 585–595. [Google Scholar] [CrossRef]
- Mekong River Commission (MRC). Assessment of Basin-wide Development Scenarios: Main Report; MRC: Vientiane, Laos, 2011; p. 254. [Google Scholar]
- Mekong River Commission Secretariat. Hydropower Database; Mekong River Commission Secretariat: Vientiane, Laos, 2015. [Google Scholar]
- CGIAR Research Program on Water, Land and Ecosystems. Mekong Dam Database; CGIAR Research Program on Water, Land and Ecosystems: Vientiane, Laos, 2015. [Google Scholar]
- Chang, X.; Liu, X.; Zhou, W. Hydropower in China at present and its further development. Energy 2010, 35, 4400–4406. [Google Scholar] [CrossRef]
- Chen, W.; Li, H.; Wu, Z. Western China energy development and west to east energy transfer: Application of the Western China Sustainable Energy Development Model. Energy Policy 2010, 38, 7106–7120. [Google Scholar] [CrossRef]
- Matthews, N. Water Grabbing in the Mekong Basin—An Analysis of the Winners and Losers of Thailand's Hydropower Development in Lao PDR. Water Altern. 2012, 5, 392–411. [Google Scholar]
- Merme, V.; Ahlers, R.; Gupta, J. Private equity, public affair: Hydropower financing in the Mekong Basin. Glob. Environ. Chang. 2014, 24, 20–29. [Google Scholar] [CrossRef]
- Räsänen, T.A.; Joffre, O.; Someth, P.; Cong, T.T.; Keskinen, M.; Kummu, M. Model-based assessment of water, food and energy trade-offs in a cascade of multi-purpose reservoirs: Case study from transboundary Sesan River. J. Water Resour. Plan. Manag. 2015, 141, 05014007. [Google Scholar] [CrossRef]
- Arias, M.E.; Cochrane, T.A.; Kummu, M.; Lauri, H.; Koponen, J.; Holtgrieve, G.; Piman, T. Impacts of hydropower and climate change on drivers of ecological productivity of Southeast Asia’s most important wetland. Ecol. Model. 2014, 272, 252–263. [Google Scholar] [CrossRef]
- Dugan, P.; Barlow, C.; Agostinho, A. Fish migration, dams, and loss of ecosystem services in the Mekong Basin. Ambio 2010, 39, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Lauri, H.; Moel, H.D.; Ward, P.; Räsänen, T.; Keskinen, M.; Kummu, M. Future changes in Mekong River hydrology: Impact of climate change and reservoir operation on discharge. Hydrol. Earth Syst. Sci. 2012, 16, 4603–4619. [Google Scholar] [CrossRef]
- Kummu, M.; Lu, X.; Wang, J.; Varis, O. Basin-wide sediment trapping efficiency of emerging reservoirs along the Mekong. Geomorphology 2010, 119, 181–197. [Google Scholar] [CrossRef]
- Maavara, T.; Parsons, C.T.; Ridenour, C.; Stojanovic, S.; Dürr, H.H.; Powley, H.R.; van Cappellen, P. Global phosphorus retention by river damming. Proc. Natl. Acad. Sci. USA 2015, 112, 15603–15608. [Google Scholar] [CrossRef] [PubMed]
- Ziv, G.; Baran, E.; Nam, S.; Rodriquez-Iturbe, I.; Levin, S. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. PNAS 2012, 109, 5609–5614. [Google Scholar] [CrossRef] [PubMed]
- Hortle, K.G. Fisheries of the Mekong River Basin. In The Mekong: Biophysical Environment of a Transboundary River; Campbell, I.C., Ed.; Elsevier: New York, NY, USA, 2009. [Google Scholar]
- Asian Development Bank. Assessment of the Greater Mekong Subregion Energy Sector Development: Progress, Prospects, and Regional Investment Priorities; Asian Development Bank: Mandaluyong City, Philippines, 2013. [Google Scholar]
- Phalan, B. The social and environmental impacts of biofuels in Asia: An overview. Appl. Energy 2009, 86 (Suppl. 1), S21–S29. [Google Scholar] [CrossRef]
- Sasaki, N.; Knorr, W.; Foster, D.R.; Etoh, H.; Ninomiya, H.; Chay, S.; Kim, S.; Sun, S. Woody biomass and bioenergy potentials in Southeast Asia between 1990 and 2020. Appl. Energy 2009, 86 (Suppl. 1), S140–S150. [Google Scholar] [CrossRef]
- Bach, H.; Glennie, P.; Taylor, R.; Clausen, T.J.; Holzwarth, F.; Jensen, K.M.; Meija, A.; Schmeier, S. Cooperation for Water, Energy and Food Security in Transboundary Basins under Changing Climate; Mekong River Commission: Vientiane, Laos, 2014. [Google Scholar]
- Dore, J.; Lazarus, K. Demarginalizing the Mekong River Commission. In Contested Waterscapes in the Mekong Region: Hydropower, Livelihoods and Governance; Molle, F., Foran, T., Käkönen, M., Eds.; Earthscan: London, UK, 2009; pp. 357–382. [Google Scholar]
- Grumbine, R.E.; Dore, J.; Xu, J. Mekong hydropower: Drivers of change and governance challenges. Front. Ecol. Environ. 2012, 10, 91–98. [Google Scholar] [CrossRef]
- Orr, S.; Pittock, J.; Chapagain, A.; Dumaresq, D. Dams on the Mekong River: Lost fish protien and the implications for land and water resources. Glob. Environ. Chang. 2012, 22, 925–932. [Google Scholar] [CrossRef]
- Kummu, M. Spatio-Temporal Scales of Hydrological Impact Assessment in Large River Basins: The Mekong Case. Ph.D. Thesis, Helsinki University of Technology, Helsinki, Finland, 2008. [Google Scholar]
- Dore, J.; Lebel, L. Deliberation and scale in Mekong Region water governance. Environ. Manag. 2010, 46, 60–80. [Google Scholar] [CrossRef] [PubMed]
- Cumming, G.S.; Cumming, D.H.M.; Redman, C.L. Scale Mismatches in Social-Ecological Systems: Causes, Consequences, and Solutions. Ecol. Soc. 2006, 11, 14. [Google Scholar]
- Blatter, J.; Ingram, H. States, Markets and Beyond: Governance of Transboundary Water Resources. Nat. Resour. J. 2000, 40, 439–473. [Google Scholar]
- Dore, J. An agenda for deliberative water governance arenas in the Mekong. Water Policy 2014, 16, 194–214. [Google Scholar] [CrossRef]
- Mekong River Commission (MRC). Agreement on the Cooperation for the Sustainable Development of the Mekong River Basin; MRC: Chiang Rai, Thailand, 1995. [Google Scholar]
- Warner, J. Multi-Stakeholder Platforms for Integrated Water Management; Ashgate: Aldershot, UK, 2007. [Google Scholar]
- Dore, J. Multi-stakeholder platforms (MSPs): Unfulfilled potential. In Democratizing Water Governance in the Mekong Region; Lebel, L., Dore, J., Daniel, R., Yang, S.K., Eds.; Mekong Press: Chiang Mai, Thailand, 2007; pp. 197–226. [Google Scholar]
- Mohtar, R.H.; Daher, B. Water-Energy-Food Nexus Framework for facilitating multi-stakeholderdialogue. Water Int. 2016. [Google Scholar] [CrossRef]
- Timmerman, J.G.; Langaas, S. Water information: What is it good for? The use of information in transboundary water management. Reg. Environ. Chang. 2005, 5, 177–187. [Google Scholar] [CrossRef]
- UN-Water. Transboundary Waters: Sharing Benefits, Sharing Responsibilities. 2008. Available online: http://www.unwater.org/downloads/UNW_TRANSBOUNDARY.pdf (accessed on 20 April 2016).
- Gerlak, A.K.; Lautze, J.; Giodarno, M. Greater Exchange, Greater Ambiguity: Water Resources Data and Information Exchange in Transboundary Water Treaties; Global Water Forum (GWF): Canberra, Australia, 2013. [Google Scholar]
- Sadoff, C.; Grey, D. A cooperation on international rivers: A continuum for securing and sharing benefits. Water Int. 2005, 30, 1–7. [Google Scholar] [CrossRef]
- Mirumachi, N. Transboundary Water Politics in the Developing World; Routledge: London, UK, 2015. [Google Scholar]
- Middleton, C.; Allouche, J.; Gyawali, D.; Allen, S. The Rise and Implications of the Water-Energy-Food Nexus in Southeast Asia through and Environmental Justice Lens. Water Altern. 2015, 8, 627–654. [Google Scholar]
- Flammini, A.; Puri, M.; Pluschke, L.; Dubois, O. Walking the Nexus Talk: Assessing the Water-Energy-Food Nexus in the context of the Sustainable Energy for All Initiative; Food and Agriculture Organisation of the United Nations (FAO): Rome, Italy, 2014. [Google Scholar]
- Byers Edward, A. Tools for tackling the water-energy-food nexus. Chang. Adapt. Socio-Ecol. Syst. 2015, 2, 109–111. [Google Scholar]
- National Science Foundation. Innovations at the Nexus of Food, Energy and Water Systems (INFEWS). Available online: http://www.nsf.gov/pubs/2016/nsf16524/nsf16524.htm (accessed on 31 March 2016).
- European Commission. Horizon 2020 Topic: Integrated approaches to food security, low-carbon energy, sustainable water management and climate change mitigation. Available online: https://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/240-water-2b-2015.html (accessed on 31 March 2016).
- The Nexus Network. Funding available. Available online: http://www.thenexusnetwork.org/funding-available/ (accessed on 31 March 2016).
- Engineering and Physical Sciences Research Council. Sandpit: Water Energy Food Nexus. Available online: http://www.epsrc.ac.uk/funding/calls/sandpitwaterenergyfoodnexus/ (accessed on 31 March 2016).
- MRC. Organisational structure. Available online: http://www.mrcmekong.org/about-mrc/organisational-structure/ (accessed on 26 January 2016).
- Sadoff, C.; Grey, D. Beyond the river: The benefits of cooperation on international rivers. Water Policy 2002, 4, 389–403. [Google Scholar] [CrossRef]
- WCED. Our Common Future; Report of the World Commission on Environment and Development; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Hussey, K.; Pittock, J.; Dovers, S. Justifying, extending and applying “nexus” thinking in the quest for sustainable development. In Climate, Energy and Water: Managing Trade-Offs, Seizing Opportunities; Pittock, J., Hussey, K., Dovers, S., Eds.; Cambridge University Press: New York, NY, USA, 2015; pp. 1–5. [Google Scholar]
- UN. The 2012 Revision of World Population Prospects. Population Division of the Department of Economic and Social Affairs of the United Nations (UN) Secretariat: New York, NY, USA, 2013. [Google Scholar]
- Klein Goldewijk, K.; Beusen, A.; Janssen, P. Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. The Holocene 2010, 20, 565–573. [Google Scholar] [CrossRef]
- World Development Indicators, The World Bank. Available online: http://data.worldbank.org/indicator (accessed on 21 March 2016).
- WATCH. EU WATCH: Water and Global Change. Available online: http://www.eu-watch.org (accessed on 18 July 2011).
- FAO. FAOSTAT: FAO Database for Food and Agriculture. Food and Agriculture Organisation of the United Nations (FAO), Rome. Available online: http://faostat3.fao.org/home/E (accessed on 21 March 2016).
- Porkka, M.; Kummu, M.; Siebert, S.; Varis, O. From Food Insufficiency towards Trade Dependency: A Historical Analysis of Global Food Availability. PLoS ONE 2013, 8, e82714. [Google Scholar] [CrossRef] [PubMed]
- FAO. Food security indicators, February 09, 2016 revision. Food and agriculture Organization of the United Nations (FAO), Rome. Available online: http://www. fao.org/economic/ess/ess-fs/ess-fadata/en/ (accessed on 21 March 2016).
- Siebert, S.; Kummu, M.; Porkka, M.; Döll, P.; Ramankutty, N.; Scanlon, B.R. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 2015, 19, 1521–1545. [Google Scholar] [CrossRef]
- GWSP Digital Water Atlas. Map 38: Mean annual surface runoff 1950–2000, v. 1.0; Center for Development Research, University of Bonn: Bonn, Germany, 2008. [Google Scholar]
- Mekong River Commission (MRC). Map on Fish Migration Patterns; MRC: Vientiane, Laos, 2010. [Google Scholar]
- Asian Development Bank (ADB). Overview Map of GMS Crossborder Power Transmission. In Greater Mekong Subregion Atlas of the Environment, 2nd ed.; ADB: Manila, Philippines, 2012. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Country Profiles; FAO: Rome, Italt, 2015. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keskinen, M.; Guillaume, J.H.A.; Kattelus, M.; Porkka, M.; Räsänen, T.A.; Varis, O. The Water-Energy-Food Nexus and the Transboundary Context: Insights from Large Asian Rivers. Water 2016, 8, 193. https://doi.org/10.3390/w8050193
Keskinen M, Guillaume JHA, Kattelus M, Porkka M, Räsänen TA, Varis O. The Water-Energy-Food Nexus and the Transboundary Context: Insights from Large Asian Rivers. Water. 2016; 8(5):193. https://doi.org/10.3390/w8050193
Chicago/Turabian StyleKeskinen, Marko, Joseph H. A. Guillaume, Mirja Kattelus, Miina Porkka, Timo A. Räsänen, and Olli Varis. 2016. "The Water-Energy-Food Nexus and the Transboundary Context: Insights from Large Asian Rivers" Water 8, no. 5: 193. https://doi.org/10.3390/w8050193
APA StyleKeskinen, M., Guillaume, J. H. A., Kattelus, M., Porkka, M., Räsänen, T. A., & Varis, O. (2016). The Water-Energy-Food Nexus and the Transboundary Context: Insights from Large Asian Rivers. Water, 8(5), 193. https://doi.org/10.3390/w8050193