Regional Quasi-Three-Dimensional Unsaturated-Saturated Water Flow Model Based on a Vertical-Horizontal Splitting Concept
Abstract
:1. Introduction
2. Mathematical and Numerical Method
2.1. Discretization of the Aquifer
2.2. The Governing Equations
2.3. Depth-Averaged Water Flow Equation
2.4. The Horizontal Plane of Average Head Gradient in the Triangular Prism Element
2.5. The Discretization of the Lateral flow Equation
2.6. The Discretization of the Water Mass Change Item
2.7. The Element Matrices
2.8. Coupling Horizontal Flow with the Vertical Fluxes
2.9. Illustrative Example to Elaborate the Coupling Method of Horizontal Layers
3. Boundary Conditions and Source/Sink Items
- (1)
- First-kind boundary condition:
- (2)
- Second-kind boundary condition:
- (3)
- Pumping well:
- (4)
- Root uptakeThe sink term of root uptake, S, is calculated by [28] as
- (5)
- Atmosphere boundary conditions
4. The Flow Chart of the Model
5. Case Study
5.1. Model Code Verification Cases
5.1.1. Case 1: 1-D Infiltration Flow
5.1.2. Case 2: 2-D Water Flow
5.1.3. Case 3: 3-D Well Flow
5.2. Model Application to a Regional Scale Irrigation District
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kinzelbach, W.; Barer, P.; Siegfried, T.; Brunner, P. Sustainable groundwater management-Problems and scientific tools. Episodes 2003, 26, 279–284. [Google Scholar]
- Petheram, C.; Dawes, W.; Grayson, R.; Bradford, A.; Walker, G. A sub-grid representation of groundwater discharge using a one-dimensional groundwater model. Hydrol. Process. 2003, 17, 2279–2295. [Google Scholar] [CrossRef]
- Zhu, Y.; Shi, L.S.; Yang, J.Z.; Wu, J.W.; Mao, D.Q. Coupling methodology and application of a fully integrated model for contaminant transport in the subsurface system. J. Hydrol. 2013, 501, 56–72. [Google Scholar] [CrossRef]
- Brunner, P. Water and Salt Management in the Yanqi Basin, China; Eidgenössische Technische Hochschule ETH: Züric, Switzerland, 2005. [Google Scholar]
- Pikul, M.F.; Street, R.L.; Remson, I. A numerical model based on coupled one-dimensional Richards and Boussinesq equations. Water Resour. Res. 1974, 10, 295–302. [Google Scholar] [CrossRef]
- Van Dam, J.C. Field-Scale Water Flow and Solute Transport. SWAP Model Concepts, Parameter Estimation, and Case Studies. Ph.D. Dissertation, Wageningen University, Wageningen, The Netherlands, 2000; p. 167. [Google Scholar]
- Niswonger, R.G.; Prudic, D.E.; Regan, R.S. Documentation of the Unsaturated-Zone Flow (UZF1) Package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005; Techniques and Methods 6-A19; U.S. Geological Survey: Reston, VA, USA, 2006; p. 62.
- Twarakavi, N.K.C.; Šimůnek, J.; Sophia, S. Evaluating interactions between groundwater and vadose zone using the HYDRUS-based flow package for MODFLOW. Vadose Zone J. 2008, 7, 757–768. [Google Scholar] [CrossRef]
- McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Groundwater Flow Model; Techniques of Water-Resources Investigations of the United States Geological Survey: Reston, VA, USA, 1988.
- Diersch, H.J.G.; Kolditz, O. Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems. Adv. Water Resour. 1998, 21, 401–425. [Google Scholar] [CrossRef]
- Spitz, F.J.; Nicholson, R.S.; Daryll, A.P. A nested rediscretization method to improve pathline resolution by eliminating weak sinks representing wells. Ground Water 2001, 39, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Mehl, S.; Hill, M.C. Three-dimensional local grid refinement method for block-centered finite-difference groundwater models using iteratively coupled shared nodes: A new method of interpolation and analysis of errors. Adv. Water Resour. 2004, 27, 899–912. [Google Scholar] [CrossRef]
- Di Giammarco, P.; Todini, E.; Lamberti, P. A Conservative finite elements approach to overland flow: The control volume finite element formulation. J. Hydrol. 1996, 175, 267–291. [Google Scholar] [CrossRef]
- Zhu, Y.; Shi, L.S.; Lin, L.; Yang, J.Z.; Ye, M. A Fully Coupled Numerical Modeling for Regional Unsaturated-Saturated Water Flow. J. Hydrol. 2012, 475, 188–203. [Google Scholar] [CrossRef]
- Sophocleus, M.; Perkins, S.P. Methodology and application of combined watershed and groundwater models in Kansas. J. Hydrol. 2000, 236, 185–201. [Google Scholar] [CrossRef]
- SWIM—Soil and Water Integrated Model. Available online: https://www.pik-potsdam.de/research/climate-impacts-and-vulnerabilities/models/swim (accessed on 20 April 2016).
- Facchi, A.; Ortuani, B.; Maggi, D.; Gandolfi, C. Coupled SVAT–groundwater model for water resources simulation in irrigated alluvial plains. Environ. Model. Softw. 2004, 19, 1053–1063. [Google Scholar] [CrossRef]
- Yakirevich, A.; Weisbrod, N.; Kuznetsov, M.; Villarreyes, C.A.R.; Benavent, I.; Chavez, A.M.; Ferrando, D. Modeling the impact of solute recycling on groundwater salinization under irrigated lands: A study of the Alto Piura aquifer, Peru. J. Hydrol. 2013, 482, 25–39. [Google Scholar] [CrossRef]
- Lardner, R.; Cekirge, H. A new algorithm for three-dimensional tidal and storm surge computations. Appl. Math. Model. 1988, 12, 471–481. [Google Scholar] [CrossRef]
- Tsai, T.L.; Yang, J.C.; Wu, C.H. Layered and regional land subsidence model. J. Chin. Inst. Civ. Hydraul. Eng. 1998, 10, 617–626. [Google Scholar]
- Drønen, N.; Deiggard, R. Quasi-three-dimensional modelling of the morphology of longshore bars. Coast. Eng. 2007, 54, 197–215. [Google Scholar] [CrossRef]
- Fernando, P.T.; Pan, S. Modelling wave of hydrodynamics around a scheme of detached leaky breakwaters. In Proceeding of the 29th International Conference on Coastal Engineering, World Scientific, Lisbon, Portugal, 19–24 September 2004; pp. 830–841.
- Li, M.; Fernando, P.T.; Pan, S.Q.; O’Connor, B.A.; Chen, D.Y. Development of a quasi-3d numerical model for sediment transport prediction in the coastal region. J. Hydro-Environ. Res. 2007, 1, 143–156. [Google Scholar] [CrossRef]
- Lin, L.; Yang, J.Z.; Zhang, B.; Zhu, Y. A simplified numerical model of 3-D groundwater and solute transport at large scale area. J. Hydrodyn. 2010, 22, 319–328. [Google Scholar] [CrossRef]
- Paulus, R.; Dewals, B.J.; Erpicum, S.; Pirotton, M.; Archambeau, P. Innovative modelling of 3D unsaturated flow in porous media by coupling independent models for vertical and lateral flows. J. Comput. Appl. Math. 2013, 246, 38–51. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Zhang, W. Unsteady Groundwater Flow Calculation and Groundwater Resources Evaluation; Science Press: Beijing, China, 1983. [Google Scholar]
- Feddes, R.A.; Kowalik, P.J.; Zaradny, H. Simulation of Field Water Use and Crop Yield; John Wiley & Sons: New York, NY, USA, 1978. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements, 24, 2nd Edition; FAO Irrigation and Drainage Paper: Rome, Italy, 1977. [Google Scholar]
- Mendoza, C.A.; Therrien, R.; Sudicky, E.A. ORTHOFEM User’s Guide Version 1.02. Waterloo Center for Groundwater Research; University of Waterloo: Waterloo, ON, Canada, 1991. [Google Scholar]
- Vogel, T.; Huang, K.; Zhang, R. The Hydrus Code for Simulating One-Dimensional Water Flow, Solute Transport, and Heat Movement; U.S. Salinity Laboratory Agriculture Research Service, U.S. Department of Agriculture Riverside: California, CA, USA, 1996.
- Šimůnek, J.; Vogel, T.; van Genuchten, M.T. The SWMS_2D Code for Simulating Water Flow and Solute Transport in Two-Dimensional Variably Saturated Media, Version 1.1, Research Report No. 126; U.S. Salinity Laboratory, USDA, ARS: Riverside, CA, USA, 1992.
- Xu, X.; Huang, G.H.; Zhan, H.B.; Qu, Z.Y.; Huang, Q.Z. Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas. J. Hydrol. 2012, 412–413, 170–181. [Google Scholar] [CrossRef]
- Li, H.T.; Brunner, P.; Kinzelbach, W.; Li, W.P.; Dong, X.G. Calibration of a groundwater model using pattern information from remote sensing data. J. Hydrol. 2009, 377, 120–130. [Google Scholar] [CrossRef]
- Li, H.T.; Kinzelbach, W.; Brunner, P.; Li, W.P.; Dong, X.G. Topography representation methods for improving evaporation simulation in groundwater modeling. J. Hydrol. 2008, 356, 199–208. [Google Scholar] [CrossRef]
- Brunner, P.; Doherty, J.; Simmons, C.T. Uncertainty assessment and implications for data acquisition in support of integrated hydrologic models. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
Depth (m) | θr (−) | θs (−) | α (m) | n (−) | Ks (m d−1) | θa (−) | θm (−) | θk (−) |
---|---|---|---|---|---|---|---|---|
0–7 | 0.02 | 0.43 | 2.1 | 1.61 | 1.2 | 0.02 | 0.43 | 0.43 |
7–53 | 0.01 | 0.42 | 2.1 | 1.61 | 5.2 | 0.01 | 0.42 | 0.42 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Shi, L.; Wu, J.; Ye, M.; Cui, L.; Yang, J. Regional Quasi-Three-Dimensional Unsaturated-Saturated Water Flow Model Based on a Vertical-Horizontal Splitting Concept. Water 2016, 8, 195. https://doi.org/10.3390/w8050195
Zhu Y, Shi L, Wu J, Ye M, Cui L, Yang J. Regional Quasi-Three-Dimensional Unsaturated-Saturated Water Flow Model Based on a Vertical-Horizontal Splitting Concept. Water. 2016; 8(5):195. https://doi.org/10.3390/w8050195
Chicago/Turabian StyleZhu, Yan, Liangsheng Shi, Jingwei Wu, Ming Ye, Lihong Cui, and Jinzhong Yang. 2016. "Regional Quasi-Three-Dimensional Unsaturated-Saturated Water Flow Model Based on a Vertical-Horizontal Splitting Concept" Water 8, no. 5: 195. https://doi.org/10.3390/w8050195
APA StyleZhu, Y., Shi, L., Wu, J., Ye, M., Cui, L., & Yang, J. (2016). Regional Quasi-Three-Dimensional Unsaturated-Saturated Water Flow Model Based on a Vertical-Horizontal Splitting Concept. Water, 8(5), 195. https://doi.org/10.3390/w8050195