Landslide Susceptibility Mapping in Vertical Distribution Law of Precipitation Area: Case of the Xulong Hydropower Station Reservoir, Southwestern China
Abstract
:1. Introduction
2. Methodology
2.1. The Analytic Hierarchy Process
2.2. The Information Content Model
2.3. The Landslide Susceptibility Assessment
3. Study Area and Data
3.1. Study Area
3.2. Influencing Factors
3.3. Data Processing
4. Results and Discussion
4.1. Determination of Analytic Hierarchy Process (AHP)Weights
4.2. The Information Content (IC) of Eight Factors
4.3. Landslides Susceptibility Mapping
4.4. Discussions and Validation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Roering, J.J.; Kirchner, J.W.; Dietrich, W.E. Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resour. Res. 1999, 35, 853–870. [Google Scholar] [CrossRef]
- Malamud, B.D.; Turcotte, D.L.; Guzzetti, F.; Reichenbach, P. Landslides, earthquakes, and erosion. Earth Planet. Sci. Lett. 2004, 229, 45–59. [Google Scholar] [CrossRef]
- Kawabata, D.; Bandibas, J. Landslide susceptibility mapping using geological data, a DEM from ASTER images and an artificial neural network (ANN). Geomorphology 2009, 113, 97–109. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide inventory maps: New tools for an old problem. Earth Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Peruccacci, S.; Brunetti, M.T.; Luciani, S.; Vennari, C.; Guzzetti, F. Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 2012, 139, 79–90. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Blaschke, T. Landslide risk assessment based on GIS multi-criteria evaluation: A case study in Bostan-Abad County, Iran. J. Earth Sci. Eng. 2011, 1, 66–71. [Google Scholar]
- Montgomery, D.R.; Dietrich, W.E. A physically based model for the topographic control on shallow landsliding. Water Resour. Res. 1994, 30, 1153–1171. [Google Scholar] [CrossRef]
- Van Westen, C.; Van Asch, T.W.; Soeters, R. Landslide hazard and risk zonation—Why is it still so difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng.Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef] [Green Version]
- Bi, R.N.; Schleier, M.; Rohn, J.; Ehret, D.; Xiang, W. Landslide susceptibility analysis based on arcgis and artificial neural network for a large catchment in three gorges region, China. Environ. Earth Sci. 2014, 72, 1925–1938. [Google Scholar] [CrossRef]
- Li, D.; Yin, K.; Leo, C. Analysis of baishuihe landslide influenced by the effects of reservoir water and rainfall. Environ. Earth Sci. 2010, 60, 677–687. [Google Scholar] [CrossRef]
- Can, T.; Nefeslioglu, H.A.; Gokceoglu, C.; Sonmez, H.; Duman, T.Y. Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology 2005, 72, 250–271. [Google Scholar] [CrossRef]
- Lee, S.; Evangelista, D. Earthquake-induced landslide-susceptibility mapping using an artificial neural network. Nat. Hazards Earth Syst. Sci. 2006, 6, 687–695. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S. Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Model. Softw. 2010, 25, 747–759. [Google Scholar] [CrossRef]
- Akgun, A. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at Izmir, Turkey. Landslides 2012, 9, 93–106. [Google Scholar] [CrossRef]
- Oh, H.-J.; Park, N.-W.; Lee, S.-S.; Lee, S. Extraction of landslide-related factors from aster imagery and its application to landslide susceptibility mapping. Int. J. Remote Sens. 2012, 33, 3211–3231. [Google Scholar] [CrossRef]
- Regmi, A.D.; Devkota, K.C.; Yoshida, K.; Pradhan, B.; Pourghasemi, H.R.; Kumamoto, T.; Akgun, A. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab. J. Geosci. 2014, 7, 725–742. [Google Scholar] [CrossRef]
- Bui, D.T.; Lofman, O.; Revhaug, I.; Dick, O. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat. Hazards 2011, 59, 1413–1444. [Google Scholar] [CrossRef]
- Dong, J.J.; Tung, Y.H.; Chen, C.C.; Liao, J.J.; Pan, Y.W. Discriminant analysis of the geomorphic characteristics and stability of landslide dams. Geomorphology 2009, 110, 162–171. [Google Scholar] [CrossRef]
- Wang, L.J.; Guo, M.; Sawada, K.; Lin, J.; Zhang, J.C. Landslide susceptibility mapping in Mizunami City, Japan: A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models. Catena 2015, 135, 271–282. [Google Scholar] [CrossRef]
- Wan, S. A spatial decision support system for extracting the core factors and thresholds for landslide susceptibility map. Eng. Geol. 2009, 108, 237–251. [Google Scholar] [CrossRef]
- Liu, S.-H.; Lin, C.-W.; Tseng, C.-M. A statistical model for the impact of the 1999 Chi-Chi earthquake on the subsequent rainfall-induced landslides. Eng. Geol. 2013, 156, 11–19. [Google Scholar] [CrossRef]
- Lee, S.; Ryu, J.-H.; Won, J.-S.; Park, H.-J. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng. Geol. 2004, 71, 289–302. [Google Scholar] [CrossRef]
- Gomez, H.; Kavzoglu, T. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng. Geol. 2005, 78, 11–27. [Google Scholar] [CrossRef]
- Caniani, D.; Pascale, S.; Sdao, F.; Sole, A. Neural networks and landslide susceptibility: A case study of the urban area of Potenza. Nat. Hazards 2008, 45, 55–72. [Google Scholar] [CrossRef]
- Melchiorre, C.; Matteucci, M.; Azzoni, A.; Zanchi, A. Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 2008, 94, 379–400. [Google Scholar] [CrossRef]
- Lin, H.-M.; Chang, S.-K.; Wu, J.-H.; Juang, C.H. Neural network-based model for assessing failure potential of highway slopes in the Alishan, Taiwan area: Pre-and post-earthquake investigation. Eng. Geol. 2009, 104, 280–289. [Google Scholar] [CrossRef]
- Conforti, M.; Pascale, S.; Robustelli, G.; Sdao, F. Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (Northern Calabria, Italy). Catena 2014, 113, 236–250. [Google Scholar] [CrossRef]
- Samui, P. Slope stability analysis: A support vector machine approach. Environ. Geol. 2008, 56, 255–267. [Google Scholar] [CrossRef]
- Marjanović, M.; Kovačević, M.; Bajat, B.; Voženílek, V. Landslide susceptibility assessment using SVM machine learning algorithm. Eng. Geol. 2011, 123, 225–234. [Google Scholar] [CrossRef]
- Xu, C.; Dai, F.; Xu, X.; Lee, Y.H. Gis-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River Watershed, China. Geomorphology 2012, 145, 70–80. [Google Scholar] [CrossRef]
- Peng, L.; Niu, R.; Huang, B.; Wu, X.; Zhao, Y.; Ye, R. Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China. Geomorphology 2014, 204, 287–301. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J. Hydrol. 2013, 504, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, M.K.; Chatterjee, C. Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J. Hydrol. 2010, 382, 20–33. [Google Scholar] [CrossRef]
- Kazakis, N.; Kougias, I.; Patsialis, T. Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: Application in Rhodope-Evros region, Greece. Sci. Total Environ. 2015, 538, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Ho, W. Integrated analytic hierarchy process and its applications—A literature review. Eur. J. Oper. Res. 2008, 186, 211–228. [Google Scholar] [CrossRef]
- Jade, S.; Sarkar, S. Statistical models for slope instability classification. Eng.Geol. 1993, 36, 91–98. [Google Scholar] [CrossRef]
- Saaty, T.L. Modeling unstructured decision problems—The theory of analytical hierarchies. Math. Comput. Simul. 1978, 20, 147–158. [Google Scholar] [CrossRef]
- Junior, R.V.; Varandas, S.; Fernandes, L.S.; Pacheco, F. Environmental land use conflicts: A threat to soil conservation. Land Use Policy 2014, 41, 172–185. [Google Scholar] [CrossRef]
- Oikonomidis, D.; Dimogianni, S.; Kazakis, N.; Voudouris, K. A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. J. Hydrol. 2015, 525, 197–208. [Google Scholar] [CrossRef]
- Lin, M.-L.; Tung, C.-C. A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake. Eng. Geol. 2004, 71, 63–77. [Google Scholar] [CrossRef]
- Gao, K.; Cui, P.; Zhao, C.; Wei, F. Landslide hazard evaluation of wanzhou based on GIS information value method in the Three Gorges reservoir. Chin. J. Rock Mech. Eng. 2006, 25, 991–996. [Google Scholar]
- Du, J.; Yang, Q.; Yan, J. Hazard evaluation of secondary geological disaster based on GISand information value method. Earth Sci. J. China Univ. Geosci. 2010, 35, 324–330. [Google Scholar]
- Chen, Y.; Booth, D.C. The Wenchuan Earthquake of 2008: Anatomy of a Disaster; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar]
- Burbank, D.W.; Leland, J.; Fielding, E.; Anderson, R.S.; Brozovic, N.; Reid, M.R.; Duncan, C. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 1996, 379, 505–510. [Google Scholar] [CrossRef]
- Wang, E.; Burchfiel, B.C. Late cenozoic to holocene deformation in southwestern Sichuan and Adjacent Yunnan, China, and its role in formation of the southeastern part of the Tibetan Plateau. Geol. Soc. Am. Bull. 2000, 112, 413–423. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the quality of landslide susceptibility models. Geomorphology 2006, 81, 166–184. [Google Scholar] [CrossRef]
- Kanungo, D.; Arora, M.; Sarkar, S.; Gupta, R. A comparative study of conventional, ann black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng.Geol. 2006, 85, 347–366. [Google Scholar] [CrossRef]
- Yalcin, A. Gis-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena 2008, 72, 1–12. [Google Scholar] [CrossRef]
- Akgun, A.; Sezer, E.A.; Nefeslioglu, H.A.; Gokceoglu, C.; Pradhan, B. An easy-to-use MATLAB program (Mamland) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Comput. Geosci. UK 2012, 38, 23–34. [Google Scholar] [CrossRef]
- Mohammady, M.; Pourghasemi, H.R.; Pradhan, B. Landslide susceptibility mapping at Golestan Province, iran: A comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models. J. Asian Earth Sci. 2012, 61, 221–236. [Google Scholar] [CrossRef]
- Pradhan, B.; Chaudhari, A.; Adinarayana, J.; Buchroithner, M.F. Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: A case study at Penang Island, Malaysia. Environ. Monit. Assess. 2012, 184, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Roodposhti, M.S.; Rahimi, S.; Beglou, M.J. PROMETHEE II and fuzzy AHP: An enhanced GIS-based landslide susceptibility mapping. Nat. Hazards 2014, 73, 77–95. [Google Scholar] [CrossRef]
- Chue, Y.S.; Chen, J.W.; Chen, Y.R. Rainfall-induced slope landslide pontential and landslide distribution characteristics assessment. J. Mar. Sci. Technol. Taiwan 2015, 23, 705–716. [Google Scholar]
- Kritikos, T.; Davies, T. Assessment of rainfall-generated shallow landslide/debris-flow susceptibility and runout using a GIS-based approach: Application to western Southern Alps of New Zealand. Landslides 2015, 12, 1051–1075. [Google Scholar] [CrossRef]
- Lee, M.J.; Park, I.; Won, J.S.; Lee, S. Landslide hazard mapping considering rainfall probability in Inje, Korea. Geomat. Nat. Hazard Risk 2016, 7, 424–446. [Google Scholar] [CrossRef]
- Kirschbaum, D.; Adler, R.; Adler, D.; Peters-Lidard, C.; Huffman, G. Global distribution of extreme precipitation and high-impact landslides in 2010 relative to previous years. J. Hydrometeorol. 2012, 13, 1536–1551. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H. The application of Gis-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Oh, H.-J.; Pradhan, B. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput. Geosci. UK 2011, 37, 1264–1276. [Google Scholar] [CrossRef]
- Hao, M.; Wang, Q.; Shen, Z.; Cui, D.; Ji, L.; Li, Y.; Qin, S. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau. Tectonophysics 2014, 632, 281–292. [Google Scholar] [CrossRef]
- Deng, L.-Q.; Wamg, X.-P. Relationship between neotectonism and landslides in Reservoir area of three-gorges project on Yangtze River. J. Eng. Geol. 2000, 8, 136–141. [Google Scholar]
- Zhang, X.-J.; Zeng, Q.-L.; Ma, Y.-S. Basic characteristics of the differential uplift of the yulong-haba block and its geological hazard effects. Geol. China 2006, 5, 1075–1082. [Google Scholar]
- Simons, M. The Morphological Analysis of Landforms: A New Review of the Work of Walther Penck (1888–1923); JSTOR: New York, NY, USA, 1962. [Google Scholar]
- Gouvas, M.; Sakellariou, N.; Xystrakis, F. The relationship between altitude of meteorological stations and average monthly and annual precipitation. Stud. Geophys. Geod. 2009, 53, 557–570. [Google Scholar] [CrossRef]
- Liu, B.-T.; Tao, H.-P.; Song, C.-F. Temporal and spatial variations of rainfall erosivity in southwest China from 1960 to 2009. Adv. Earth Sci. 2012, 27, 499–509. [Google Scholar]
- Huang, Y.; Li, Z.-S. Analysis of little rainfall of dry valley in low latitude area. Res. Water Resour. 2006, 27, 1–3. [Google Scholar]
- Shan, B. Reservoir Bank Geological Disaster Susceptibility Assessment and Study on Zoning of Disaster Risk in Benzilan Water-Source Reservoir Area Based on 3s Technology. Ph.D. Thesis, Jilin University, Changchun, China, 2014. [Google Scholar]
- Li, L.-Q.; Xiong, L.-H.; Jiang, C.; Zhang, H.-G. Impact of air temperature on annual runoff of batang station in the headstream of Yangtze River. Resour. Environ. Yangtze Basin 2015, 24, 1142–1149. [Google Scholar]
- Wu, L.-Q.; Li, X.-H. Analysis on change of annual precipitation with altitude in high mountain areas. Yunnan Geogr. Environ. Res. 2004, 2, 4–7. [Google Scholar]
- Falaschi, F.; Giacomelli, F.; Federici, P.R.; Puccinelli, A.; Avanzi, G.D.; Pochini, A.; Ribolini, A. Logistic regression versus artificial neural networks: Landslide susceptibility evaluation in a sample area of the Serchio River Valley, Italy. Nat. Hazards 2009, 50, 551–569. [Google Scholar] [CrossRef]
- Bednarik, M.; Magulova, B.; Matys, M.; Marschalko, M. Landslide susceptibility assessment of the kralovany-liptovsky mikulas railway case study. Phys. Chem. Earth 2010, 35, 162–171. [Google Scholar] [CrossRef]
- Constantin, M.; Bednarik, M.; Jurchescu, M.C.; Vlaicu, M. Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ. Earth Sci. 2011, 63, 397–406. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Mohammady, M.; Pradhan, B. Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 2012, 97, 71–84. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Jirandeh, A.G.; Pradhan, B.; Xu, C.; Gokceoglu, C. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. J. Earth Syst. Sci. 2013, 122, 349–369. [Google Scholar] [CrossRef] [Green Version]
- Feizizadeh, B.; Roodposhti, M.S.; Jankowski, P.; Blaschke, T. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Comput. Geosci. UK 2014, 73, 208–221. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, S.; Asano, S.; Okamoto, T.; Takeuchi, Y. Characteristics of the displacement of a landslide with shallow sliding surface in a heavy snow district of Japan. Eng. Geol. 2003, 69, 15–35. [Google Scholar] [CrossRef]
- Moreiras, S.; Lisboa, M.S.; Mastrantonio, L. The role of snow melting upon landslides in the central Argentinean Andes. Earth Surf. Proc. Landf. 2012, 37, 1106–1119. [Google Scholar] [CrossRef]
- Yamasaki, S.; Nagata, H.; Kawaguchi, T. Long-traveling landslides in deep snow conditions induced by the 2011 Nagano Prefecture Earthquake, Japan. Landslides 2014, 11, 605–613. [Google Scholar] [CrossRef]
m | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 1.52 | 1.54 |
Precipitation Station | Longitude | Latitude | Elevation/m | Annual Precipitation/mm | Data Resources/year |
---|---|---|---|---|---|
Benzilan | 99°17’ | 28°17’ | 2023 | 308 | 1965–1988 |
Shangqiaotou | 99°24’ | 28°10’ | 2040 | 369.68 | 1961–2004 |
Batang | 99°06’ | 30°00’ | 2590 | 474.4 | 1960–2012 |
Dege | 98°35’ | 31°48’ | 3184 | 619.81 | 1960–2012 |
Heading | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | Weights |
---|---|---|---|---|---|---|---|---|---|
X1 | 1 | 1 | 2 | 4 | 4 | 6 | 7 | 8 | 0.2803 |
X2 | 1 | 1 | 2 | 3 | 3 | 5 | 6 | 7 | 0.2452 |
X3 | 1/2 | 1/2 | 1 | 3 | 3 | 4 | 5 | 6 | 0.1800 |
X4 | 1/4 | 1/3 | 1/3 | 1 | 1 | 3 | 4 | 5 | 0.0948 |
X5 | 1/4 | 1/3 | 1/3 | 1 | 1 | 3 | 4 | 5 | 0.0948 |
X6 | 1/6 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 2 | 3 | 0.0482 |
X7 | 1/7 | 1/6 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 2 | 0.0329 |
X8 | 1/8 | 1/7 | 1/6 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 0.0237 |
Factor | Class | Landslide Not Occurred | Landslide Occurred | Total Count | Information Content | ||
---|---|---|---|---|---|---|---|
Count | Ratio/% | Count | Ratio/% | ||||
Slope Angle (Rapid Bedrock Uplift)/° | 0–10 | 1,858,723 | 3.36 | 110,024 | 8.56 | 1,968,747 | 0.8997 |
10–20 | 5,788,727 | 10.48 | 192,876 | 15.01 | 5,981,603 | 0.3498 | |
20–30 | 14,993,603 | 27.14 | 326,073 | 25.38 | 15,319,676 | –0.0656 | |
30–40 | 22,210,924 | 40.21 | 389,651 | 30.33 | 22,600,575 | –0.2763 | |
40–50 | 9,069,973 | 16.42 | 219,551 | 17.09 | 9289,524 | 0.0391 | |
50–60 | 1,195,655 | 2.16 | 42,750 | 3.33 | 1,238,405 | 0.4180 | |
60–70 | 118,723 | 0.21 | 3700 | 0.29 | 122,423 | 0.2850 | |
>70 | 1572 | 0 | 0 | 0 | 1572 | 0 | |
Slope Aspect | Flat | 499,251 | 0.01 | 12,648 | 0.01 | 511,899 | 0.1861 |
North | 6,890,597 | 0.12 | 90,223 | 0.07 | 6,980,820 | −0.5644 | |
Northeast | 5,660,124 | 0.10 | 138,129 | 0.11 | 5,798,253 | 0.0470 | |
East | 6,459,419 | 0.12 | 266,725 | 0.21 | 6,726,144 | 0.5566 | |
Southeast | 6,699,468 | 0.12 | 231,321 | 0.18 | 6,930,789 | 0.3843 | |
South | 6,775,601 | 0.12 | 227,748 | 0.18 | 7,003,349 | 0.3583 | |
Southwest | 6,890,429 | 0.12 | 14,262 | 0.01 | 6,904,691 | −2.3973 | |
West | 7,870,201 | 0.14 | 168,562 | 0.13 | 8,038,763 | −0.0806 | |
Northwest | 7,492,796 | 0.14 | 135,002 | 0.11 | 7,627,798 | −0.2501 | |
Curvature | Concave | 23,966,881 | 43.39 | 563,969 | 43.90 | 24,530,850 | 0.0115 |
Flat | 5,947,546 | 10.77 | 165,781 | 12.90 | 6,113,327 | 0.1766 | |
Convex | 25,323,475 | 45.84 | 554,878 | 43.19 | 25,878,353 | −0.0582 | |
Geology | Q | 2,451,097 | 4.44 | 239,012 | 18.61 | 2,690,109 | 1.3652 |
K | 4,718,96 | 0.85 | 0 | 0 | 471,896 | 0.0000 | |
T | 16,883,871 | 30.57 | 160,526 | 12.5 | 17,044,397 | −0.8791 | |
P | 7,619,949 | 13.79 | 19,629 | 1.53 | 7,639,578 | −2.1783 | |
DTJ | 12,172,394 | 22.04 | 395,719 | 30.8 | 12,568,113 | 0.3278 | |
D2q | 491,512 | 0.89 | 0 | 0 | 491,512 | 0.0000 | |
Pt2X | 13,753,469 | 24.90 | 435,508 | 33.9 | 14,188,977 | 0.3023 | |
Intrusive rock | 1,393,883 | 2.52 | 34,142 | 2.66 | 1,428,025 | 0.0527 | |
Distance-to-Fault/m | 0-200 | 5,488,207 | 24.54 | 170,371 | 16.07 | 5,658,578 | −0.4073 |
200–400 | 5,129,121 | 22.93 | 298,303 | 28.14 | 5,427,424 | 0.1945 | |
400–600 | 4,465,698 | 19.97 | 300,739 | 28.37 | 4,766,437 | 0.3326 | |
600–800 | 3,871,123 | 17.31 | 181,969 | 17.17 | 4,053,092 | −0.0077 | |
800–1000 | 3,412,901 | 15.26 | 108,548 | 10.24 | 3,521,449 | −0.3837 | |
Distance-to-River/m | 0–200 | 7,180,378 | 28.70 | 424,595 | 37.73 | 7,604,973 | 0.2602 |
200–400 | 6,451,048 | 25.79 | 345,492 | 30.70 | 6,796,540 | 0.1665 | |
400–600 | 6,005,606 | 24.01 | 211,146 | 18.76 | 6,216,752 | −0.2368 | |
600–800 | 5,378,631 | 21.50 | 144,181 | 12.81 | 5,522,812 | −0.5000 | |
Vegetation | Cover | 21,230,458 | 38.44 | 221,769 | 17.26 | 21,452,227 | −0.7883 |
No cover | 34,006,789 | 61.56 | 1,063,500 | 82.74 | 35,070,289 | 0.2879 |
Susceptibility | Landslide Occurred | Total Study Area | ||||
---|---|---|---|---|---|---|
Count | Ratio (%) | Area (km2) | Count | Ratio (%) | Area (km2) | |
Low | 131,027 | 10.20 | 3.28 | 7,263,251 | 12.90 | 181.58 |
Moderate | 628,504 | 48.92 | 15.71 | 19,738,352 | 35.06 | 493.46 |
High | 390,774 | 30.12 | 9.77 | 19,199,915 | 34.11 | 479.99 |
Very High | 134,422 | 10.46 | 3.36 | 10,089,277 | 17.92 | 252.23 |
Susceptibility Degree | M | N | M1 | N1 | P |
---|---|---|---|---|---|
Moderate | 19,738,352 | 56,290,795 | 628,504 | 1,284,727 | 85.74% |
High | 19,199,915 | 390,774 | |||
Very High | 10,089,277 | 134,422 | |||
Counts Number | 49,027,544 | 1,153,700 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, C.; Wang, Q.; Chen, J.; Ruan, Y.; Zheng, L.; Song, S.; Niu, C. Landslide Susceptibility Mapping in Vertical Distribution Law of Precipitation Area: Case of the Xulong Hydropower Station Reservoir, Southwestern China. Water 2016, 8, 270. https://doi.org/10.3390/w8070270
Cao C, Wang Q, Chen J, Ruan Y, Zheng L, Song S, Niu C. Landslide Susceptibility Mapping in Vertical Distribution Law of Precipitation Area: Case of the Xulong Hydropower Station Reservoir, Southwestern China. Water. 2016; 8(7):270. https://doi.org/10.3390/w8070270
Chicago/Turabian StyleCao, Chen, Qing Wang, Jianping Chen, Yunkai Ruan, Lianjing Zheng, Shengyuan Song, and Cencen Niu. 2016. "Landslide Susceptibility Mapping in Vertical Distribution Law of Precipitation Area: Case of the Xulong Hydropower Station Reservoir, Southwestern China" Water 8, no. 7: 270. https://doi.org/10.3390/w8070270
APA StyleCao, C., Wang, Q., Chen, J., Ruan, Y., Zheng, L., Song, S., & Niu, C. (2016). Landslide Susceptibility Mapping in Vertical Distribution Law of Precipitation Area: Case of the Xulong Hydropower Station Reservoir, Southwestern China. Water, 8(7), 270. https://doi.org/10.3390/w8070270