Evaluation of Freshwater Provisioning for Different Ecosystem Services in the Upper Mississippi River Basin: Current Status and Drivers
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Upper Mississippi River Basin
2.2. Data Sources
2.3. Methods
2.3.1. Freshwater Provisioning Calculation
2.3.2. Determination of Environmental Flow Requirements MFEF
2.3.3. Determination of Water Quality Criteria
2.3.4. Determination of FWP and FWPI in the UMRB
2.3.5. Sensitivity Analysis
3. Results
3.1. FWPI & FWP Calculations
3.2. Evaluating Driving Factors of FWP and FWPI in the UMRB
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Millennium Ecosystem Assessment (MEA). Ecosystem Services and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Bouma, J.A.; Beukering, P.J.H.V. Ecosystem Services from Concept to Practice; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The Nature and Value of Ecosystem Services: An Overview Highlighting Hydrologic Services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Dodds, W.K.; Perkin, J.S.; Gerken, J.E. Human Impact on Freshwater Ecosystem Services: A Global Perspective. Environ. Sci. Technol. 2013, 47, 9061–9068. [Google Scholar] [CrossRef] [PubMed]
- Marquès, M.; Bangash, R.F.; Kumar, V.; Sharp, R.; Schuhmacher, M. The impact of climate change on water provision under a low flow regime: A case study of the ecosystems services in the Francoli river basin. J. Hazard. Mater. 2013, 263, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Dennedy-Frank, P.J.; Muenich, R.L.; Chaubey, I.; Ziv, G. Comparing two tools for ecosystem service assessments regarding water resources decisions. J. Environ. Manag. 2016, 177, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Ausseil, A.-G.E.; Dymond, J.R.; Kirschbaum, M.U.F.; Andrew, R.M.; Parfitt, R.L. Assessment of multiple ecosystem services in New Zealand at the catchment scale. Environ. Model. Softw. 2013, 43, 37–48. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Terrado, M.; Acuña, V.; Ennaanay, D.; Tallis, H.; Sabater, S. Impact of climate extremes on hydrological ecosystem services in a heavily humanized Mediterranean basin. Ecol. Indic. 2014, 37, 199–209. [Google Scholar] [CrossRef]
- Willaarts, B.A.; Volk, M.; Aguilera, P.A. Assessing the ecosystem services supplied by freshwater flows in Mediterranean agroecosystems. Agric. Water Manag. 2012, 105, 21–31. [Google Scholar] [CrossRef]
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Egoh, B.; Reyers, B.; Rouget, M.; Richardson, D.M.; Le Maitre, D.C.; van Jaarsveld, A.S. Mapping ecosystem services for planning and management. Agric. Ecosyst. Environ. 2008, 127, 135–140. [Google Scholar] [CrossRef]
- Bangash, R.F.; Passuello, A.; Sanchez-Canales, M.; Terrado, M.; López, A.; Elorza, F.J.; Ziv, G.; Acuña, V.; Schuhmacher, M. Ecosystem services in Mediterranean river basin: Climate change impact on water provisioning and erosion control. Sci. Total Environ. 2013, 458–460, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Frans, C.; Istanbulluoglu, E.; Mishra, V.; Munoz-Arriola, F.; Lettenmaier, D.P. Are climatic or land cover changes the dominant cause of runoff trends in the Upper Mississippi River Basin?: CLIMATE AND LAND USE CHANGE IN THE UMRB. Geophys. Res. Lett. 2013, 40, 1104–1110. [Google Scholar] [CrossRef]
- Schilling, K.E.; Chan, K.-S.; Liu, H.; Zhang, Y.-K. Quantifying the effect of land use land cover change on increasing discharge in the Upper Mississippi River. J. Hydrol. 2010, 387, 343–345. [Google Scholar] [CrossRef]
- Demissie, Y.; Yan, E.; Wu, M. Assessing Regional Hydrology and Water Quality Implications of Large-Scale Biofuel Feedstock Production in the Upper Mississippi River Basin. Environ. Sci. Technol. 2012, 46, 9174–9182. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Demissie, Y.; Yan, E. Simulated impact of future biofuel production on water quality and water cycle dynamics in the Upper Mississippi river basin. Biomass Bioenergy 2012, 41, 44–56. [Google Scholar] [CrossRef]
- Delong, M.D. Upper Mississippi River Basin. In Rivers of Northamerica; Benke, A.C., Cushing, C.E., Eds.; Elsevier Academic Press: New York, NY, USA, 2005; pp. 327–361. [Google Scholar]
- Panagopoulos, Y.; Gassman, P.W.; Arritt, R.W.; Herzmann, D.E.; Campbell, T.D.; Jha, M.K.; Kling, C.L.; Srinivasan, R.; White, M.; Arnold, J.G. Surface water quality and cropping systems sustainability under a changing climate in the Upper Mississippi River Basin. J. Soil Water Conserv. 2014, 69, 483–494. [Google Scholar] [CrossRef]
- Gassman, P.W.; Secchi, S.; Jha, M.; Kurkalova, L. Upper Mississippi River Basin modeling system part 1: SWAT input data requirements and issues. Coast. Hydrol. Process. 2006, 103–115. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.493.7997&rep=rep1&type=pdf (accessed on 12 July 2016). [Google Scholar]
- Jha, M. Impacts of climate change on streamflow in the Upper Mississippi River Basin: A regional climate model perspective. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Srinivasan, R.; Zhang, X.; Arnold, J. SWAT ungauged: Hydrological budget and crop yield predictions in the Upper Mississippi River Basin. Trans. ASABE 2010, 53, 1533–1546. [Google Scholar] [CrossRef]
- O’Donnell, T.K.; Galat, D.L. River enhancement in the Upper Mississippi River Basin: Approaches based on river uses, alterations, and management agencies. Restor. Ecol. 2007, 15, 538–549. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Xu, L.; Wood, E.F.; Lettenmaier, D.P. Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Glob. Planet. Chang. 1996, 13, 195–206. [Google Scholar]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.R.; Chan, K.M.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Johnson, G.W.; Voigt, B.; Villa, F. Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services. Ecosyst. Serv. 2013, 4, 117–125. [Google Scholar] [CrossRef]
- Vigerstol, K.L.; Aukema, J.E. A comparison of tools for modeling freshwater ecosystem services. J. Environ. Manag. 2011, 92, 2403–2409. [Google Scholar] [CrossRef] [PubMed]
- Logsdon, R.A.; Chaubey, I. A quantitative approach to evaluating ecosystem services. Ecol. Model. 2013, 257, 57–65. [Google Scholar] [CrossRef]
- Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; Vigerstol, K.; Pennington, D.; Mendoza, G.; et al. InVEST 2.1 Beta User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2011. [Google Scholar]
- Vörösmarty, C.J.; Bos, R.; Balvanera, P. Fresh Water. Ecosyst. Hum. Well- Curr. State Trends Find. Cond. Trends Work. Group 2005, 1, 165. [Google Scholar]
- Tennant, D.L. Instream Flow Regimens for Fish, Wildlife, Recreation and Related Environmental Resources. Fisheries 1976, 1, 6–10. [Google Scholar] [CrossRef]
- Orth, D.J. Evaluation of the “Montana Method” for recommending instream flows in Oklahoma streams. Proc. Okla. Acad. Sci. 1981, 61, 62–66. [Google Scholar]
- Xia, J.; Feng, H.L.; Zhan, C.S.; Niu, C.W. Determination of a Reasonable Percentage for Ecological Water-Use in the Haihe River Basin, China. Pedosphere 2006, 16, 33–42. [Google Scholar] [CrossRef]
- Ice, G.; Binkley, D. Forest streamwater concentrations of nitrogen and phosphorus: A comparison with EPA’s proposed water quality criteria. J. For. 2003, 101, 21–28. [Google Scholar]
- Runkel, R.L.; Crawford, C.G.; Cohn, T.A. Load Estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers; U.S. Geological Survey Techniques and Methods Book 4, Chapter A5; U.S. Geological Survey: Reston, VA, USA, 2004.
- Haan, C.T. Statistical Methods in HYDROLOGY, 2nd ed.; Iowa State Press: Ames, IA, USA, 2002. [Google Scholar]
- Boots, B.N. Voronoi (Thiessen) Polygons (Concepts and Techniques in Modern Geography); Geo Books: Norwich, UK, 1986. [Google Scholar]
- Thiessen, A.H. Precipitation average for large areas. Mon. Weather Rev. 1911, 39, 1082–1084. [Google Scholar] [CrossRef]
- Tran, L.T.; O’Neill, R.V. Detecting the effects of land use/land cover on mean annual streamflow in the Upper Mississippi River Basin, USA. J. Hydrol. 2013, 499, 82–90. [Google Scholar] [CrossRef]
- Zhang, Y.-K.; Schilling, K.E. Increasing streamflow and baseflow in Mississippi River since the 1940s: Effect of land use change. J. Hydrol. 2006, 324, 412–422. [Google Scholar] [CrossRef]
- Rabotyagov, S.; Campbell, T.; Jha, M.; Gassman, P.; Arnold, J.; Kurkalova, L.; Secchi, S.; Feng, H.L.; Kling, C. Least-Cost control of agricultural nutrient contributions to the Gulf of Mexico hypoxic zone. Ecol. Appl. 2010, 20, 1542–1555. [Google Scholar] [CrossRef] [PubMed]
- Secchi, S.; Gassman, P.; Jha, M.; Kurkalova, L.; Kling, C. Potential water quality changes due to corn expansion in the Upper Mississippi River Basin. Ecol. Appl. 2011, 21, 1068–1084. [Google Scholar] [CrossRef] [PubMed]
- Goolsby, D.A.; Battaglin, W.A. Long-Term changes in concentrations and flux of nitrogen in the Mississippi River Basin, USA. Hydrol. Process. 2001, 15, 1209–1226. [Google Scholar] [CrossRef]
- Keeney, D. Reducing nonpoint nitrogen to acceptable levels with emphasis on the Upper Mississippi River Basin. Estuaries 2002, 25, 862–868. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services: Relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Gordon, L.J.; Finlayson, C.M.; Falkenmark, M. Managing water in agriculture for food production and other ecosystem services. Agric. Water Manag. 2010, 97, 512–519. [Google Scholar] [CrossRef]
- Easterling, D.R.; Karl, T.R. Potential consequences of climate variability and change for the Midwestern United States. In Climate Change Impacts on the United States: The Potential Consequences of Climate Variability and Change: Foundation; National Assessment Synthesis Team (U.S.), Ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001. [Google Scholar]
Watershed Name | 8-Digit HUC # | Drainage Area (km2) | USGS Streamflow Gauge # | Water Quality Site # | Streamflow Time Period | Total Number of Water Quality Samples Within 1 January 1995–31 December 2013 | ||
---|---|---|---|---|---|---|---|---|
TN | TP | TSS | ||||||
Twin Cities | 07010206 | 115,987 | 05344500 | 05331580 | 1995–2013 | 118 | 137 | 138 |
Lower Minnesota | 07020012 | 41,942 | 05330000 | S002-548 | 1995–2013 | 45 | 36 | 35 |
Turkey | 07060004 | 4000 | 05412500 | 05412500 | 1995–2013 | 119 | 121 | 112 |
Maquoketa | 07060006 | 4021 | 05418500 | 05418600 | 1995–2013 | 119 | 123 | 112 |
Copperas-Duck | 07080101 | 221,618 | 05420500 | 05420500 | 1995–2013 | 396 | 401 | 375 |
Lower Wapsipinicon | 07080103 | 6048 | 05422000 | 05422000 | 1995–2013 | 156 | 161 | 149 |
Skunk | 07080107 | 11,164 | 05474000 | 05474000 | 1995–2013 | 265 | 268 | 2284 |
Upper Iowa | 07080207 | 3966 | 05451500 | 05451210 | 1995–2013 | 152 | 280 | 279 |
Lower Iowa | 07080209 | 32,363 | 05465500 | 05465500 | 1995–2013 | 352 | 385 | 1272 |
Lower Des Moines | 07100009 | 36,344 | 05490500 | 05490500 | 1995–2013 | 155 | 156 | 154 |
Peruque-Piasa | 07110009 | 443,496 | 05587450 | 05587455 | 1995–2013 | 287 | 287 | 180 |
Lower Illinois | 07130011 | 69,238 | 05586100 | 05586100 | 1995–2013 | 432 | 475 | 1274 |
Upper Mississippi-Cape Girardeau | 07140105 | 1,846,475 | 07022000 | 07022000 | 1995–2013 | 531 | 542 | 447 |
State Name | Water Quality Constituents | ||
---|---|---|---|
TN | TP | TSS | |
Iowa | 3 mg/L | 0.1 mg/L | – |
Illinois | 1.44 mg/L | 0.05 mg/L | – |
Minnesota | 1.36 mg/L | 0.1 mg/L | 15 mg/L in North, 30 mg/L in center, 65 mg/L in south |
Watershed Name | Rate | Sr (MF) | Sr (CTN, CTP, CTSS) | Sr (MFEF) |
---|---|---|---|---|
Lower Minnesota | ΔP = 5% | 0.031 | −2.57 | −0.028 |
ΔP = 10% | 0.038 | −2.593 | −0.035 | |
Skunk | ΔP = 5% | 0.143 | −2.029 | −0.14 |
ΔP = 10% | 0.147 | −2.041 | −0.145 | |
Lower Des Moines | ΔP = 5% | 0.123 | −3.102 | −0.12 |
ΔP = 10% | 0.127 | −3.195 | −0.126 |
Watershed Name | Twin Cities | Lower Minnesota | Turkey | Maquoketa | Copperas-Duck | Lower Wapsipinicon | Skunk | Upper Iowa | Lower Iowa | Lower Des Moines | Peruque-Piasa | Lower Illinois | Upper Mississippi-Cape Girardeau | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2012 (dry) | Precipitation (%) | −7.0 | −9.1 | −30.3 | −28.4 | −20.1 | −28.0 | −19.6 | −32.3 | −20.2 | −26.5 | −31.3 | −20.4 | −32.9 |
FWPI (%) | 29.8 | 22.4 | 97.6 | 195.7 | 39.3 | 65.2 | 92.4 | 123.3 | 23.8 | 68.5 | 87.5 | 49.0 | 93.9 | |
FWPIwq (%) | 29.8 | 27.2 | 97.6 | 195.7 | 39.3 | 73.8 | 153.5 | 211.8 | 30.1 | 121.9 | 88.3 | 49.0 | 93.9 | |
FWPIq (%) | 0.0 | −3.4 | 0.0 | 0.0 | 0.0 | −5.3 | −28.2 | −32.1 | −5.8 | −26.2 | −0.4 | 0.0 | 0.0 | |
2010 (wet) | Precipitation (%) | 12.2 | 14.2 | 7.4 | 20.0 | 21.5 | 19.5 | 44.4 | 19.8 | 31.6 | 51.0 | −4.5 | 25.0 | −18.0 |
FWPI (%) | −1.3 | −35.9 | −52.1 | −11.8 | −26.2 | −45.9 | −69.9 | −71.6 | −36.9 | −18.4 | −48.4 | −16.0 | −75.1 | |
FWPIwq (%) | −1.3 | −36.5 | −52.1 | −11.8 | −26.2 | −46.3 | −73.6 | −73.9 | −37.7 | −24.6 | −48.4 | −16.0 | −75.1 | |
FWPIq (%) | 0.0 | 1.4 | 0.0 | 0.0 | 0.0 | 0.3 | 7.9 | 3.4 | 0.3 | 5.2 | 0.0 | 0.0 | 0.0 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Chaubey, I.; Muenich, R.L.; Wei, X. Evaluation of Freshwater Provisioning for Different Ecosystem Services in the Upper Mississippi River Basin: Current Status and Drivers. Water 2016, 8, 288. https://doi.org/10.3390/w8070288
Li P, Chaubey I, Muenich RL, Wei X. Evaluation of Freshwater Provisioning for Different Ecosystem Services in the Upper Mississippi River Basin: Current Status and Drivers. Water. 2016; 8(7):288. https://doi.org/10.3390/w8070288
Chicago/Turabian StyleLi, Ping, Indrajeet Chaubey, Rebecca L. Muenich, and Xiaomei Wei. 2016. "Evaluation of Freshwater Provisioning for Different Ecosystem Services in the Upper Mississippi River Basin: Current Status and Drivers" Water 8, no. 7: 288. https://doi.org/10.3390/w8070288
APA StyleLi, P., Chaubey, I., Muenich, R. L., & Wei, X. (2016). Evaluation of Freshwater Provisioning for Different Ecosystem Services in the Upper Mississippi River Basin: Current Status and Drivers. Water, 8(7), 288. https://doi.org/10.3390/w8070288