Impact of Volcanic Eruptions on the Occurrence of PAHs Compounds in the Aquatic Ecosystem of the Southern Part of West Spitsbergen (Hornsund Fjord, Svalbard)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Materialas and Analytical Procedure
2.3. Quality Assurance/Quality Control (QA/QC)
2.4. Factors for Results Analysis
2.4.1. Diagnostics Ratios
2.4.2. Impact of Volcanic Eruption
2.4.3. Lidar Observations
2.4.4. Differences in Deposition Impact between Research Stations
2.4.5. Principal Component Analysis (PCA)
3. Results
3.1. Results Interpretation against Additional Factors
3.1.1. Diagnostics Ratios
3.1.2. Impact of Volcano Eruption on the Occurrence of Dioxin-Like Compounds
3.1.3. Lidar Observations of Volcanic Dust over Polish Polar Station in Hornsund after Eruptions of Eyjafjallajökull and Grímsvötn
3.1.4. Analysis of Location Impact on Pollutant Deposition
4. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kozak, K.; Polkowska, Ż.; Ruman, M.; Kozioł, K.; Namieśnik, J. Analytical studies on the environmental state of the Svalbard Archipelago provide a critical source of information about anthropogenic global impact. Trends Anal. Chem. 2013, 50, 107–126. [Google Scholar] [CrossRef]
- Arctic Monitoring and Assessment Programme. Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere. Arctic Monitoring and Assessment Programme; AMAP: Oslo, Norway, 2011. [Google Scholar]
- Mather, T.A.; Pyle, D.M.; Oppenheimer, C. Tropospheric volcanic aerosol. In Volcanism and the Earth’s Atmosphere; Robock, A., Oppenheimer, C., Eds.; American Geophysical Union: Washington DC, USA, 2003; pp. 189–212. [Google Scholar]
- Delmelle, P.; Stix, J.; Baxter, P.J.; Garcia-Alvarez, J.; Barquero, J. Atmospheric dispersion, environmental effects and potential health hazard associated with the low-altitude gas plume of Masaya volcano, Nicaragua. Bull. Volcanol. 2002, 64, 423–434. [Google Scholar] [CrossRef]
- Grainger, R.G.; Highwood, E.J. Changes in stratospheric composition, chemistry, radiation and climate caused by volcanic eruptions. Geol. Soc. Spec. Publ. 2003, 213, 329–347. [Google Scholar] [CrossRef]
- Robock, A. Volcanic eruptions and climate. Rev. Geophys. 2000, 38, 191–219. [Google Scholar] [CrossRef]
- Penner, J.E.; Andreae, M.; Annegarn, H.; Barrie, L.; Feichter, J.; Hegg, D.; Jayaraman, A.; Leaitch, R.; Murphy, D.; Nganga, J.; et al. Aerosols, Their Direct and Indirect Effects, in Climate Change: The Scientific Basis; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 289–348. [Google Scholar]
- Halmer, M.M.; Schmincke, H.U.; Graf, H.F. The annual volcanic gas input into the atmosphere, in particular into the stratosphere: A global data set for the past 100 years. J. Volcanol. Geotherm. Res. 2002, 115, 511–528. [Google Scholar] [CrossRef]
- Glasow, R.; Bobrowski, N.; Kern, C. The effects of volcanic eruptions on atmospheric chemistry. Chem. Geol. 2009, 263, 131–142. [Google Scholar] [CrossRef]
- Aiuppa, A.; Federico, C.; Franco, A.; Giudice, G.; Gurrieri, S.; Inguaggiato, S.; Liuzzo, M.; McGonigle, A.J.S.; Valenza, M. Emission of bromine and iodine from Mount Etna volcano. Geochem. Geophys. Geosyst. 2005, 6. [Google Scholar] [CrossRef] [Green Version]
- Bagnato, E.; Aiuppa, A.; Parello, F.; Calabrese, S.; DAlessandro, W.; Mather, T.A.; McGonigle, A.J.S.; Pyle, D.M.; Wängberg, I. Degassing of gaseous (elemental and reactive) and particulate mercury from Mount Etna volcano (Southern Italy). Atmos. Environ. 2007, 41, 7377–7388. [Google Scholar] [CrossRef]
- Bobrowski, N.; von Glasow, R.; Aiuppa, A.; Inguaggiato, S.; Louban, I.; Ibrahim, O.W.; Platt, U. Reactive halogen chemistry in volcanic plumes. J. Geophys. Res. 2007, 112, 382–388. [Google Scholar] [CrossRef]
- Stern, D.I. Reversal of the trend in global anthropogenic sulfur emissions. Glob. Environ. Chang. 2006, 16, 207–220. [Google Scholar] [CrossRef]
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef] [Green Version]
- Migała, K.; Nasiółkowski, T.; Pereyma, J. Topoclimatic conditions in the Hornsund area (SW Spitsbergen) during the ablation season 2005. Pol. Polar Res. 2008, 29, 73–91. [Google Scholar]
- Aamaas, B.; Bøggild, C.E.; Stordal, F.; Berntsen, T.; Holmen, K.; Strom, J. Elemental carbon deposition to Svalbard snow from Norwegian settlements and long-range transport. Tellus 2011, 63, 340–351. [Google Scholar] [CrossRef]
- Jiao, L.; Sun, X.; Luo, Y. Chinese arctic yellow river station research monitoring program. 1. Polycyclic aromatic hydrocarbons in Sediment from Svalbard. Appl. Mech. Mater. 2014, 522–524, 25–33. [Google Scholar] [CrossRef]
- Rose, N.L.; Rose, C.L.; Boyle, J.F.; Appleby, P.G. Lake-sediment evidence for local and remote sources of atmospherically deposited pollutants on Svalbard. J. Paleolimnol. 2004, 31, 499–513. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Diseases Registry (ATSDR). Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs); Agency for Toxic Substances and Diseases Registry (ATSDR): Atlanta, GA, USA, 1995.
- Muñoz, B.; Albores, A. DNA Damage Caused by Polycyclic Aromatic Hydrocarbons: Mechanisms and Markers; Chen, C.C., Ed.; University of California: San Diego, CA, USA, 2011. [Google Scholar]
- Horwell, C.J.; Baxter, P.J.; Hillman, S.E.; Calkins, J.A.; Damby, D.E.; Delmelle, P.; Donaldson, K.; Dunster, C.; Fubini, B.; Kelly, F.J.; et al. Physicochemical and toxicological profiling of ash from the 2010 and 2011 eruptions of Eyjafjallajökull and Grímsvötn volcanoes, Iceland using a rapid respiratory hazard assessment protocol. Environ. Res. 2013, 127, 63–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oudin, A.; Carlsen, H.K.; Forsberg, B.; Johansson, C. Volcanic ash and daily mortality in Sweden after the Icelandic volcano eruption of May 2011. Int. J. Environ. Res. Public Health 2013, 10, 6909–6919. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization (ISO). ISO 17993: Water Quality—Determination of 15 Polycyclic Aromatic Hydrocarbons (PAH) in Water by HPLC with Fluorescence Detection after Liquid–Liquid Extraction; International Organization for Standardization (ISO): Geneva, Switzerland, 2002. [Google Scholar]
- Wolska, L.; Rawa-Adkonis, M.; Namieśnik, J. Determining PAH and PCB in aqueous samples: Finding and evaluating sources of error. Anal. Bioanal. Chem. 2005, 382, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Wolska, L. Miniaturised analytical procedure of determining polycyclic aromatichydrocarbons and polychlorinated biphenyls in bottom sediments. J. Chromatogr. A 2002, 959, 173–180. [Google Scholar] [CrossRef]
- Mechlińska, A.; Wolska, L.; Namieśnik, J. Isotope-labeled substances in analysis of persistent organic pollutants in environmental samples. Trends Anal. Chem. 2010, 29, 820–831. [Google Scholar] [CrossRef]
- Polkowska, Ż.; Cichała-Kamrowska, K.; Ruman, M.; Kozioł, K.; Krawczyk, W.E.; Namieśnik, J. Organic Pollution in Surface Waters from the Fuglebekken Basin in Svalbard, Norwegian Arctic. Sensor 2011, 11, 8910–8929. [Google Scholar] [CrossRef] [PubMed]
- Wolska, L.; Mechlińska Rogowska, J.; Namieśnik, J. Sources and Fate of PAHs and PCBs in the Marine Environment. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1172–1189. [Google Scholar] [CrossRef]
- Ravindra, K.; Wauters, E.; Van Grieken, R. Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses. Sci. Total Environ. 2008, 396, 100–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahyar, S. Organic Pollutants Ten Years after the Stockholm Convention—Environmental and Analytical Update. In Depositional History of Polycyclic Aromatic Hydrocarbons: Reconstruction of Petroleum Pollution Record in Peninsular Malaysia; Puzyn, T., Mostrag-Szlichtyng, A., Eds.; IN TECH: Rijeka, Croatia, 2012. [Google Scholar]
- Pies, C.; Hoffmann, B.; Petrowsky, J.; Yang, Y.; Ternes, T.A.; Hofmann, T. Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere 2008, 72, 1594–1601. [Google Scholar] [CrossRef] [PubMed]
- Akyüz, M.; Çabuk, H. Gaseparticle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Sci. Total Environ. 2010, 408, 5550–5558. [Google Scholar] [CrossRef] [PubMed]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- De La Torre-Roche, R.J.; Lee, W.Y.; Campos-Díaz, S.I. Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: Analysis of a potential problem in the United States/Mexico border region. J. Hazard. Mater. 2009, 163, 946–958. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.W.; Zhang, G.; Liu, G.Q.; Guo, L.L.; Li, X.D.; Wai, O. Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China. Estuarine. Coast. Shelf Sci. 2009, 83, 60–66. [Google Scholar] [CrossRef]
- Katsoyiannis, A.; Terzi, E.; Cai, Q.Y. On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere 2007, 69, 1337–1339. [Google Scholar] [CrossRef] [PubMed]
- Culotta, L.; Gianguzza, A.; Mannino, M.R.; Orecchio, S. Polycyclic aromatic hydrocarbons (PAHs) in Volcano Island (Aeollan Archipelago mud utilized for therapeutic purpose. Polycycl. Aromat. Compd. 2007, 27, 281–294. [Google Scholar] [CrossRef]
- Podkletnov, N.E.; Markhinin, E.K. New data on abiogenic synthesis of prebiological compounds in volcanic processes. Orig. Life 1981, 11, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Isidorov, V.A.; Zenkevich, I.G.; Ioffe, B.V. Volatile organic compounds in solfataric gases. J. Atmos. Chem. 1990, 10, 329–340. [Google Scholar] [CrossRef]
- Kolesnikov, M.P.; Egorov, I.A. Metalloporphyrins and molecular complexes of amino acids with porphyrins in juvenile volcanic ash. Orig. Life 1979, 9, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Stracquadanio, M.; Dinellib, E.; Trombini, C. Role of volcanic dust in the atmospheric transport and deposition of polycyclic aromatic hydrocarbons and mercury. J. Environ. Monit. 2003, 5, 984–988. [Google Scholar] [CrossRef] [PubMed]
- Zolotov, M.Y.; Shock, E.L. A thermodynamic assessment of the potential synthesis of condensed hydrocarbons during cooling and dilution of volcanic gases. J. Geophys. Res. 2000, 105, 539–559. [Google Scholar] [CrossRef] [PubMed]
- Wild, S.R.; Jones, K.C. Polynuclear aromtic hydrocarbons in the United Kingdom environment: A preliminary source inventory and budget. Environ. Pollut. 1995, 88, 91–108. [Google Scholar] [CrossRef]
- Baccolo, G.; Clemenza, M.; Delmonte, B.; Maffezzoli, N.; Nastasi, M.; Previtali, E.; Maggi, V. Assessing the geochemical fingerprint of the 2010 Eyjafjallajökull tephra through instrumental neutron activation analysis: A trace element approach. J. Radioanal. Nucl. Chem. 2015, 306, 429–435. [Google Scholar] [CrossRef]
- Moxnes, E.D.; Kristiansen, N.I.; Stohl, A.; Clarisse, L.; Durant, A.; Weber, K.; Vogel, A. Separation of ash and sulfur dioxide during the 2011 Grímsvötn eruption. J. Geophys. Res. D Atmos. 2014, 119, 7477–7501. [Google Scholar] [CrossRef] [Green Version]
- Bolić, T.; Sivčev, Z. Eruption of Eyjafjallajökull in Iceland: Experience of European air traffic management. Transp. Res. Rec. J. Transp. Res. Board 2011, 2214, 136–143. [Google Scholar] [CrossRef]
- Vujasinović, R.; Kuenz, A.; Zillies, J.M.; Schmitt, A.R.; Edinger, C.; Mollwitz, V. Optimization of the european air traffic during the grímsvötn eruption in 2011 based on advanced volcanic ash forecast. In Proceedings of the Aviation Technology, Integration, and Operations Conference, Los Angeles, CA, USA, 12–14 August 2013.
- Karasiński, G.; Posyniak, M.; Bloch, M.; Sobolewski, P.; Małarzewski, Ł.; Soroka, J. Lidar Observations of Volcanic Dust over Polish Polar Station at Hornsund after Eruptions of Eyjafjallajökull and Grímsvötn. Acta Geophys. 2014, 62, 316–339. [Google Scholar] [CrossRef]
- Kafilzadeh, F.; Shiva, A.H.; Malekpour, R. Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Water and Sediments of the Kor River, Iran. Middle-East J. Sci. Res. 2011, 10, 1–7. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- The Data of Global Data Assimilation Sysytem (GDAS). Available online: ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1/ (accessed on 9 July 2011).
- EBAS Data Centre from Zeppelin Mountain (Ny Ålesund, Spitsbergen) and Andøya Stations. Available online: http://ebas.nilu.no (accessed on 14 December 2015).
- Karczewski, A.; Andrzejewski, L.; Chmal, H.; Jania, J.; Kłysz, P.; Kostrzewski, A.; Lindner, L.; Marks, L.; Pękala, K.; Pulina, M.; et al. Hornsund, Spitsbergen. Geomorfologia—Geomorphology 1:75 000; Uniwersytet Śląski: Katowice, Poland, 1984. [Google Scholar]
- Niedziewdź, T. Kalendarz Typów Cyrkulacji Atmosfery dla Spitsbergenu—Zbiór Komputerowy; Uniwersytet Ślaski: Katedra Klimatologii, Sosnowiec, Poland, 2013. [Google Scholar]
- Niedźwiedź, T. The atmospheric circulation. The atmospheric pressure. In Climate and Climate Change at Hornsund, Svalbard; Marsz, A.A., Styszyńska, A., Eds.; Gdynia Maritime University: Gdynia, Poland, 2013. [Google Scholar]
Analytical Techniques | Measurement Range | LOD | LOQ | CV (%) | Measurement Information | Reagents/Standards | |
---|---|---|---|---|---|---|---|
NPOC * | 0.15–10 | 0.030 | 0.10 | 0.1–1.5 | Total Organic Carbon Analyzer TOC-VCSH/CSN, SHIMADZU (680 °C combustion catalytic oxidation/NDIR method) | Potassium Biphthalate, C6H4(COOH) FW204.23, purity 99.9%, Kanto CO., INC., (Tokyo, Japan) | |
PAHs ** | Naphthalene | 1.02–3500 | 0.034 | 1.02 | 0.5–5 | Gas Chromatograph 7890A (Agilent Technologies, Santa Clara, CA, USA) coupled with a mass spectrometer (5975C inert MSD—Agilent Technologies), detector (Agilent Technologies 5975C) with electron ionization (SIM mode) | Dichloromethane, Methanol Sigma-Aldrich Company; Naphthalene-d8, Benzo(a)anthracene-d12, Supelco; Mixtures of 16 PAHs (2000 μg/mL in dichloromethane), Restek Corporation |
Acenaphthylene | 0.012–1000 | 0.004 | 0.012 | ||||
Acenaphthene | 0.012–1000 | 0.004 | 0.012 | ||||
Fluorene | 0.005–1000 | 0.002 | 0.005 | ||||
Phenanthrene | 0.008–1000 | 0.003 | 0.008 | ||||
Anthracene | 0.023–1000 | 0.008 | 0.023 | ||||
Fluoranthene | 0.042–1000 | 0.014 | 0.042 | ||||
Pyrene | 0.084–1000 | 0.028 | 0.084 | ||||
Chrysene | 0.007–1000 | 0.002 | 0.007 | ||||
Benzo(b)fluoranthene | 0.042–1000 | 0.014 | 0.042 | ||||
Benzo(k)fluoranthene | 0.007–1000 | 0.002 | 0.007 | ||||
Benzo(a)pyrene | 0.017–1000 | 0.006 | 0.017 | ||||
Benzo(a)anthracene | 0.005–1000 | 0.002 | 0.005 | ||||
Benzo[g,h,i]perylene | 0.004–1000 | 0.001 | 0.004 | ||||
Indeno(1,2,3-cd)pyrene | 1.29–1000 | 0.431 | 1.29 | ||||
Dibenz(a,h)anthracene | 0.042–1000 | 0.014 | 0.042 |
PAHs Diagnostic Ratios | Potential Pollution Emission Sources | Reference |
---|---|---|
ANT/(ANT + PHE) | <0.1 Petrogenic | [31] |
>0.1 Pyrogenic | ||
BaA/(BaA + CHR) | 0.2–0.35 Coal combustion | [32,33] |
<0.2 Petrogenic | ||
>0.35 Pyrogenic | ||
FLA/(FLA + PYR) | <0.4 Petrogenic | [34] |
0.4–0.5 Fossil fuel combustion | ||
>0.5 Grass, wood, coal | ||
IcdP/(IcdP + BghiP) | <0.2 Petrogenic | [33] |
0.2–0.5 Petroleum combustion | ||
>0.5 Grass, wood and | ||
(PHE/ANT) | >10 petrogenic origin | [35] |
<10 whereas combustion | ||
(Fl/PYR) | ≈1 indicate pyrolytic origins | |
>1 attributed to petrogenic source | ||
BaP/BghiP | <0.6 Non-traffic emissions | [36] |
>0.6 Traffic emissions | ||
FL/(FL + PYR) | <0.5 Petrol emissions | [29] |
>0.5 Diesel emissions |
Post-Eruptive Material | Year and Place of Eruption | Dioxin-Like Compounds | Concentration/Range | Reference |
---|---|---|---|---|
Muds pool | Vulcano Aeolian Island, the last eruption on the island occurred from 1888 to 1890 from the Gran Cratere. | NP; ACY; ACE; FL; PHE; ANT; FLA; PYR-1MET; PYR; BaA; CHR; BbF; BkF; BaP; PER; DahA; BghiP 1; IcdP | 0.5–35.7 ng/g∙dw | [37] |
Gases and aerosols | Ashes erupted during period from 1975 to 1976 by the Tolbachik volcano, and 1983, 1985, and 1988 on the Mendeleev volcano, in a caldera of Golovnin volcano, and at the side crater of the Tyatya volcano formed during the eruption of 1973 | Hydrocarbons, Aromatic polycyclic hydrocarbons | Identification | [38] |
Identification | [39] | |||
Ash | The volcano Tjatja (Kunashir island, Kuriles) erupted in 1973 | FLA; PYR; BaA; CHR; BbF; BkF; BaP; DahA | Identification | [40] |
From 20 July to 5 August 2001, a flank eruption with intense explosive activity occurred in Mount Etna. | 0.16–11 ng/g | [41] |
Name of the Compound Belonging to the PAHs Group | Abbreviation of the Compound Name | Number of Rings in the Aromatic Compound | 2010 | 2011 | 2012 | 2013 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Average N = 15 | Median | Min | Max | Average N = 15 | Median | Min | Max | Average N = 15 | Median | Min | Max | Average N = 15 | Median | |||
Naphthalene | NP | 2 | 177 | 5948 | 3090 | 3348 | <LOD | 82.5 | 9.04 | <LOD | 2.65 | 41.5 | 12.6 | 8.28 | 11.9 | 85.6 | 29.3 | 26.3 |
Acenaphthylene | ACY | 3 | <LOD | 257 | 50.0 | 22.5 | <LOD | 65.5 | 10.6 | 2.56 | 3.19 | 63.5 | 20.8 | 15.1 | 5.60 | 96.3 | 33.4 | 24.6 |
Acenaphthene | ACE | 3 | <LOD | 538 | 83.3 | 37.1 | <LOD | 8.73 | 1.43 | 0.74 | <LOD | 5.30 | 2.46 | 2.63 | <LOD | 36.6 | 10.8 | 9.47 |
Fluorene | FL | 3 | 8.39 | 298 | 56.2 | 27.2 | <LOD | <LOD | <LOD | <LOD | <LOD | 6.98 | 1.96 | 1.30 | <LOD | 33.7 | 15.2 | 13.7 |
Phenanthrene | PHE | 3 | 42.4 | 541 | 258 | 238 | <LOD | 3.29 | 0.51 | <LOD | <LOD | 57.8 | 15.2 | 15.0 | <LOD | 86.1 | 30.0 | 26.5 |
Anthracene | ANT | 3 | 6.40 | 1143 | 106 | 15.0 | <LOD | 3.67 | 0.59 | <LOD | <LOD | 3.19 | 0.170 | <LOD | <LOD | 15.8 | 2.76 | <LOD |
Fluoranthene | FLA | 4 | 7.63 | 656 | 72.7 | 16.2 | <LOD | 8.98 | 3.27 | <LOD | <LOD | 3.00 | 0.190 | <LOD | <LOD | 9.13 | 2.26 | 1.68 |
Pyrene | PYR | 4 | 6.20 | 153 | 37.4 | 25.7 | <LOD | 38.3 | 2.55 | <LOD | <LOD | 5.62 | 0.510 | <LOD | <LOD | 80.6 | 10.7 | <LOD |
Benzo[a]anthracene | BaA | 4 | 1.16 | 45.5 | 10.0 | 3.78 | <LOD | 55.9 | 11.3 | 6.39 | <LOD | 1.90 | 0.210 | <LOD | <LOD | <LOD | <LOD | <LOD |
Chrysene | CHR | 4 | <LOD | 77.3 | 10.4 | <LOD | <LOD | 68.5 | 13.8 | 0.14 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Benzo[b]fluoranthene | BbF | 5 | 4.07 | 43.9 | 20.4 | 17.7 | <LOD | 0.650 | 0.14 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Benzo[k]fluoranthene | BkF | 5 | <LOD | 53.8 | 6.86 | <LOD | 0.230 | 116 | 20.1 | 10.1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Benzo[a]pyrene | BaP | 5 | 1.10 | 35.1 | 8.35 | 4.12 | 3.40 | 2987 | 463 | 32.7 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Dibenzo[a,h]anthracene | DahA | 5 | <LOD | 20.0 | 8.14 | 8.09 | <LOD | 244 | 87.4 | 93.1 | <LOD | 1.89 | 0.150 | <LOD | <LOD | 10.4 | 0.690 | <LOD |
Benzo[g,h,i]perylene | BghiP 1 | 6 | <LOD | 95.0 | 9.42 | 2.41 | 12.6 | 2361 | 626 | 744 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Indeno[1,2,3-c,d]pyrene | IcdP | 6 | <LOD | 23.6 | 10.4 | 10.8 | 0.18 | 536 | 78.7 | 23.1 | <LOD | 6.54 | 1.00 | <LOD | <LOD | <LOD | <LOD | <LOD |
∑16PAHs | 695 | 6797 | 3838 | 3752 | 101 | 3477 | 1329 | 1278 | 13.3 | 104 | 55.3 | 48.0 | 59.7 | 332 | 135 | 110 | ||
NPOC [mg/L] | 1.28 | 2.97 | 1.94 | 1.83 | 1.13 | 4.54 | 2.27 | 2.17 | 0.42 | 1.82 | 1.08 | 1.05 | 0.50 | 1.95 | 1.32 | 1.20 |
PAHs Diagnostic Ratios | Potential Pollution | Lack of Volcanic Activity | Episodes of Volcano Erruptions | Lack of Volcanic Activity | ||
---|---|---|---|---|---|---|
2009 * | 2010 | 2011 | 2012 | 2013 | ||
ANT/(ANT + PHE) | <0.1 Petrogenic | 0.011 | 0.079 | |||
>0.1 Pyrogenic | 0.851 | 0.540 | 0.291 | |||
BaA/(BaA + CHR) | 0.2–0.35 Coal combustion | - | ||||
<0.2 Petrogenic | - | |||||
>0.35 Pyrogenic | 1.00 | 0.450 | 0.490 | - | ||
FLA/(FLA + PYR) | <0.4 Petrogenic | 0.174 | ||||
0.4–0.5 Fossil fuel, combustion | 0.268 | |||||
>0.5 Grass, wood, coal | 0.562 | 0.660 | ||||
IcdP/(IcdP + BghiP) | <0.2 Petrogenic | 0.112 | - | |||
0.2–0.5 Petroleum combustion | - | |||||
>0.5 Grass, wood and combustion | 1.00 | 0.525 | - | |||
(PHE/ANT) | >10 petrogenic origin | 0.771 | 88.5 | 10.9 | ||
<10 whereas combustion | 0.853 | 2.43 | ||||
(Fl/PYR) | ≈1 indicate pyrolytic origins | 0.628 | - | |||
>1 attributed to petrogenic source | 3.87 | - | 1.50 | 1.42 | ||
BaP/BghiP | <0.6 Non-traffic emissions | - | - | |||
>0.6 Traffic emissions | 0.886 | 0.740 | - | - | ||
FL/(FL + PYR) | <0.5 Petrol emissions | - | ||||
>0.5 Diesel emissions | 0.755 | 0.601 | - | 0.794 | 0.586 |
PAHs in 2010 | Before Eruption 15.02–7.04 (N = 8) | During Eruption 12.04–21.05 (N = 7) | After Eruption 24.05–28.07 (N = 10) | Before Eruption 10.02–8.04 (N = 8) | During Eruption 14.04–20.05 (N = 5) | After Eruption 26.05–29.07 (N = 8) |
---|---|---|---|---|---|---|
Ny-Ålesund | Andøya | |||||
Acenaphthene | ||||||
Average | 0.030 | 0.030 | 0.030 | 0.058 | 0.058 | 0.058 |
StdDev | 0.001 | 0.001 | 0.001 | 0.006 | 0.001 | 0.003 |
Acenaphthylene | ||||||
Average | 0.005 | 0.004 | 0.003 | 0.011 | 0.019 | 0.006 |
StdDev | 0.005 | 0.003 | 0.001 | 0.008 | 0.032 | 0.002 |
Benzo_a_fluoranthene | ||||||
Average | 0.002 | 0.001 | 0.001 | 0.004 | 0.001 | 0.001 |
StdDev | 0.004 | <0.0003 | <0.0003 | 0.006 | <0.001 | <0.001 |
Benzo_ghi_perylene | ||||||
Average | 0.010 | 0.002 | 0.003 | 0.013 | 0.005 | 0.004 |
StdDev | 0.016 | <0.0003 | 0.001 | 0.016 | 0.002 | <0.001 |
Inden_123cd_pyrene | ||||||
Average | 0.010 | 0.001 | 0.001 | 0.011 | 0.002 | 0.002 |
StdDev | 0.021 | 0.001 | <0.001 | 0.016 | 0.001 | 0.001 |
Naphthalene | ||||||
Average | 0.761 | 0.132 | 0.091 | 0.264 | 0.255 | 0.130 |
StdDev | 0.294 | 0.095 | 0.019 | 0.131 | 0.281 | 0.008 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozak, K.; Ruman, M.; Kosek, K.; Karasiński, G.; Stachnik, Ł.; Polkowska, Ż. Impact of Volcanic Eruptions on the Occurrence of PAHs Compounds in the Aquatic Ecosystem of the Southern Part of West Spitsbergen (Hornsund Fjord, Svalbard). Water 2017, 9, 42. https://doi.org/10.3390/w9010042
Kozak K, Ruman M, Kosek K, Karasiński G, Stachnik Ł, Polkowska Ż. Impact of Volcanic Eruptions on the Occurrence of PAHs Compounds in the Aquatic Ecosystem of the Southern Part of West Spitsbergen (Hornsund Fjord, Svalbard). Water. 2017; 9(1):42. https://doi.org/10.3390/w9010042
Chicago/Turabian StyleKozak, Katarzyna, Marek Ruman, Klaudia Kosek, Grzegorz Karasiński, Łukasz Stachnik, and Żaneta Polkowska. 2017. "Impact of Volcanic Eruptions on the Occurrence of PAHs Compounds in the Aquatic Ecosystem of the Southern Part of West Spitsbergen (Hornsund Fjord, Svalbard)" Water 9, no. 1: 42. https://doi.org/10.3390/w9010042
APA StyleKozak, K., Ruman, M., Kosek, K., Karasiński, G., Stachnik, Ł., & Polkowska, Ż. (2017). Impact of Volcanic Eruptions on the Occurrence of PAHs Compounds in the Aquatic Ecosystem of the Southern Part of West Spitsbergen (Hornsund Fjord, Svalbard). Water, 9(1), 42. https://doi.org/10.3390/w9010042