Transient Wave Scattering and Its Influence on Transient Analysis and Leak Detection in Urban Water Supply Systems: Theoretical Analysis and Numerical Validation
Abstract
:1. Introduction
2. Problem Statement and Study Framework
3. Models and Methods
3.1. One-Dimentional (1D) Transient Model
3.2. Multi-Scale Perturbation Method
4. Analytical Results and Analysis
4.1. Results of Regular Non-Uniformities
- Subcritical detuning: ,
- Supercritical detuning: ,
- Bragg resonance: ,
4.2. Results of Random Non-Uniformities
5. Numerical Validation
5.1. Settings of Numerical Tests
5.2. Validation for Regular Case
5.3. Validation for the Random Case
6. Results Discussion and Implications
6.1. Energy Analysis of Transient Wave Scattering
6.2. Impacts on Transient Modelling and Analysis
6.3. Impacts on Transient-Based Leak Detection
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Dolan, M.; Dean, R.G. Multiple longshore sand bars in the Upper Chesapeake Bay. Estuar. Coast. Shelf Sci. 1985, 21, 721–743. [Google Scholar] [CrossRef]
- Belzons, M.; Guazzelli, E.; Parodi, O. Gravity waves on a rough bottom: Experimental evidence of one-dimensional localization. J. Fluid Mech. 1988, 186, 539–558. [Google Scholar] [CrossRef]
- Devillard, P.; Dunlop, F.; Souvillard, B. Localization of gravity waves on a channel with random bottom. J. Fluid Mech. 1988, 186, 521–538. [Google Scholar] [CrossRef]
- Duan, H.F.; Lee, P.J.; Che, T.C.; Ghidaoui, M.S.; Karney, B.W.; Kolyshkin, A.A. The influence of non-uniform blockages on transient wave behavior and blockage detection in pressurized water pipelines. J. Hydro-Environ. Res. 2017, 17, 1–7. [Google Scholar] [CrossRef]
- Duan, H.F.; Lee, P.J.; Tuck, J. Experimental investigation of wave scattering effect of pipe blockages on transient analysis. Procedia Eng. 2014, 89, 1314–1320. [Google Scholar] [CrossRef]
- Anderson, P.A. Absence of diffusion in certain random lattices. Phys. Rev. 1958, 109, 1492–1505. [Google Scholar] [CrossRef]
- Mei, C.C.; Stiassnie, M.; Yue, D.K.P. Theory and Applications of Ocean Surface Waves, Part 1: Linear Aspects; World Scientific: Singapore, 2005. [Google Scholar]
- McInnis, D.; Karney, B.W. Transients in distribution networks: Field tests and demand models. J. Hydraul. Eng. 1995, 121, 218–231. [Google Scholar] [CrossRef]
- Ghidaoui, M.S.; Zhao, M.; McInnis, D.A.; Axworthy, D.H. A review of waterhammer theory and practice. Appl. Mech. Rev. 2005, 58, 49–76. [Google Scholar] [CrossRef]
- Wylie, E.B.; Streeter, V.L.; Suo, L. Fluid Transients in Systems; Prentice Hall, Inc.: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Nayfeh, A.H. Introduction to Perturbation Techniques; John Wiley & Sons: New York, NY, USA, 1981. [Google Scholar]
- Ghosh, S. Dependence in Stochastic Simulation Models. Ph.D. Thesis, Cornell University, New York, NY, USA, 2004. [Google Scholar]
- Tung, Y.K.; Yen, B.C.; Melching, C.S. Hydrosystems Engineering Reliability Assessment and Risk Analysis; McGraw-Hill Company, Inc.: New York, NY, USA, 2006. [Google Scholar]
- Karney, B.W. Energy relations in transient closed-conduit flow. J. Hydraul. Eng. 1990, 116, 1180–1196. [Google Scholar] [CrossRef]
- Duan, H.F.; Ghidaoui, M.S.; Lee, P.J.; Tung, Y.K. Unsteady friction and visco-elasticity in pipe fluid transients. J. Hydraul. Res. 2010, 48, 354–362. [Google Scholar] [CrossRef]
- Brunone, B. Transient test-based technique for leak detection in outfall pipes. J. Water Resour. Plan. Manag. 1999, 125, 302–306. [Google Scholar] [CrossRef]
- Sun, J.L.; Wang, R.; Duan, H.F. Multiple-fault detection in water pipelines using transient time-frequency analysis. J. Hydroinform. 2016, 18, 975–989. [Google Scholar] [CrossRef]
- Wang, X.J.; Lambert, M.F.; Simpson, A.R.; Liggett, J.A.; Vítkovský, J.P. Leak detection in pipeline systems using the damping of fluid transients. J. Hydraul. Eng. 2002, 128, 697–711. [Google Scholar] [CrossRef]
- Duan, H.F.; Lee, P.J.; Ghidaoui, M.S.; Tung, Y.K. Extended blockage detection in pipelines by using the system frequency response analysis. J. Water Resour. Plan. Manag. 2011, 138, 55–62. [Google Scholar] [CrossRef]
- Duan, H.F.; Lee, P.J.; Ghidaoui, M.S.; Tung, Y.K. Leak detection in complex series pipelines by using system frequency response method. J. Hydraul. Res. 2011, 49, 213–221. [Google Scholar] [CrossRef]
- Duan, H.F.; Lee, P.J. Transient-based frequency domain method for dead-end side branch detection in reservoir-pipeline-valve systems. J. Hydraul. Eng. 2016, 142, 04015042. [Google Scholar] [CrossRef]
- Ferrante, M.; Brunone, B. Pipe system diagnosis and leak detection by unsteady-state tests-1: Harmonic analysis. Adv. Water Resour. 2003, 26, 95–105. [Google Scholar] [CrossRef]
- Lee, P.J.; Lambert, M.F.; Simpson, A.R.; Vítkovský, J.P.; Liggett, J. Experimental verification of the frequency response method for pipeline leak detection. J. Hydraul. Res. 2006, 44, 693–707. [Google Scholar] [CrossRef] [Green Version]
- Meniconi, S.; Duan, H.F.; Lee, P.J.; Brunone, B.; Ghidaoui, M.S.; Ferrante, M. Experimental investigation of coupled frequency and time-domain transient test-based techniques for partial blockage detection in pipes. J. Hydraul. Eng. 2013, 139, 1033–1040. [Google Scholar] [CrossRef]
- Kim, S. Impedance method for abnormality detection of a branched pipeline system. Water Resour. Manag. 2016, 30, 1101–1115. [Google Scholar] [CrossRef]
- Sattar, A.M.; Chaudhry, M.H. Leak detection in pipelines by frequency response method. J. Hydraul. Res. 2008, 46, 138–151. [Google Scholar] [CrossRef]
- Duan, H.F.; Lee, P.J.; Ghidaoui, M.S.; Tung, Y.K. Essential system response information for transient-based leak detection methods. J. Hydraul. Res. 2010, 48, 650–657. [Google Scholar] [CrossRef]
- Stephens, M.L. Transient Response Analysis for Fault Detection and Pipeline Wall Condition Assessment in Field Water Transmission and Distribution Pipelines and Networks. Ph.D. Thesis, The University of Adelaide, Adelaide, Australia, 2008. [Google Scholar]
- Duan, H.F. Investigation of Factors Affecting Transient Pressure Wave Propagation and Implications to Transient Based Leak Detection Methods in Pipeline Systems. Ph.D. Thesis, The Hong Kong University of Science and Technology, Hong Kong, China, 2011. [Google Scholar]
- Blokker, E.J.M.; Vreeburg, J.H.G.; van Dijk, J.C. Simulating residential water demand with a stochastic end-use model. J. Water Resour. Plan. Manag. 2010, 136, 19–26. [Google Scholar] [CrossRef]
- Creaco, E.; Campisano, A.; Franchini, M.; Modica, C. Unsteady flow modeling of pressure real-time control in water distribution networks. J. Water Resour. Plan. Manag. 2017, 143, 04017056. [Google Scholar] [CrossRef]
- Creaco, E.; Pezzinga, G.; Savic, D. On the choice of the demand and hydraulic modeling approach to WDN real-time simulation. Water Resour. Res. 2017, 53, 6159–6177. [Google Scholar] [CrossRef]
- Buchberger, S.G.; Carter, J.T.; Lee, Y.H.; Schade, T.G. Random Demands, Travel Times and Water Quality in Dead-Ends, Prepared for American Water Works Association Research Foundation; Report No. 294; American Water Works Association Research Foundation: Denver, CO, USA, 2003. [Google Scholar]
Type | Case No. | λw/2λb | A0 (m2) | δA | Distribution Function | Correlation Function |
---|---|---|---|---|---|---|
Regular | 1 | >1 | 1.0 | σA/A0 = 0.20 | Degenerate (deterministic) | 0 for ζ ≠ 0 1 for ζ = 0 |
2 | =1 | |||||
3 | <1 | |||||
Random | 4 | >1 | 1.0 | σA/A0 = 0.23 | Uniform | e−α|ζ| |
5 | =1 | |||||
6 | <1 | |||||
7 | >1 | 1.0 | σA/A0 = 0.23 | Upper triangular | e−α|ζ| | |
8 | =1 | |||||
9 | <1 |
Case No. | Uniform Distribution | Upper Triangular Distribution | |||||
---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | 9 | ||
Wave scattering factor (φ) | Analytical | 125.0 | 75.0 | 159.4 | 125.0 | 75.0 | 159.4 |
Numerical | 127.5 | 74.5 | 157.0 | 125.8 | 76.3 | 152.5 | |
Relative error (%) | 2.0 | 0.7 | 1.5 | 0.7 | 1.7 | 4.5 |
Case | Real Leak Information, xL* & AL* | Predicted Leak Information, xp* & Ap* | Max. Error, |xL* − xp*| & |AL* − Ap*| | |||
---|---|---|---|---|---|---|
TRM | TDM | SRFM | ITM | |||
T1 | No Leak | 0.50 & 0.01 | 0.50 & 0.038 | 0.25 & 0.024 | 0.46 & 0.031 | --- & --- |
T2 | 0.1 & 0.002 | 0.49 & 0.012 | 0.44 & 0.042 | 0.17 & 0.019 | 0.34 & 0.035 | 39% & 40% |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, H.-F. Transient Wave Scattering and Its Influence on Transient Analysis and Leak Detection in Urban Water Supply Systems: Theoretical Analysis and Numerical Validation. Water 2017, 9, 789. https://doi.org/10.3390/w9100789
Duan H-F. Transient Wave Scattering and Its Influence on Transient Analysis and Leak Detection in Urban Water Supply Systems: Theoretical Analysis and Numerical Validation. Water. 2017; 9(10):789. https://doi.org/10.3390/w9100789
Chicago/Turabian StyleDuan, Huan-Feng. 2017. "Transient Wave Scattering and Its Influence on Transient Analysis and Leak Detection in Urban Water Supply Systems: Theoretical Analysis and Numerical Validation" Water 9, no. 10: 789. https://doi.org/10.3390/w9100789
APA StyleDuan, H. -F. (2017). Transient Wave Scattering and Its Influence on Transient Analysis and Leak Detection in Urban Water Supply Systems: Theoretical Analysis and Numerical Validation. Water, 9(10), 789. https://doi.org/10.3390/w9100789