Comparison of Saturated Hydraulic Conductivity Estimated by Three Different Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Soil Materials
2.2. Empirical Methods
2.3. Relative Effective Porosity Model
2.4. Moment Analysis and Analytical Solution for Tracer Tests
3. Results and Discussion
3.1. Empirical Methods Based on Grain Size Analysis
3.2. Column Drainage Tests for the REPM
3.3. Breakthrough Curve Analyses from Bench-Scale Tracer Tests
3.4. Comparison of Estimated Saturated Hydraulic Conductivities
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Frind, E.O.; Pinder, G.F. Galerkin solution of the inverse problem for aquifer transmissivity. Water Resour. Res. 1973, 9, 1397–1410. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwate; Prentice-Hall: Englewood Cliffs, NJ, USA, 1979. [Google Scholar]
- Kitanidis, P.K.; Vomvoris, E.G. A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations. Water Resour. Res. 1983, 19, 677–690. [Google Scholar] [CrossRef]
- Yeh, W.W.G. Review of parameter identification procedures in groundwater hydrology: The inverse problem. Water Resour. Res. 1986, 22, 95–108. [Google Scholar] [CrossRef]
- Arnold, J.G.; Allen, P.M.; Bernhardt, G. A comprehensive surface-groundwater flow model. J. Hydrol. 1993, 142, 47–69. [Google Scholar] [CrossRef]
- Haitjema, H.M. Analytic Element Modeling of Groundwater Flow; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Pinder, G.F. Groundwater Modeling Using Geographical Information Systems; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Suleiman, A.A. Modeling daily soil water dynamics during vertical drainage using the incoming flow concept. Catena 2008, 73, 312–320. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Development and applications of the hydrus and stanmod software packages and related codes. Vadose Zone J. 2008, 7, 587–600. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J.; van Genuchten, M.T. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Chapuis, R.P. Predicting the saturated hydraulic conductivity of soils: A review. Bull. Eng. Geol. Environ. 2012, 71, 401–434. [Google Scholar] [CrossRef]
- Fetter, C.W. Applied Hydrogeology; Prentice-Hall: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Rawls, W.; Brakensiek, D. A procedure to predict green and ampt infiltration parameters. In Proceedings of the American Society of Agricultural Engineers Conference on Advances in Infiltration, Chicago, IL, USA, 12–13 December 1983; pp. 102–112. [Google Scholar]
- Minasny, B.; McBratney, A.B.; Bristow, K.L. Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma 1999, 93, 225–253. [Google Scholar] [CrossRef]
- Pachepsky, Y.A.; Rawls, W. Accuracy and reliability of pedotransfer functions as affected by grouping soils. Soil Sci. Soc. Am. J. 1999, 63, 1748–1757. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J. Database-related accuracy and uncertainty of pedotransfer functions. Soil Sci. 1998, 163, 765–779. [Google Scholar] [CrossRef]
- Parasuraman, K.; Elshorbagy, A.; Si, B.C. Estimating saturated hydraulic conductivity using genetic programming. Soil Sci. Soc. Am. J. 2007, 71, 1676–1684. [Google Scholar] [CrossRef]
- Bagarello, V.; Iovino, M.; Tusa, G. Factors affecting measurement of the near-saturated soil hydraulic conductivity. Soil Sci. Soc. Am. J. 2000, 64, 1203–1210. [Google Scholar] [CrossRef]
- Ahuja, L.R.; Naney, J.W.; Green, R.E.; Nielsen, D.R. Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management1. Soil Sci. Soc. Am. J. 1984, 48, 699–702. [Google Scholar] [CrossRef]
- Suleiman, A.; Ritchie, J. Estimating saturated hydraulic conductivity from soil porosity. Trans. ASAE 2001, 44. [Google Scholar] [CrossRef]
- Rawls, W.J.; Brakensiek, D.; Saxtonn, K. Estimation of soil water properties. Trans. ASAE 1982, 25, 1316–1320. [Google Scholar] [CrossRef]
- Timlin, D.; Ahuja, L.; Pachepsky, Y.; Williams, R.; Gimenez, D.; Rawls, W. Use of brooks-corey parameters to improve estimates of saturated conductivity from effective porosity. Soil Sci. Soc. Am. J. 1999, 63, 1086–1092. [Google Scholar] [CrossRef]
- Carman, P. Fluid flow through granular beds. Chem. Eng. Res. Des. 1997, 75, S32–S48. [Google Scholar] [CrossRef]
- Ahuja, L.R.; Cassel, D.K.; Bruce, R.R.; Barnes, B.B. Evaluation of spatial distribution of hydraulic conductivity using effective porosity data. Soil Sci. 1989, 148, 404–411. [Google Scholar] [CrossRef]
- Regalado, C.M.; Muñoz-Carpena, R. Estimating the saturated hydraulic conductivity in a spatially variable soil with different permeameters: A stochastic kozeny–carman relation. Soil Tillage Res. 2004, 77, 189–202. [Google Scholar] [CrossRef]
- Nemes, A.; Rawls, W.J.; Pachepsky, Y.A. Influence of organic matter on the estimation of saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 2005, 69, 1330–1337. [Google Scholar] [CrossRef]
- Ahuja, L.R.; Wendroth, O.; Nielsen, D.R. Relationship between initial drainage of surface soil and average profile saturated conductivity. Soil Sci. Soc. Am. J. 1993, 57, 19–25. [Google Scholar] [CrossRef]
- Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modeling: Simulation of Flow and Advective Transport; Academic press: San Diego, NJ, USA, 2015. [Google Scholar]
- Wu, L.; Pan, L.; Mitchell, J.; Sanden, B. Measuring saturated hydraulic conductivity using a generalized solution for single-ring infiltrometers. Soil Sci. Soc. Am. J. 1999, 63, 788–792. [Google Scholar] [CrossRef]
- Bagarello, V.; Sferlazza, S.; Sgroi, A. Comparing two methods of analysis of single-ring infiltrometer data for a sandy–loam soil. Geoderma 2009, 149, 415–420. [Google Scholar] [CrossRef]
- Aiello, R.; Bagarello, V.; Barbagallo, S.; Consoli, S.; Di Prima, S.; Giordano, G.; Iovino, M. An assessment of the beerkan method for determining the hydraulic properties of a sandy loam soil. Geoderma 2014, 235–236, 300–307. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Bowman, B.T.; Brunke, R.R.; Drury, C.F.; Tan, C.S. Comparison of tension infiltrometer, pressure infiltrometer, and soil core estimates of saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 2000, 64, 478–484. [Google Scholar] [CrossRef]
- Verbist, K.; Baetens, J.; Cornelis, W.M.; Gabriels, D.; Torres, C.; Soto, G. Hydraulic conductivity as influenced by stoniness in degraded drylands of chile. Soil Sci. Soc. Am. J. 2009, 73, 471–484. [Google Scholar] [CrossRef]
- Verbist, K.M.J.; Cornelis, W.M.; Torfs, S.; Gabriels, D. Comparing methods to determine hydraulic conductivities on stony soils. Soil Sci. Soc. Am. J. 2013, 77, 25–42. [Google Scholar] [CrossRef]
- Comegna, V.; Damiani, P.; Sommella, A. Scaling the saturated hydraulic conductivity of a vertic ustorthens soil under conventional and minimum tillage. Soil Tillage. Res. 2000, 54, 1–9. [Google Scholar] [CrossRef]
- Cheng, C.; Chen, X. Evaluation of methods for determination of hydraulic properties in an aquifer–aquitard system hydrologically connected to a river. Hydrogeol. J. 2007, 15, 669–678. [Google Scholar] [CrossRef]
- LeBlanc, D.R.; Garabedian, S.P.; Hess, K.M.; Gelhar, L.W.; Quadri, R.D.; Stollenwerk, K.G.; Wood, W.W. Large-scale natural gradient tracer test in sand and gravel, cape cod, massachusetts: 1. Experimental design and observed tracer movement. Water Resour. Res. 1991, 27, 895–910. [Google Scholar] [CrossRef]
- Wagner, B.J.; Harvey, J.W. Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies. Water Resour. Res. 1997, 33, 1731–1741. [Google Scholar] [CrossRef]
- Garabedian, S.P.; LeBlanc, D.R.; Gelhar, L.W.; Celia, M.A. Large-scale natural gradient tracer test in sand and gravel, cape cod, massachusetts: 2. Analysis of spatial moments for a nonreactive tracer. Water Resour. Res. 1991, 27, 911–924. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, X.; Elliot, T.; Kalin, R. A natural-gradient field tracer test for evaluation of pollutant-transport parameters in a porous-medium aquifer. Hydrogeol. J. 2001, 9, 313–320. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C.; Weil, R.R. The Nature and Properties of Soils; Pearson: Columbus, OH, USA, 2016. [Google Scholar]
- Vuković, M.; Soro, A. Determination of Hydraulic Conductivity of Porous Media from Grain-Size Composition; Water Resources Pubns: Littleton, CO, USA, 1992. [Google Scholar]
- Odong, J. Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. J. Am. Sci. 2007, 3, 54–60. [Google Scholar]
- William Lambe, T. Soil Testing for Engineers; John Wiley and Sons, Inc.: London, UK, 1951. [Google Scholar]
- IMKO Micromodultechnik GmbH. Trime-fm User Manual; IMKO Micromodultechnik GmbH: Ettlingen, Germany, 2001. [Google Scholar]
- Fernandez-Garcia, D.; Sánchez-Vila, X.; Illangasekare, T.H. Convergent-flow tracer tests in heterogeneous media: Combined experimental–numerical analysis for determination of equivalent transport parameters. J. Contam. Hydrol. 2002, 57, 129–145. [Google Scholar] [CrossRef]
- Wolff, H.-J.; Radeke, K.-H.; Gelbin, D. Heat and mass transfer in packed beds—iv: Use of weighted moments to determine axial dispersion coefficients. Chem. Eng. Sci. 1979, 34, 101–107. [Google Scholar] [CrossRef]
- Yu, C.; Warrick, A.; Conklin, M. A moment method for analyzing breakthrough curves of step inputs. Water Resour. Res. 1999, 35, 3567–3572. [Google Scholar] [CrossRef]
- Jin, M.; Delshad, M.; Dwarakanath, V.; McKinney, D.C.; Pope, G.A.; Sepehrnoori, K.; Tilburg, C.E.; Jackson, R.E. Partitioning tracer test for detection, estimation, and remediation performance assessment of subsurface nonaqueous phase liquids. Water Resour. Res. 1995, 31, 1201–1211. [Google Scholar] [CrossRef]
- Das, B.; Wraith, J.; Kluitenberg, G.; Langner, H.; Shouse, P.; Inskeep, W. Evaluation of mass recovery impacts on transport parameters using least-squares optimization and moment analysis. Soil Sci. Soc. Am. J. 2005, 69, 1209–1216. [Google Scholar] [CrossRef]
- Toride, N.; Leij, F.; Van Genuchten, M.T. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments; U. S. Salinity Laboratory: Riverside, CA, USA, 1995; Volume 2. [Google Scholar]
- Rabideau, A.J.; Van Benschoten, J.; Patel, A.; Bandilla, K. Performance assessment of a zeolite treatment wall for removing sr-90 from groundwater. J. Contam. Hydrol. 2005, 79, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Mastrocicco, M.; Prommer, H.; Pasti, L.; Palpacelli, S.; Colombani, N. Evaluation of saline tracer performance during electrical conductivity groundwater monitoring. J. Contam. Hydrol. 2011, 123, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Thermo Fisher Scientific. User Guide, Bromide Ion Selective Electrode; Thermo Fisher Scientific: Beverly, MA, USA, 2008. [Google Scholar]
Test No. | Test Material | Injection Type | Total Test Volume (mL) | Injection Rate (mL/min) | Initial Concentration (, g·L−1) |
---|---|---|---|---|---|
1-1 | C | Continuous | 2000 | 0.66 | 0.049 |
1-2 | C | Pulse | 500 | 6.25 | 0.101 |
1-3 | C | Pulse | 300 | 5.57 | 0.101 |
1-4 | C | Pulse | 200 | 5.70 | 0.097 |
1-5 | C | Pulse | 200 | 1.60 | 0.096 |
1-6 | C | Pulse | 200 | 10.39 | 0.101 |
1-7 | C | Pulse | 100 | 5.77 | 0.083 |
2-1 | M | Continuous | 2000 | 0.61 | 0.049 |
2-2 | M | Pulse | 500 | 5.22 | 0.097 |
2-3 | M | Pulse | 300 | 5.18 | 0.101 |
2-4 | M | Pulse | 200 | 5.20 | 0.097 |
2-5 | M | Pulse | 200 | 1.36 | 0.091 |
2-6 | M | Pulse | 200 | 8.53 | 0.095 |
2-7 | M | Pulse | 100 | 5.40 | 0.083 |
3-1 | F | Continuous | 2000 | 0.59 | 0.047 |
3-2 | F | Pulse | 500 | 5.20 | 0.083 |
3-3 | F | Pulse | 200 | 1.31 | 0.140 |
Parameter | Coarse | Medium | Fine |
---|---|---|---|
Particle size (mm) | 0.5~1.0 | 0.25~0.5 | 0.125~0.25 |
d10 (mm) | 0.5 a, 1.0 b | 0.25 a, 0.5 b | 0.125 a, 0.25 b |
Porosity (cm3·cm−3) | 0.44 c (0.04 d) | 0.46 c (0.03 d) | 0.44 c (0.04 d) |
Bulk density (g·cm−3) | 1.44 c (0.05 d) | 1.43 c (0.08 d) | 1.47 c (0.03 d) |
(Hazen, cm/min) | 20.96 a, 104.81 b | 5.68 a, 27.08 b | 1.31 a, 6.99 b |
(Kozeny–Carman, cm/min) | 21.48 a, 161.33 b | 6.65 a, 44.66 b | 1.34 a, 12.35 b |
Parameter | Coarse | Medium | Fine |
---|---|---|---|
Field capacity (FC, %) | 9.8 a (1.8 b) | 19.8 a (0.1 b) | 25.8 a (0.6 b) |
(cm/min) | 0.69 a (0.34 b) | 0.08 a (0.02 b) | 0.03 a (0.01 b) |
Parameter | Coarse | Medium | Fine |
---|---|---|---|
Linear velocity (cm/min) | 5.8 × 10−2 a (4.4 × 10−3 b) | 3.8 × 10−2 a (2.4 × 10−3 b) | 7.2 × 10−3 a (2.8 × 10−4 b) |
Effective porosity (cm3·cm−3) | 3.6 × 10−1 (±3.0 × 10−2) c | 2.6 × 10−1 (±3.0 × 10−2) c | 2.1 × 10−1 (±3.0 × 10−2) c |
(cm/min) | 3.18 a (0.33 b) | 1.45 a (0.19 b) | 0.21 a (0.03 b) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, H.-T.; Jeen, S.-W.; Suleiman, A.A.; Lee, K.-K. Comparison of Saturated Hydraulic Conductivity Estimated by Three Different Methods. Water 2017, 9, 942. https://doi.org/10.3390/w9120942
Hwang H-T, Jeen S-W, Suleiman AA, Lee K-K. Comparison of Saturated Hydraulic Conductivity Estimated by Three Different Methods. Water. 2017; 9(12):942. https://doi.org/10.3390/w9120942
Chicago/Turabian StyleHwang, Hyoun-Tae, Sung-Wook Jeen, Ayman A. Suleiman, and Kang-Kun Lee. 2017. "Comparison of Saturated Hydraulic Conductivity Estimated by Three Different Methods" Water 9, no. 12: 942. https://doi.org/10.3390/w9120942
APA StyleHwang, H. -T., Jeen, S. -W., Suleiman, A. A., & Lee, K. -K. (2017). Comparison of Saturated Hydraulic Conductivity Estimated by Three Different Methods. Water, 9(12), 942. https://doi.org/10.3390/w9120942