1. Introduction
Climate change is bringing several new challenges to European agriculture. These effects are, by their very nature, strongly different across macro-regions as well as micro-areas. In Northern Europe, climate change may produce positive effects on agriculture through the introduction of new crop species and varieties, higher crop production and the expansion of suitable areas for crop cultivation. In Southern Europe, the possible increase in water shortages and extreme weather events may cause lower harvestable yields and higher yield variability. These effects may reinforce the current trends of intensification of agriculture in Northern and Western Europe and extensification in the Mediterranean and southeastern parts of Europe [
1,
2]. The new Common Agricultural Policy (CAP) reform explicitly addresses this aspect, dedicating funds for advisory weather services, training and supporting investments to adapt farm structures and production methods [
3]. This changing environmental and institutional context is encouraging the development of new technologies and modify their patterns of diffusion, with particular reference to irrigation practices.
Good management of irrigation water can increase crop yields, improve crop quality, conserve water, save energy, decrease fertilizers requirements and reduce nonpoint source pollution [
4]. A new frontier for optimizing the use of water resources is sought in the concept of “Precision Irrigation” (PI). PI is a practice, rather than a technique, that can be applied to any type of irrigation method in any region of the world. PI provides a means to support end users’ decisions with regard to how much to irrigate, and when, through data acquisition from monitoring devices (sensors) and forecasting tools (weather predictions), data interpretation, system control, and evaluation mechanisms [
5]. PI has the potential to increase certain economic efficiencies of operations by optimally matching input to yields in each zone of a field and reducing costs [
6]. Thus, PI can refer either to irrigation which is scheduled precisely (meets crop demand taking into account weather) or irrigation which is adjusted spatially (in order to account for differences in soil), or both. Any control strategies applicable to irrigation may be either: (i) “sensor-based”, for which the (simulated) irrigation application is directly adjusted according to the measurement response (e.g., learning control); and/or (ii) “model-based”, which use a calibrated soil and plant model for irrigation management (e.g., mathematical programming and model predictive control). These strategies differ fundamentally in their data requirements and their use of the crop model [
1]. However, whatever is the PI approach adopted and whatever are the instruments used to apply PI, the effect of this promising innovation is still unclear due to its limited diffusion and to the varying accuracy of available monitoring devices. Both canopy cover [
7] and soil moisture sensors [
8] are often inaccurate and the spatial variability within each management zones is often significant [
9], affecting the reliability of the information used to manage irrigation. However, a few empirical studies worldwide demonstrate that PI at least enables to lessen the risk of experiencing adverse situations of crop production and income [
6,
10,
11].
With the adoption of PI, the main changes occur in the way to handle available information which in turn may affect farmers’ ability to rationalize the use of water resources. A measure of the value of information (VOI) brought with PI can be estimated by comparing the consequences of the decisions made using PI with the consequences of the decision made using traditional sources of information [
12]. The magnitude of the consequences brought with PI may be determined by several factors, which, consequently, may affect positively or negatively its diffusion within a given region [
6].
The objective of this paper is to provide a methodology to assess the potential economic viability of PI in different environments introducing a literature on factors affecting the adoption of PI and a theoretical framework to calculate the value of the additional information brought with the adoption of PI. The theoretical framework is supported by a stakeholder consultation involving a structured group of experts from different geographical European regions and a pilot empirical example to assess the economic viability of PI. The Stakeholder consultation made it possible to explore divergences and convergences of factors that may determine the adoption of PI, while the empirical example offered a dimension of the potential economic and environmental relevance of PI. The paper concludes with a discussion of the extent to which PI can be considered an instrument capable of meeting the main concerns addressed by the Water Framework Directive (WFD) and the new CAP reform.
2. Literature on Factors Affecting PI Adoption
Nowadays, the paradigm of innovation for irrigation is shifting from technologies associated to the way to irrigate (i.e., from sprinkler irrigation to drip irrigation) to technologies related to the way to handle information for scheduling irrigation intervention (from hand-control irrigation systems to automated irrigation systems). Currently, however, there is very little literature analyzing the factors affecting the adoption of PI, while a broad literature contributes to identifying the main factors influencing the transition from traditional to modern irrigation technologies (MIT); that is, the transition from sprinkler to drip irrigation. These two different ways to innovate share the common goal to optimize the use of water resources in agriculture. Factors that affect the optimization of the use of water resources by the means of MIT [
13] may be expected to play a role also in affecting the viability of PI [
6].
The transition from traditional to modern irrigation technologies (MIT) appears to be affected by environmental, regulatory and structural factors. Climate conditions [
7], the quality of land, soil water holding capacity (WHC) and orography [
13,
14,
15] are addressed as the most important environmental factors conditioning the transition to MIT. In addition, subsidies [
8,
16,
17,
18,
19], water pricing [
20,
21,
22,
23], and enforcement and monitoring capacity [
22,
24] are regulatory factors that may further affect the transition to MIT. For their part, structural factors such as the type of crops [
17,
20], farmer networks [
25,
26], farmer skills [
27,
28], the cost of substituting inputs (labor and energy) (for instance, labor and energy can be considered substituting inputs when considering the transition from furrow irrigation to sprinkler or drip irrigation systems: furrow irrigation is highly labor intensive, while the other types of irrigation systems are energy intensive) and output prices [
21], and land ownership [
7] contribute to further substantiate under which circumstances the transition to MIT is more likely to occur.
With respect to the environmental factors, scientists have found that the adoption of modern irrigation technologies (from sprinklers to drip irrigation) is conditioned by the climatic conditions of a region and by the main types of irrigation water sources. For example, most of the crops for which it is possible to apply drip irrigation systems (fruit and vegetables) tend to be concentrated in tropical and temperate climate regions. Moreover, in those regions where underground water is the main source of irrigation water, the adoption of modern irrigation technologies increases as the unit cost for pumping water increases. In addition, increasing heterogeneity of field morphology and decreasing soil WHC increases the benefits brought with MIT. MIT guarantees a more homogeneous application of water, particularly on irregular fields, and allows to save water, particularly for fields with low WHC, requiring small amounts of water per intervention and high frequencies of interventions.
With respect to the regulatory factors, scientists have addressed instruments such as subsidies on investments, water pricing (tariffs) and rules of use (licensing for drilling wells, turns and quotas, etc.). These instruments can have varying impacts both on the adoption and the resulting water savings and nutrient leaching reductions. A point of attention where water saving is considered a public concern, is that subsidies alone may lead to the so-called Jevons paradox. That is, with increasing irrigation efficiency, also water availability with respect to needs increases, hence favoring the diffusion of more water intensive crops. To avoid the risk of such an effect, scholars suggest combining subsidies with water pricing. However, there is little evidence that water pricing affect water uses even when volumetric water price is applied; the main reason water price is not acting as an incentive to MIT adoption, however, is that in Europe water is rarely priced, and, when it is, tariff is just paid for the possibility to use water for irrigation and not for the real amount of water applied [
24]. Besides direct incentive effects, water pricing, which is an instrument commonly adopted by local water authorities to recover supply costs [
29,
30,
31], could be also applied to co-finance investments on modern irrigation technologies [
22]. Finally, most of the authors agree that the possibility of imposing rules of use, with particular reference to quotas and turns, could favor the adoption of modern irrigation technologies, in order for the farmers to better comply with such type of constraints.
With respect to the structural factors, the authors found that the type of land tenure conditions the adoption of modern irrigation technologies, as landowners are usually more willing to make long-term investments than tenants. Besides this, the most important structural factor conditioning the adoption of MIT is the type of crop. Moreover, the adoption of MIT tends to increase with the increasing costs of the substituting inputs and output prices and is also conditioned by the quality of human capital, with particular reference to farm skills and networking capacity.
Unlike MIT, with PI climate and crop factors are less important in conditioning the potential diffusion of the technology as, theoretically, PI can be applied to any type of irrigation system (modern and traditional) and in any area of the world where irrigation is practiced [
5]. However, presently, most of PI technologies have been developed without considering the knowledge levels, skills and abilities of farmers and service providers to effectively and economically manage them. In addition, the equipment is expensive [
6]. Accordingly, a farmer’s skills and financial capacity, coupled with his/her networking capacity and opportunity to consult service providers are considered the main factors conditioning the adoption of PI.
These cost-side considerations should be matched with benefits from adoption. PI should guarantee higher economic returns, mainly thanks to a more rational use of inputs (such as energy for pumping water and fertilizers) and higher yield, minimizing the risk of having areas in the same fields that are either too wet or too dry [
32,
33]. The adoption of PI may be expected to favor higher economic returns and higher environmental benefits, minimizing nutrient leaching losses and irrigation water wasted, with increased heterogeneity in field morphology.
One of the most recent novelty in the field of PI is to combine crop growth models estimating yield responses to water uses with measures of crop evapotranspiration and soil water content and weather forecasting tools to precisely schedule irrigation in relatively homogeneous regions of a field, named management zones [
34]. The management zone is a sub-region of the field that exhibits a relatively homogeneous combination of yield limiting factors for which a single rate of specific crop input (in the present methodology and water) is appropriate [
35]. However, it has not been easy to demonstrate consistently the economic returns from adopting these technologies as the bulk of the scientific reporting refers to pioneer applications of PI at the case study level [
6]. The limiting factors of this approach are found in the availability of cost effective support tools and instrumentation for decision-making.
Remote sensing is the most innovative technique to estimate crop evapotranspiration and, thus, spatial pattern in canopy cover, crop biomass and potential crop yield. The quality of the information provided through remote sensing is conditioned both by the spatial resolution and by the return frequencies of images [
16]. Because of this, satellite remote sensing is significantly less accurate than proximal remote sensing. Moreover, remote sensing from satellite images includes biases due to interferences from soil reflectance at low canopy densities and interferences from cloud cover that may compromise measures [
8]. However, most of these biases in the field of remote sensing have been consistently reduced since the spatial resolution of satellite images passed from 80 m (with Landsat 1 in 1979) to sub-meter resolution (with WorldView in 2009) and the return visit frequency has improved from 18 days to 1 day. Yao et al. [
36] summarized the major challenges for using satellite remote sensing for precision agriculture.
The limitation of satellite remote sensing for precision agriculture and PI can be overcome by applying proximal remote sensing, i.e., measurements made with tractors and hand-held sensors [
37]. However, satellite images are significantly less costly than proximal images and the quality of information provided through satellite images is steadily increasing. Particularly relevant in the field of PI is thermal remote sensing, based on emission of radiation in response to temperature of the leaf and canopy, as it captures water stress in crops [
38].
To date, a wide range of sensors is also used to measure soil moisture [
17]. Even recent research continues to show that these sensors takes point measurements that are seldom representative of the average soil moisture conditions of the field, especially for those fields with heterogeneous soil textures. However, all sensors give information about trends that can be usable for irrigation scheduling. Scholars suggest to locate sensors in those areas of the field with lowest WHC at the rooting depth to avoid reaching a water stress level in the other parts of the field [
4]. In addition, low cost tools (e.g., tensiometers) do not provide consistently precise and accurate data on soil moisture status and require considerable maintenance. To date, a breakthrough in the field of soil sensors was the introduction of sensors measuring the soil electrical conductivity that have been applied to map spatial patterns in soil salinity [
39], clay content and soil moisture content [
40]. However, tools that provide precise and relatively accurate measurements of soil moisture are generally too expensive for a grower to utilize in multiple locations at multiple depths across a given field [
6].
In any case, whatever is the accuracy of the instruments used to map spatial patterns in soil moisture content within a field, the issue of handling spatial variability remains. Practical limitation on the number of management zones collides with spatial variability with a consequent impact on the accuracy of the information provided [
36].
With respect to weather forecasts, the accuracy of seasonal and long-term weather forecasts remains quite low despite access to satellite data and improved forecasting models. In addition, the longer the time frame, the higher the possibility of deviation from the forecast. In addition, the absence of local weather stations negatively affect downscaling from global climate models (by the means of weather generators), with additional losses of accuracy [
41], especially for predicting extreme events [
42].
The considerations made so far are to highlight that both the spatial and the temporal accuracy of information contributes in conditioning the reliability of the information itself and consequently the practicality of PI.
Despite these limitations, a few empirical studies worldwide highlight that farmers who receive quality, up to date information, and who can use that information, are able to lessen the risk of experiencing adverse impacts on crop production and income [
6,
11,
43]. It is expected that the diffusion of PI will play a role in bridging the information gap and in reducing the information differentials that exists between farmers and between regions. In other words, PI can play the role of better informing decision makers with regard to the value of data and information. Willingness to pay for information can be thought of as a derived demand, or demand emanating from the value of services or information [
44].
3. Theoretical Framework
In the following, we develop an analytical approach combining the findings of scholars who have contributed to the analysis of the development of modern irrigation techniques with those of studies on new information systems for irrigation [
6,
7,
13,
14,
44]. Specifically, Miranowski [
13] collected a number of studies highlighting the factors that condition the adoption of MIT and, based on this, he developed a methodology that up until recently has provided support a number of empirical applications [
7,
14]. According to the relevant literature [
6], some of these factors seem also to hold for PI, in particular land quality. With increasing soil WHC, PI is less likely to favor higher performances and less likely to reduce energy and water consumption.
The methodology below describes an assessment procedure to evaluate the economic consequences generated by the use of new sources of information to schedule irrigation. We assume that initially the farmer is not in the condition to handle both spatial and temporal variability and he is applying a fixed calendar irrigation scheme based solely on its past experience. The new source of information is assumed to allow the farmer to split the field in management zones characterized by different WHC levels and to provide better forecasts about water requirements in the near future. This allow the farmer to plan water requirements for the different management zones of its field.
Other relevant assumptions are: (1) the number of management zones is determined a priori; (2) the amount of water applied is the only decisional variable (no other crop inputs are considered here); (3) the probability to correctly estimate crop water requirements (quality of information) is conditioned by both spatial and weather uncertainty (no distinction between the two main sources of bias); and (4) the probability of correctly estimating crop water requirements is known to the farmer.
To introduce our analytical approach, we start assuming a deterministic environment where crop income is a function of the amount of water applied for a given irrigation technology. Under such conditions, a profit maximizing farmer needs to find the optimal allocation of water considering the heterogeneous WHC of its field. This problem is addressed by the following maximization:
where
z is a subscript indicating the single management zone of the field; ∏(
xz) is crop income; 𝑥
z is the decisional variable, per hectare amount of irrigation water applied to the field for each management zone,
z;
yz(
xz) is the yield, which is function of the amount of water applied;
v is the unit cost of water for irrigation;
μ is the unit yield price; and
γz is the share of field assigned to each management zone. To simplify notation, we do not include any additional cost not depending on irrigation decisions. By maximizing Equation (1), we derive the optimal amount of water to be applied in each management zone of the field:
The maximization of Equation (1) is obtained by computing the partial derivative with respect to the decisional variable and equating it to 0. Here, denotes the partial derivative of the production . Thus, the equilibrium is reached when marginal productivity equals marginal costs for each management zone of the field. This is valid as long as there is no restriction on the amount of water available for irrigation and assuming that the farmer perfectly knows how much water to apply in each region of the field.
In fact, the information actually used by the farmer to estimate crop water requirements is far from being perfect. Under such circumstances the farmer may fail to apply irrigation efficiently. The following equation better explains farm behavior with respect to irrigation intervention in a sub-optimal information environment, where it is not possible to handle field heterogeneity:
Equation (3) differs from Equation (1) mainly for the decisional variable
. Here, it is assumed that the farmer is not able to distinguish different regions of its field and to modulate water application accordingly. Under such circumstances the farmer will choose to drive the application of water by mainly referring to that quota of the field which guarantees higher economic benefits:
Thus far, the amount of water applied by the farmer moves away from the optimum the more increases field heterogeneity, or decrease land quality. Likewise, with decreasing land quality levels (increasing number of regions of the field with increasing differences in WHC) increases the potential value of any additional information acquired to handle irrigation intervention.
The difference between the profit obtained by maximizing Equation (1) and the profit obtained by maximizing Equation (3) determines the maximum benefit caused by the use of information instruments to plan irrigation intervention.
The VOI in the present problem is conditioned by the accuracy level of the information itself, that is, by the capacity to correctly estimate crop water requirement in different region of the field. This value is calculated by comparing the consequences associated with farmer’s decision of whether or not to irrigate with and without a new information source.
To move from a deterministic to a stochastic approach, we now also assume that the farmer faces different states of the nature. States refer to the real water requirement in each sector of the field during the irrigating season. A probability of occurrence is associated to each of these states,
pz,s. This probability is assumed to reflect farmer’s expectation on states occurrence. Thus, Equation (3) can be reformulated as follows:
Let us consider Equation (5) as the benchmark irrigation management condition before receiving any additional information. Under such circumstances the farmer will choose to drive the application of water by mainly referring to those state conditions that are more likely to affect production in the most sensitive region of its field:
Equation (6) reveal that the amount of water applied moves even further away from optimality than what is shown for Equation (4), to the detriment of crop profitability. The more heterogeneous are the state of the nature faced by the farmer in each management zone of the field, the more sub-optimal would be the allocation of water.
In the presence of information, once it has received the information the farmer is assumed to apply different irrigation criteria in each management zone of its field. This assumption implies that the accuracy of the information and the heterogeneity in the WHC are both known.
With respect to the benchmark condition, the farmer can receive a set of messages,
m. messages inform the farmer about the amount of water to be applied in each sector of the field during the irrigating season. messages predict/estimate states of the nature,
s. Each message is delivered with certain probability,
, and with a certain degree of reliability. The degree of reliability is measured by the probability of occurrence of the predicted state,
. By assumption, with respect to the benchmarking conditions, the information service combines more accurate weather forecasts with more accurate estimations of crop water requirements per field unit, or management zone. Consequently, under uncertainty, the maximization problem described in Equation (1) for an informed farmer can be reformulated in the following equation:
Differently from the problem described by Equation (5), the informed farmer differentiates the application of water in the different regions of its field through the messages delivered by the information service. Indeed, by differentiating Equation (7) with respect to
x, we obtain the following equilibrium:
Equation (8) reveals a differentiation on the management of irrigation in the different regions of the field. The informed condition generates a more efficient outcome than the uninformed condition when the probability of occurrence of the states predicted by the information service (or states conditional probabilities) is greater than the relevant states prior probability. With perfect information, the probability of the state predicted by the message equals 1 and the equilibrium of Equation (8) equals the equilibrium reached in the ideal condition described by Equation (1). On the other hand, the informed condition generates less efficient outcomes when the probability of the state predicted by the message is lower than its prior, justifying the non-use of the service.
Now, let
denote the best income obtained by an informed farmer who differentiate the irrigation intervention in the different regions of its field through the information service;
, the best income obtained by irrigating as usual. The value associated to the new source of information (VOI) is obtained by the difference between maximum expected profits of using and not using the new information source,
Ω:
From Equation (9) it can be deduced that for each message delivered by the information service the value of the service is then depending on the differences between “informed” and “uninformed” expectation on income. The farmer is assumed to choose the action that maximize its profits. This is conditioned by the consequences faced by the farmer for each of the possible actions under the different possible states and by the accuracy of the messages delivered by the information service. If the farmer decides not to follow the message then its actions would equal the actions he would made in the absence of information.
The probabilities of receiving messages and the probabilities of state occurrences conditional to messages, known also as posterior probabilities, are related to the probabilities of states occurrence (known also as prior probabilities) and the probabilities of receiving messages conditional to states by the Bayesian rule [
12], such that:
. This equation can be rewritten as follows:
. The second term on the right hands side of this last equation,
, is the marginal informativeness of message m given state
s. The message provided by the information service is uninformative when the marginal informativeness equals 1, as posterior probabilities collapse to prior probabilities. In addition, the more the marginal informativeness is higher than 1, the more posterior probabilities will differ from prior probabilities, hence improving the farmer’s ability to predict future events. Prior probabilities may be further distinguished in an objective component, the probability of occurrence of state s,
hs, and a subjective component whose value is conditioned by farmer’s risk attitudes,
ws, such that:
ps =
wshs, and
∑𝑠w𝑠h𝑠 = 1. The farmer is risk neutral when
ws equal 1 for each state. This way, rather than directly tying risk to farmer’s payoff (Von Neumann-Morgenster Utility), we portray farmer’s risk as a subjective components conditioning farmer’s expectation about the occurrence of averse states. This way, the more the subjective component of farmer’s prior belief increases the perceived uncertainty the more conservative (or cautious) will be the action undertaken by the farmer decreasing its expectation on crop income.
Finally, the strategy of profit-maximizing irrigation involves a sequential process. First, optimal expected water use levels under the two informative systems are determined. Then, resulting profits are compared. The new information system is selected if , where r is representing the present cost of the equipment needed to shift from the conventional information system to the new information system and the transaction costs faced by the farmer in approaching the new information technology. The traditional technology is used when the difference on expected income between “informed” and “uninformed” actions is lower than zero.
6. Discussion
Current literature about PI suffers of the absence of studies highlighting the conditions under which PI guarantees higher performance and water savings. The present study offers a methodology to partially fill this gap, using a combination of a stakeholder consultations and a simulation exercises that incorporates a crop growth model simulating yield responses to water uses within an economic model. The simulation confirms that expected benefits arising with the transition from traditional sources of information to PI varies with the quality of the additional information brought with PI, with product prices and water use costs, as well as with soil heterogeneity and farmers’ risk attitudes. All of these factors are considered relevant in conditioning expected benefits also for the qualitative analysis carried out through the Stakeholder consultation. The Stakeholder consultation further integrates the quantitative analysis highlighting the fact that the existence of favorable environmental and regulatory conditions to the adoption of PI may not guarantee its adoption due to cognitive or attitudinal constraints embedded in farmers’ choices. Here, the whole group of stakeholders agreed that development of advisory services supporting farmers in using PI is a key policy issue to overcome farmer’s aversion to the adoption of this innovation.
On the other hand, the quantitative analysis also shows levels of private benefits per hectare which are relevant but rather low compared with the overall values at stake. As a result, they may be easily overcome by general transaction costs, learning effort or personal attitudes, as well as risk attitudes. In addition, it should be considered that the decision space of farmers may not necessarily allow fully exploiting the information available (e.g., when farmers have to comply with irrigation turns).
One of the main limitations of this paper is the fact of not accounting explicitly for the public value generated by saving water resources and for the different economic, regulatory and environmental conditions that might affect the adoption of PI practices. So, while highlighting the potential of PI and the conditions that would affect such potential, it is not able to strike a balance of costs and benefits of PI adoption in different situations.
This is also connected to other limitations of the study, especially with the limited coverage of European contexts for the Stakeholder consultation, potentially resulting in biases in the generalizations here presented. Indeed, the regions considered in this study displayed very different endowments, infrastructures and rules. These differences affect the type and priorities of interventions aimed at improving irrigation efficiency and water savings in those contexts that should benefit from the diffusion of PI. Thus, a better coverage of European countries may enable to better qualify strength and weakness related to the intrinsic potentialities of the innovation here analyzed and to better qualify opportunities and threats related to the environmental and regulatory context that may condition the diffusion of PI. The same applies and is even more relevant for the quantitative exercise, that only concerns one single crop in a specific area.
In addition to this, the modelling part also suffers from the fact that the process of decision making is fully simulated and is not based on actual farmers’ behavior. As a result, it is likely that benefits are overestimated with respect to reality.
Altogether, this study corroborates relevant factors already identified in closed fields of research related to irrigation technology and to information systems to support agricultural practices. It however allows validating these factors for the specific case of PI, as well as to identify some lessons learned, policy implications and avenues for further research.
7. Conclusions
PI represents a new technological frontier for optimizing the use of water resources in agriculture and this study constitutes a starting point for investigating the potential of PI in European irrigated agriculture. The theoretical studies discussed in this paper, together with the Stakeholder consultation, made it possible to carry out a SWOT analysis on PI adoption and to define a methodology for the assessment of the economic viability of the innovation. This was further tested through a pilot economic valuation.
The study highlights that the adoption of PI is strongly conditioned by the environmental, economic and regulatory framework of a region. Among other factors, soil conditions allow demonstrating the interplay between context variables and quality of information brought by the services in determining the benefits of PI. The main message from this exercise is to corroborate the idea that the profitability of adoption cannot be considered as generally given but has to be evaluated case by case.
To enhance the adoption of PI, the stakeholders participating in the consultation process emphasized the need to set up an advisory service that supports farmers in using PI. This concern is also confirmed in the literature with scholars reporting that farmers encounter significant problems in using current agricultural information management systems, notably in terms of functionality, interfaces and interfacing with the different parties involved [
27,
28,
32]. An advantage of PI is that, unlike past irrigation innovations, it can be applied to any type of irrigation system and in any region of the world. Moreover, PI is considered to be a promising innovation for irrigated agriculture in Europe because it facilitates the accomplishment of current policy goals. Indeed, the new CAP reform explicitly addresses the need to improve water savings, dedicating funding to advisory weather services and training and supporting investments aimed at adapting farm structures and production methods [
3]. This is subject to several conditions: (1) the existence of a River Basin Management plan (RBP); (2) the inclusion of specific measures dedicated to the agricultural sector in the RBP; and (3) the existence of water bodies in poor condition. These aspects concur to support the activation of specific CAP measures for targeting regions where the status of water bodies is undermined [
33].
These potentially favorable conditions do not ensure however that net benefits from the use of PI are positive everywhere. In light of the upcoming policy context and relevant policy scenarios, further research is required to determine: (a) if and for which type of regions/areas the diffusion of PI could be considered a valuable instrument for the achievement of environmental goals; (b) for which type of users the adoption of PI is more likely to ensure economic benefits; and (c) which type of economic and regulatory instruments are more likely to guarantee the adoption of PI and the expected impact on the environment and the farm economy.
In addition, the development of methods for an improved economic evaluation of PI is also sought. A few pilot experimental sites around Europe would enable to better calibrate yield responses to irrigation water uses for different geographical regions and to compare the impact on both income and water uses of PI with traditional sources of information. Then, the integration of spatial data of crop land coverage and soil characteristics with historical series of climatic data for European geographical regions provides relevant information, although not sufficient, to estimate the potential value generated with the improvement of the quality of information brought with PI at a regional scale, identifying target regions to promote its adoption. In addition, the methodology presented in this study analyses the economic benefits generated with the transition to PI for single crops. However, most farms have multiple crops and the most profitable strategy will derive by the overall performance of PI for this bundle of crops, considering, e.g., common fixed costs. Finally, farmers with differing characteristics, belief and endowments may perceive differently the economic benefits generated with the transition to PI.
A major limitation of the assessment methodology provided with the present study is in the fact that the number of management zone is not determined as part of the optimization process. However, the possibility to differentiate management zones within the field is conditioned by the offset between the benefits generated by rationalizing the allocation of water within the field, which increase with increasing field heterogeneity, and the additional costs faced by the farmer to manage irrigation practices, which increase with increasing number of management zones [
35]. Thus, a further development of the model presented in this study should be its extension to include management zones as part of the optimization process and its application on different crops at the farm level. Finally, a key issue to be further investigated is the role played by service providers in fostering the diffusion of PI, with particular reference to the strategies that they may use to induce farmers to undertake joint actions or coordinated investments in the use of this practice.