Multi-Perspectives’ Comparisons and Mitigating Implications for the COD and NH3-N Discharges into the Wastewater from the Industrial Sector of China
Abstract
:1. Introduction
2. Data and Methodology
2.1. Description of the Data
2.2. The IDA-LMDI Decomposition Model
3. Results and Discussion
3.1. Comparisons of Various Stages from a Periodic Perspective
3.1.1. Output Effect
3.1.2. Structure Effect
3.1.3. Intensity Effects (Pollution Abatement Effect and Clean Production Effect)
3.2. Comparisons of Different Sub-Sectors from a Structural Perspective
3.2.1. COD
3.2.2. NH3-N
4. Conclusions and Implications
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
No. | Sector | GDP | COD | NH3-N | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | ||
I1 | Mining and Washing of Coal | 3.10 | 0.35 | 1.76 | 12.4 | 5.3 | 8.8 | 0.57 | 0.10 | 0.34 |
I2 | Extraction of Petroleum and Natural Gas | 1.19 | 0.48 | 0.93 | 3.3 | 1.0 | 1.9 | 0.24 | 0.05 | 0.14 |
I3 | Mining and Processing of Ferrous Metal Ores | 0.88 | 0.05 | 0.44 | 1.5 | 0.8 | 1.1 | 0.18 | 0.02 | 0.06 |
I4 | Mining and Processing of Non-Ferrous Metal Ores | 0.55 | 0.08 | 0.32 | 6.0 | 3.2 | 4.4 | 0.26 | 0.02 | 0.14 |
I5 | Mining and Processing of Nonmetal Ores | 0.46 | 0.07 | 0.24 | 2.0 | 0.6 | 0.9 | 0.16 | 0.01 | 0.04 |
I6 | Mining of Other Ores | 0.00 | 0.00 | 0.00 | 0.1 | 0.0 | 0.1 | 0.01 | 0.00 | 0.00 |
I7 | Processing of Food from Agricultural Products | 5.51 | 0.83 | 2.95 | 67.7 | 44.1 | 55.6 | 4.93 | 1.88 | 2.54 |
I8 | Manufacture of Foods | 1.77 | 0.31 | 0.95 | 15.5 | 10.9 | 12.4 | 2.57 | 0.66 | 1.28 |
I9 | Manufacture of Beverages | 1.42 | 0.30 | 0.80 | 25.1 | 18.7 | 21.6 | 1.06 | 0.39 | 0.77 |
I10 | Manufacture of Tobacco | 0.78 | 0.31 | 0.52 | 0.9 | 0.2 | 0.4 | 0.03 | 0.01 | 0.02 |
I11 | Manufacture of Textile | 3.31 | 1.06 | 2.33 | 34.5 | 23.9 | 29.1 | 2.02 | 1.17 | 1.64 |
I12 | Manufacture of Textile Wearing Apparel, Footware and Caps | 1.82 | 0.46 | 1.07 | 2.1 | 0.8 | 1.6 | 0.17 | 0.04 | 0.11 |
I13 | Manufacture of Leather, Fur, Feather and Related Products | 1.20 | 0.30 | 0.70 | 7.5 | 4.9 | 6.4 | 0.86 | 0.37 | 0.64 |
I14 | Processing of Timber, Manufacture of Wood, Bamboo, Rattan, Palm, and Straw Products | 1.15 | 0.13 | 0.59 | 3.5 | 1.1 | 1.9 | 0.19 | 0.03 | 0.07 |
I15 | Manufacture of Furniture | 0.63 | 0.10 | 0.35 | 0.5 | 0.1 | 0.2 | 0.03 | 0.00 | 0.01 |
I16 | Manufacture of Paper and Paper Products | 1.20 | 0.34 | 0.83 | 159.7 | 47.8 | 112.1 | 4.14 | 1.63 | 2.73 |
I17 | Printing, Reproduction of Recording Media | 0.59 | 0.14 | 0.31 | 0.5 | 0.2 | 0.2 | 0.10 | 0.01 | 0.02 |
I18 | Manufacture of Articles For Culture, Education and Sport | 1.29 | 0.13 | 0.45 | 0.2 | 0.1 | 0.1 | 0.02 | 0.00 | 0.01 |
I19 | Processing of Petroleum, Coking, Processing of Nuclear Fuel | 3.64 | 0.90 | 2.45 | 9.0 | 6.1 | 7.7 | 1.63 | 0.73 | 1.25 |
I20 | Manufacture of Raw Chemical Materials and Chemical Products | 7.19 | 1.28 | 4.05 | 56.9 | 3.3 | 40.4 | 22.0 | 6.65 | 11.88 |
I21 | Manufacture of Medicines | 2.02 | 0.39 | 1.02 | 18.8 | 9.6 | 11.9 | 0.94 | 0.51 | 0.73 |
I22 | Manufacture of Chemical Fibers | 0.65 | 0.20 | 0.45 | 15.7 | 9.0 | 12.2 | 0.48 | 0.23 | 0.38 |
I23 | Manufacture of Rubber & Plastics | 2.59 | 0.59 | 1.60 | 5.1 | 1.0 | 1.7 | 0.30 | 0.06 | 0.12 |
I24 | Manufacture of Non-metallic Mineral Products | 4.97 | 0.75 | 2.61 | 7.4 | 3.0 | 4.4 | 0.56 | 0.14 | 0.22 |
I25 | Smelting and Pressing of Ferrous Metals | 6.82 | 1.45 | 4.54 | 17.6 | 2.9 | 11.2 | 1.91 | 0.57 | 1.11 |
I26 | Smelting and Pressing of Non-ferrous Metals | 4.44 | 0.50 | 2.42 | 4.9 | 2.7 | 3.2 | 1.87 | 0.27 | 0.89 |
I27 | Manufacture of Metal Products | 3.15 | 0.53 | 1.71 | 3.5 | 1.1 | 2.3 | 0.27 | 0.04 | 0.14 |
I28 | Manufacture of General Purpose Machinery | 4.07 | 0.77 | 2.58 | 2.4 | 0.8 | 1.5 | 0.12 | 0.04 | 0.08 |
I29 | Manufacture of Special Purpose Machinery | 3.01 | 0.52 | 1.70 | 2.1 | 0.6 | 1.2 | 0.56 | 0.06 | 0.15 |
I30 | Manufacture of Transport Equipment | 7.44 | 1.56 | 4.22 | 6.0 | 1.6 | 3.8 | 0.79 | 0.09 | 0.30 |
I31 | Manufacture of Electrical Machinery and Equipment | 5.80 | 1.06 | 3.40 | 1.3 | 0.7 | 1.0 | 0.08 | 0.03 | 0.05 |
I32 | Manufacture of Communication Equipment, Computers and Other Electronic Equipment | 7.40 | 2.25 | 4.89 | 3.7 | 1.2 | 2.6 | 0.32 | 0.08 | 0.22 |
I33 | Manufacture of Measuring Instruments and Machinery for Cultural Activity and Office Work | 0.72 | 0.23 | 0.52 | 1.3 | 0.1 | 0.6 | 0.07 | 0.01 | 0.03 |
I34 | Manufacture of Artwork and Other Manufacturing | 0.67 | 0.17 | 0.34 | 0.9 | 0.2 | 0.5 | 0.05 | 0.01 | 0.03 |
I35 | Recycling and Disposal of Waste | 0.32 | 0.01 | 0.15 | 0.3 | 0.0 | 0.2 | 0.02 | 0.00 | 0.01 |
I36 | Production and Supply of Electric Power and Heat Power | 4.94 | 1.58 | 3.47 | 13.2 | 2.5 | 6.5 | 0.55 | 0.13 | 0.29 |
I37 | Production and Supply of Gas | 0.45 | 0.06 | 0.21 | 11.8 | 0.1 | 1.6 | 0.63 | 0.02 | 0.20 |
I38 | Production and Supply of Water | 0.15 | 0.06 | 0.10 | 2.5 | 0.0 | 1.2 | 0.28 | 0.00 | 0.10 |
Stage | COD | NH3-N | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ΨYTOT | ΨYG | ΨYS | ΨYC | ΨYA | ΨYTOT | ΨYG | ΨYS | ΨYC | ΨYA | |
2003–2004 | 0.9848 | 1.4235 | 0.9957 | 0.71 | 0.9785 | 1.0295 | 1.4247 | 0.9936 | 0.7254 | 1.0026 |
2004–2005 | 1.0737 | 1.0948 | 0.9841 | 1.018 | 0.979 | 1.2375 | 1.0942 | 1.0222 | 0.952 | 1.1622 |
2005–2006 | 0.9508 | 1.2151 | 0.9829 | 0.8353 | 0.9531 | 0.7592 | 1.2142 | 0.9923 | 0.8181 | 0.7702 |
2006–2007 | 0.9813 | 1.1839 | 0.9981 | 0.955 | 0.8696 | 0.8154 | 1.1837 | 1.0092 | 0.8743 | 0.7807 |
2007–2008 | 0.8997 | 1.1607 | 0.9961 | 0.8676 | 0.897 | 0.8666 | 1.1605 | 1.0021 | 0.8451 | 0.8817 |
2008–2009 | 0.9403 | 1.0915 | 1.0115 | 0.8773 | 0.9707 | 0.914 | 1.0912 | 1.0067 | 0.8878 | 0.9372 |
2009–2010 | 0.9625 | 1.2058 | 0.9924 | 0.852 | 0.9441 | 0.9936 | 1.2053 | 1.0023 | 0.8505 | 0.967 |
2010–2011 | 0.8162 | 1.1157 | 1.008 | 2.0433 | 0.3552 | 1.1502 | 1.1179 | 1.0231 | 2.3157 | 0.4343 |
2011–2012 | 1.0398 | 1.0776 | 1.002 | 0.903 | 1.0665 | 0.9234 | 1.0789 | 1.0102 | 0.8685 | 0.9755 |
2012–2013 | 0.9385 | 1.0891 | 0.9972 | 1.3047 | 0.6623 | 0.9276 | 1.0891 | 1.0044 | 1.4697 | 0.577 |
2013–2014 | 0.9634 | 1.0409 | 0.978 | 0.6323 | 1.4968 | 0.9368 | 1.0406 | 0.9909 | 0.5066 | 1.7935 |
2003–2005 | 1.0573 | 1.5569 | 0.9836 | 0.7215 | 0.957 | 1.274 | 1.5585 | 1.018 | 0.6826 | 1.1764 |
2005–2010 | 0.7598 | 2.1866 | 0.9811 | 0.5171 | 0.6849 | 0.4872 | 2.1651 | 1.0173 | 0.4657 | 0.4749 |
2010–2014 | 0.7673 | 1.3627 | 0.9889 | 1.4844 | 0.3836 | 0.9229 | 1.3637 | 1.022 | 1.4897 | 0.4445 |
2003–2014 | 0.6164 | 4.4543 | 0.9742 | 0.5464 | 0.26 | 0.5728 | 4.4404 | 1.0698 | 0.4729 | 0.255 |
Stage | COD | NH3-N | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
△YTOT | △YG | △YS | △YC | △YA | △YTOT | △YG | △YS | △YC | △YA | |
2003–2004 | −0.067 | 1.551 | −0.019 | −1.505 | −0.095 | 0.011 | 0.132 | −0.002 | −0.119 | 0.001 |
2004–2005 | 0.321 | 0.409 | −0.073 | 0.081 | −0.096 | 0.090 | 0.038 | 0.009 | −0.021 | 0.063 |
2005–2006 | −0.230 | 0.889 | −0.079 | −0.822 | −0.219 | −0.112 | 0.079 | −0.003 | −0.082 | −0.107 |
2006–2007 | −0.083 | 0.744 | −0.008 | −0.203 | −0.616 | −0.065 | 0.054 | 0.003 | −0.043 | −0.079 |
2007–2008 | −0.438 | 0.618 | −0.016 | −0.589 | −0.450 | −0.039 | 0.040 | 0.001 | −0.045 | −0.034 |
2008–2009 | −0.235 | 0.334 | 0.044 | −0.499 | −0.113 | −0.022 | 0.021 | 0.002 | −0.029 | −0.016 |
2009–2010 | −0.138 | 0.678 | −0.028 | −0.581 | −0.208 | −0.001 | 0.043 | 0.001 | −0.037 | −0.008 |
2010–2011 | −0.654 | 0.352 | 0.026 | 2.300 | −3.332 | 0.034 | 0.027 | 0.006 | 0.205 | −0.204 |
2011–2012 | 0.116 | 0.221 | 0.006 | −0.302 | 0.191 | −0.020 | 0.019 | 0.003 | −0.035 | −0.006 |
2012–2013 | −0.186 | 0.250 | −0.008 | 0.778 | −1.205 | −0.017 | 0.020 | 0.001 | 0.090 | −0.128 |
2013–2014 | −0.104 | 0.111 | −0.062 | −1.275 | 1.121 | −0.014 | 0.009 | −0.002 | −0.148 | 0.127 |
2003–2005 | 0.254 | 2.016 | −0.075 | −1.486 | −0.200 | 0.100 | 0.184 | 0.007 | −0.158 | 0.067 |
2005−2010 | −1.125 | 3.203 | −0.078 | −2.699 | −1.550 | −0.239 | 0.257 | 0.006 | −0.254 | −0.248 |
2010–2014 | −0.828 | 0.967 | −0.035 | 1.234 | −2.994 | −0.018 | 0.068 | 0.005 | 0.087 | −0.177 |
2003–2014 | −1.698 | 5.244 | −0.092 | −2.121 | −4.729 | −0.157 | 0.419 | 0.019 | −0.210 | −0.384 |
Average | −0.154 | 0.477 | −0.008 | −0.193 | −0.430 | −0.014 | 0.038 | 0.002 | −0.019 | −0.035 |
Year | COD | NH3-N | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ΨYTOT | ΨYG | ΨYS | ΨYC | ΨYA | ΨYTOT | ΨYG | ΨYS | ΨYC | ΨYA | |
2004 | 0.9848 | 1.4235 | 0.9957 | 0.7100 | 0.9785 | 1.0295 | 1.4247 | 0.9936 | 0.7254 | 1.0026 |
2005 | 1.0574 | 1.5584 | 0.9799 | 0.7228 | 0.9580 | 1.2740 | 1.5589 | 1.0157 | 0.6906 | 1.1652 |
2006 | 1.0054 | 1.8937 | 0.9631 | 0.6037 | 0.9130 | 0.9672 | 1.8928 | 1.0078 | 0.5650 | 0.8975 |
2007 | 0.9866 | 2.2419 | 0.9613 | 0.5766 | 0.7940 | 0.7887 | 2.2405 | 1.0171 | 0.4939 | 0.7006 |
2008 | 0.8876 | 2.6022 | 0.9575 | 0.5002 | 0.7122 | 0.6835 | 2.6001 | 1.0192 | 0.4174 | 0.6178 |
2009 | 0.8346 | 2.8403 | 0.9685 | 0.4389 | 0.6913 | 0.6247 | 2.8373 | 1.0261 | 0.3706 | 0.5790 |
2010 | 0.8033 | 3.4248 | 0.9612 | 0.3739 | 0.6527 | 0.6207 | 3.4198 | 1.0284 | 0.3152 | 0.5599 |
2011 | 0.6557 | 3.8211 | 0.9689 | 0.7640 | 0.2318 | 0.7139 | 3.8230 | 1.0522 | 0.7299 | 0.2431 |
2012 | 0.6818 | 4.1176 | 0.9708 | 0.6899 | 0.2472 | 0.6592 | 4.1246 | 1.0629 | 0.6339 | 0.2372 |
2013 | 0.6398 | 4.4845 | 0.9681 | 0.9001 | 0.1638 | 0.6115 | 4.4921 | 1.0676 | 0.9317 | 0.1369 |
2014 | 0.6164 | 4.6679 | 0.9468 | 0.5691 | 0.2451 | 0.5729 | 4.6745 | 1.0579 | 0.4720 | 0.2455 |
References
- Tsuzuki, Y.; Koottatep, T.; Sinsupan, T.; Jiawkok, S.; Wongburana, C.; Wattanachira, S.; Sarathai, Y. A concept for planning and management of on-site and centralised municipal wastewater treatment systems, a case study in Bangkok, Thailand. I: Pollutant discharge indicators and pollutant removal efficiency functions. Water Sci. Technol. 2013, 67, 1923–1933. [Google Scholar] [CrossRef] [PubMed]
- Mailler, R.; Gasperi, J.; Coquet, Y.; Bulete, A.; Vulliet, E.; Deshayes, S.; Zedek, S.; Mirande-Bret, C.; Eudes, V.; Bressy, A.; et al. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale. Sci. Total Environ. 2016, 542, 983–996. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.L.; Xia, J.; Li, K.Y.; Chen, J.; Wu, X.L.; Li, X.Q. Removal of ZnO nanoparticles in simulated wastewater treatment processes and its effects on COD and NH4+-N reduction. Water Sci. Technol. 2013, 67, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Raja, M.M.M.; Raja, A.; Imran, M.M.; Gajalakshmi, P.; Vignesh, S.; Sivakumar, J. Application of synergetic microorganisms to remove ammonia-nitrogen and chemical oxygen demand from the effluent. J. Pure Appl. Microbiol. 2010, 4, 659–666. [Google Scholar]
- Healy, M.G.; Rodgers, M.; Mulqueen, J. Performance of a stratified sand filter in removal of chemical oxygen demand, total suspended solids and ammonia nitrogen from high-strength wastewaters. J. Environ. Manag. 2007, 83, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Pirsaheb, M.; Azizi, E.; Almasi, A.; Soltanian, M.; Khosravi, T.; Ghayebzadeh, M.; Sharafi, K. Evaluating the efficiency of electrochemical process in removing COD and NH4-N from landfill leachate. Desalin. Water Treat. 2016, 57, 6644–6651. [Google Scholar] [CrossRef]
- Huang, Y.K.; Li, S.; Wang, C.; Min, J. Simultaneous removal of COD and NH3-N in secondary effluent of high-salinity industrial waste-water by electrochemical oxidation. J. Chem. Technol. Biotechnol. 2012, 87, 130–136. [Google Scholar] [CrossRef]
- Candido, L.; Gomes, J.; Jambo, H.C.M. Electrochemical treatment of oil refinery wastewater for NH3-N and COD removal. Int. J. Electrochem. Sci. 2013, 8, 9187–9200. [Google Scholar]
- Huang, W.L.; Wang, W.L.; Shi, W.S.; Lei, Z.F.; Zhang, Z.Y.; Chen, R.Z.; Zhou, B.B. Use low direct current electric field to augment nitrification and structural stability of aerobic granular sludge when treating low COD/NH4-N wastewater. Bioresour. Technol. 2014, 171, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Ramdani, N.; Lousdad, A.; Tilmatine, A.; Nemmich, S. Dielectric barrier discharge-based investigation and analysis of wastewater treatment and pollutant removal. Water Sci. Technol. 2016, 73, 2858–2867. [Google Scholar] [CrossRef] [PubMed]
- Abu Hasan, H.; Abdullah, S.R.S.; Kamarudin, S.K.; Kofli, N.T. Response surface methodology for optimization of simultaneous COD, NH4+-N and Mn2+ removal from drinking water by biological aerated filter. Desalination 2011, 275, 50–61. [Google Scholar] [CrossRef]
- Kamaruddin, M.A.; Yusoff, M.S.; Ahmad, M.A. Optimization of preparation conditions for durian peel-based activated carbon for the removal of COD and Ammoniacal Nitrogen (NH3-N) using response-surface methodology. Kuwait J. Sci. Eng. 2012, 39, 37–58. [Google Scholar]
- Muhamad, M.H.; Abdullah, S.R.S.; Mohamad, A.; Rahman, R.A.; Kadhum, A.A.H. Application of response surface methodology (RSM) for optimisation of COD, NH3-N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR). J. Environ. Manag. 2013, 121, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Rubi, H.; Fall, C.; Ortega, R.E. Pollutant removal from oily wastewater discharged from car washes through sedimentation-coagulation. Water Sci. Technol. 2009, 59, 2359–2369. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.L.; Xu, G.R.; Pan, K.; Zhou, W.; Dai, Y.; Wang, X.; Zhang, D.; Hu, Y.C.; Ma, M. Nitrogen removal and biofilm structure affected by COD/NH4+-N in a biofilter with porous sludge-ceramsite. Sep. Purif. Technol. 2012, 94, 9–15. [Google Scholar] [CrossRef]
- Xie, Y.K.; Wen, Z.Y.; Mo, Z.H.; Yu, Z.Q.; Wei, K.L. Implementation of an automatic and miniature on-line multi-parameter water quality monitoring system and experimental determination of chemical oxygen demand and ammonia-nitrogen. Water Sci. Technol. 2016, 73, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Xinhua News Agency. National Economic and Social Development Report of the People’s Republic of China 13th Five-Year-Plan Outline. Available online: http://news.xinhuanet.com/politics/2016lh/2016-03/17/c1118366322.htm (accessed on 20 May 2016).
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; Working paper No. 3914; National Bureau of Economic Research: Cambridge, MA, USA, 1991. [Google Scholar]
- Chowdhury, R.R.; Moran, E.F. Turning the curve: A critical review of Kuznets approaches. Appl. Geogr. 2012, 32, 3–11. [Google Scholar] [CrossRef]
- Haans, R.F.J.; Pieters, C.; He, Z.L. Thinking about U: Theorizing and testing U- and inverted U-shaped relationships in strategy research. Strat. Mgmt. J. 2016, 37, 1177–1195. [Google Scholar] [CrossRef]
- Li, T.; Han, Y.; Li, Y.; Lu, Z.; Zhao, P. Urgency, development stage and coordination degree analysis to support differentiation management of water pollution emission control and economic development in the eastern coastal area of China. Ecol. Indic. 2016, 71, 406–415. [Google Scholar] [CrossRef]
- Pandit, M.; Paudel, K.P. Water pollution and income relationships: A seemingly unrelated partially linear analysis. Water Resour. Res. 2016, 52, 7668–7689. [Google Scholar] [CrossRef]
- Lei, H.; Xia, X.; Li, C.; Xi, B. Decomposition analysis of wastewater pollutant discharges in industrial sectors of China (2001–2009) using the LMDI I method. Int. J. Env. Res. Public Health. 2012, 9, 2226–2240. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, S.S.; Wang, K.; Zhang, R.Q.; Tang, X.Y. LMDI decomposition analysis of industry carbon emissions in Henan province, China: Comparison between different 5-year plans. Nat. Hazards 2016, 80, 997–1014. [Google Scholar] [CrossRef]
- Xiao, B.; Niu, D.; Guo, X. The driving forces of changes in CO2 emissions in China: A structural decomposition analysis. Energies 2016, 9, 259. [Google Scholar] [CrossRef]
- Cansino, J.M.; Roman, R.; Ordonez, M. Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis. Energ. Policy 2016, 89, 150–159. [Google Scholar] [CrossRef]
- Cellura, M.; Longo, S.; Mistretta, M. Application of the structural decomposition analysis to assess the indirect energy consumption and air emission changes related to Italian households consumption. Renew. Sust. Energ. Rev. 2012, 16, 1135–1145. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, H.; Xu, X.; Yang, T. Applying the water footprint and dynamic structural decomposition analysis on the growing water use in China during 1997–2007. Ecol. Indic. 2016, 60, 634–643. [Google Scholar] [CrossRef]
- Hoekstra, R.; van der Bergh, J. Comparing structural and index decomposition analysis. Energy Econ. 2003, 25, 39–64. [Google Scholar] [CrossRef]
- Lu, Z.; Yang, Y.; Wang, J. Factor decomposition of carbon productivity change in China’s main industries: Based on the Laspeyre’s decomposition method. Energ. Procedia 2014, 61, 1893–1896. [Google Scholar]
- Hatzigeorgiou, E.; Polatidis, H.; Haralambopoulos, D. CO2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques. Energy 2008, 33, 492–499. [Google Scholar] [CrossRef]
- Ang, B.W. The LMDI approach to decomposition analysis: A practical guide. Energ. Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.N.; Zou, J. Decomposition of energy-related CO2 emission in China: 1957–2000. Energy 2005, 30, 73–83. [Google Scholar] [CrossRef]
- Lee, K.; Oh, W. Analysis of CO2 emissions in APEC countries: A time-series and a cross-sectional decomposition using the Log Mean Divisia method. Energ. Policy 2006, 34, 2779–2787. [Google Scholar] [CrossRef]
- Wood, R.; Lenzen, M. Zero-value problems of the Logarithmic Mean Divisia Index decomposition method. Energ. Policy 2006, 34, 1326–1331. [Google Scholar] [CrossRef]
- Shao, S.; Yang, L.L.; Gan, C.H.; Cao, J.H.; Geng, Y.; Guan, D.B. Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China). Renew. Sust. Energ. Rev. 2016, 55, 516–536. [Google Scholar] [CrossRef]
- Chen, S. The abatement of carbon dioxide intensity in China: Factors decomposition and policy implications. World Econ. 2011, 34, 1148–1167. [Google Scholar] [CrossRef]
- Tan, Z.; Li, L.; Wang, J.; Wang, J. Examining the driving forces for improving China’s CO2 emission intensity using the decomposing method. Appl. Energ. 2011, 88, 4496–4504. [Google Scholar] [CrossRef]
- Ren, S.; Fu, X.; Chen, X. Regional variation of energy-related industrial CO2 emissions mitigation in China. China Econ. Rev. 2012, 23, 1134–1145. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Wang, W.; Zhou, M. Decomposition analysis of CO2 emissions from electricity generation in China. Energ. Policy 2013, 52, 159–165. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, Q.; Geng, Y. An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry. Energ. Policy 2013, 56, 352–361. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, F.L. A new energy decomposition method: Perfect in decomposition and consistent in aggregation. Energy 2001, 26, 537–548. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, F.L.; Chew, E.P. Perfect decomposition techniques in energy and environmental analysis. Energ. Policy 2003, 31, 1561–1566. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energ. Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, N. Handling zero values in the Logarithmic Mean Divisia Index decomposition approach. Energ. Policy 2007, 35, 238–246. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition Methodology in Energy Demand and Environmental Analysis. In Handbook of Environmental and Resource Economics; van den Bergh, J.C.J.M., Ed.; Edward Elgar Publishers: Cheltenham, UK, 1999. [Google Scholar]
- Ma, C.B.; Stern, D.I. China’s changing energy intensity trend: A decomposition analysis. Energ. Econ. 2008, 30, 1037–1053. [Google Scholar] [CrossRef]
- Sun, J.W. Changes in energy consumption and energy intensity: A complete decomposition model. Energ. Econ. 1998, 20, 85–100. [Google Scholar] [CrossRef]
- Zhang, K.M.; Wen, Z.G. Review and challenges of policies of environmental protection and sustainable development in China. J. Environ. Manag. 2008, 88, 1249–1261. [Google Scholar] [CrossRef] [PubMed]
Period | COD | NH3-N | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ΔYTOT | ΔYG | ΔYS | ΔYC | ΔYA | ΔYTOT | ΔYG | ΔYS | ΔYC | ΔYA | |
2003–2004 | −1.52 | 34.98 | −0.42 | −33.93 | −2.15 | 2.95 | 35.93 | −0.65 | −32.59 | 0.26 |
2004–2005 | 7.37 | 9.39 | −1.66 | 1.85 | −2.20 | 23.75 | 10.04 | 2.45 | −5.49 | 16.75 |
2005–2006 | −4.92 | 18.99 | −1.68 | −17.55 | −4.68 | −24.08 | 16.97 | −0.67 | −17.55 | −22.83 |
2006–2007 | −1.87 | 16.77 | −0.19 | −4.57 | −13.87 | −18.46 | 15.26 | 0.83 | −12.15 | −22.40 |
2007–2008 | −10.03 | 14.14 | −0.37 | −13.49 | −10.32 | −13.34 | 13.86 | 0.20 | −15.68 | −11.72 |
2008–2009 | −5.97 | 8.49 | 1.11 | −12.69 | −2.88 | −8.60 | 8.35 | 0.64 | −11.38 | −6.20 |
2009–2010 | −3.75 | 18.37 | −0.75 | −15.73 | −5.64 | −0.64 | 18.56 | 0.23 | −16.10 | −3.33 |
2010–2011 | −18.38 | 9.91 | 0.72 | 64.66 | −93.66 | 15.02 | 11.97 | 2.45 | 90.15 | −89.54 |
2011–2012 | 3.98 | 7.62 | 0.20 | −10.41 | 6.57 | −7.66 | 7.30 | 0.97 | −13.55 | −2.38 |
2012–2013 | −6.15 | 8.27 | −0.27 | 25.78 | −39.93 | −7.24 | 8.22 | 0.42 | 37.10 | −52.99 |
2013–2014 | −3.66 | 3.93 | −2.18 | −44.99 | 39.58 | −6.32 | 3.85 | −0.89 | −65.83 | 56.55 |
2003–2005 | 5.73 | 45.49 | −1.70 | −33.54 | −4.52 | 27.40 | 50.21 | 2.02 | −43.21 | 18.39 |
2005–2010 | −24.02 | 68.41 | −1.67 | −57.66 | −33.10 | −51.28 | 55.08 | 1.22 | −54.49 | −53.09 |
2010–2014 | −23.27 | 27.19 | −0.98 | 34.71 | −84.18 | −7.71 | 29.81 | 2.09 | 38.30 | −77.91 |
2003–2014 | −38.36 | 118.44 | −2.07 | −47.92 | −106.81 | −42.72 | 114.28 | 5.17 | −57.41 | −104.77 |
Variable | Effect | COD | NH3-N | ||||||
---|---|---|---|---|---|---|---|---|---|
Stage 1 a | Stage 2 a | Stage 3 a | Whole | Stage 1 a | Stage 2 a | Stage 3 a | Whole | ||
Discharge | / | 2.865 b | −4.804 b | −5.818 b | −3.487 b | 13.7 b | −10.256 b | −1.928 b | −3.884 b |
Output | G | 22.747 | 13.681 | 6.796 | 10.767 | 25.106 | 11.016 | 7.452 | 10.389 |
Structure | S | −0.851 | −0.334 | −0.245 | −0.188 | 1.008 | 0.244 | 0.523 | 0.47 |
Intensity | C | −16.772 | −11.532 | 8.676 | −4.356 | −21.607 | −10.897 | 9.576 | −5.219 |
A | −2.259 | −6.62 | −21.046 | −9.71 | 9.193 | −10.619 | −19.478 | −9.524 |
No. | Output Effect | Structure Effect | Clean Production | Pollution Abatement | Intensity Effect |
---|---|---|---|---|---|
1 | 12.72 (I16) | −2.68 (I16) | −4.48 (I7) | −15.39 (I16) | −19.57 (I16) |
2 | 7.50 (I7) | 1.67 (I7) | −4.18 (I16) | −6.48 (I7) | −10.96 (I7) |
3 | 5.57 (I20) | −0.91 (I11) | −3.54 (I20) | −3.81 (I20) | −7.35 (I20) |
4 | 3.41 (I11) | 0.64 (I20) | −2.11 (I37) | −2.81 (I9) | −3.18 (I9) |
5 | 2.87 (I9) | −0.46 (I22) | −1.08 (I25) | −2.28 (I11) | −2.88 (I21) |
6 | 1.92 (I21) | 0.34 (I1) | 1.03 (I24) | −2.17 (I21) | −2.56 (I11) |
7 | 1.74 (I8) | −0.26 (I36) | −0.71 (I21) | −1.69 (I24) | −2.25 (I8) |
8 | 1.71 (I22) | 0.22 (I8) | −0.70 (I22) | −1.66 (I8) | −1.90 (I25) |
9 | 1.13 (I1) | 0.20 (I26) | −0.64 (I30) | −0.98 (I36) | −1.66 (I37) |
10 | 1.05 (I19) | 0.17 (I24) | −0.62 (I36) | −0.82 (I25) | −1.60 (I36) |
Sum of ten | 39.62 | −1.07 | −17.03 | −38.09 | −53.90 |
All subsectors | 47.67 | −0.83 | −19.29 | −42.99 | −62.28 |
Share of ten | 83.12% | 128.64% | 88.30% | 88.61% | 86.55% |
No. | Output Effect | Structure Effect | Clean Production | Pollution Abatement | Intensity Effect |
---|---|---|---|---|---|
1 | 1.60 (I20) | 0.18 (I20) | −1.02 (I20) | −1.79 (I20) | −2.81 (I20) |
2 | 0.35 (I7) | 0.08 (I7) | −0.21 (I7) | −0.34 (I7) | −0.55 (I7) |
3 | 0.31 (I16) | −0.07 (I16) | −0.21 (I25) | −0.28 (I8) | −0.37 (I16) |
4 | 0.21 (I19) | −0.05 (I11) | −0.10 (I16) | −0.27 (I16) | −0.35 (I8) |
5 | 0.20 (I11) | 0.03 (I26) | −0.07 (I37) | −0.13 (I19) | −0.20 (I25) |
6 | 0.20 (I8) | 0.03 (I8) | −0.07 (I8) | −0.12 (I26) | −0.18 (I26) |
7 | 0.19 (I25) | −0.02 (I19) | 0.06 (I24) | −0.08 (I24) | −0.18 (I19) |
8 | 0.09 (I21) | −0.01 (I22) | −0.06 (I30) | −0.08 (I11) | −0.10 (I11) |
9 | 0.08 (I9) | −0.01 (I36) | −0.06 (I26) | −0.07 (I13) | −0.09 (I30) |
10 | 0.08 (I26) | 0.01 (I24) | −0.04 (I19) | −0.06 (I29) | −0.09 (I29) |
Sum of ten | 3.31 | 0.16 | −1.77 | −3.24 | −4.91 |
All subsectors | 3.81 | 0.17 | −1.91 | −3.49 | −5.40 |
Share of ten | 86.94% | 95.29% | 92.63% | 92.69% | 90.84% |
No. | Sector | 2003 | 2014 |
---|---|---|---|
I1 | Mining and Washing of Coal | 1.73 | 2.75 |
I7 | Processing of Food from Agricultural Products | 4.09 | 5.77 |
I8 | Manufacture of Foods | 1.51 | 1.85 |
I20 | Manufacture of Raw Chemical Materials and Chemical Products | 6.30 | 7.53 |
I24 | Manufacture of Non-metallic Mineral Products | 3.71 | 5.20 |
I26 | Smelting and Pressing of Non-ferrous Metals | 2.47 | 4.65 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J.; Jian, H.; Xie, D.; Gu, Z.; Chen, C. Multi-Perspectives’ Comparisons and Mitigating Implications for the COD and NH3-N Discharges into the Wastewater from the Industrial Sector of China. Water 2017, 9, 201. https://doi.org/10.3390/w9030201
Jia J, Jian H, Xie D, Gu Z, Chen C. Multi-Perspectives’ Comparisons and Mitigating Implications for the COD and NH3-N Discharges into the Wastewater from the Industrial Sector of China. Water. 2017; 9(3):201. https://doi.org/10.3390/w9030201
Chicago/Turabian StyleJia, Junsong, Huiyong Jian, Dongming Xie, Zhongyu Gu, and Chundi Chen. 2017. "Multi-Perspectives’ Comparisons and Mitigating Implications for the COD and NH3-N Discharges into the Wastewater from the Industrial Sector of China" Water 9, no. 3: 201. https://doi.org/10.3390/w9030201
APA StyleJia, J., Jian, H., Xie, D., Gu, Z., & Chen, C. (2017). Multi-Perspectives’ Comparisons and Mitigating Implications for the COD and NH3-N Discharges into the Wastewater from the Industrial Sector of China. Water, 9(3), 201. https://doi.org/10.3390/w9030201