An Approach to Predict Debris Flow Average Velocity
Abstract
:1. Introduction
2. Study Area
3. Data Acquisition
4. Methodology
4.1. Radial Basis Function Neural Network
- Step 1. Initialize the weights randomly
- Step 2. Calculate the output vector Y by the equation:
- Step 3. Calculate the error εi for each neuron in the output by the equation:
- Step 4. Based on the least squares method, determine the weights between the hidden neurons and the output nodes:
- Step 5. Update the weights until the error meets the requirement:
4.2. The Gravitational Search Algorithm
4.3. The Proposed GSA-RBF Method
4.4. The Modified Dongchuan Empirical Equation
5. Results and Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cao, C.; Xu, P.; Chen, J.; Zheng, L.; Niu, C. Hazard assessment of debris-flow along the baicha river in heshigten banner, inner mongolia, china. Int. J. Environ. Res. Public Health 2016, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Zhu, J.; Li, W.L.; Liang, J.T. Rainfall-Triggered debris flows following the wenchuan earthquake. B Eng. Geol. Environ. 2009, 68, 187–194. [Google Scholar] [CrossRef]
- Cui, P.; Zhu, Y.-Y.; Han, Y.-S.; Chen, X.-Q.; Zhuang, J.-Q. The 12 may wenchuan earthquake-induced landslide lakes: Distribution and preliminary risk evaluation. Landslides 2009, 6, 209–223. [Google Scholar] [CrossRef]
- Cui, P.; Chen, X.Q.; Zhu, Y.Y.; Su, F.H.; Wei, F.Q.; Han, Y.S.; Liu, H.J.; Zhuang, J.Q. The wenchuan earthquake (May 12, 2008), sichuan province, china, and resulting geohazards. Nat. Hazards 2011, 56, 19–36. [Google Scholar] [CrossRef]
- Hu, K.H.; Wei, F.Q.; Li, Y. Real-Time measurement and preliminary analysis of debris-flow impact force at jiangjia ravine, china. Earth Surf. Proc. Land 2011, 36, 1268–1278. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.J.; Hu, K.H.; Su, P.C. Probability distribution of measured debris-flow velocity in jiangjia gully, yunnan province, china. Nat. Hazards 2012, 60, 689–701. [Google Scholar]
- Cascini, L.; Cuomo, S.; Pastor, M. Inception of debris avalanches: Remarks on geomechanical modelling. Landslides 2013, 10, 701–711. [Google Scholar] [CrossRef]
- Bugnion, L.; McArdell, B.W.; Bartelt, P.; Wendeler, C. Measurements of hillslope debris flow impact pressure on obstacles. Landslides 2012, 9, 179–187. [Google Scholar] [CrossRef]
- Scheidl, C.; Chiari, M.; Kaitna, R.; Mullegger, M.; Krawtschuk, A.; Zimmermann, T.; Proske, D. Analysing debris-flow impact models, based on a small scale modelling approach. Surv. Geophys. 2013, 34, 121–140. [Google Scholar] [CrossRef]
- Johnson, C.G.; Kokelaar, B.P.; Iverson, R.M.; Logan, M.; LaHusen, R.G.; Gray, J.M.N.T. Grain-Size segregation and levee formation in geophysical mass flows. J. Geophys. Res.-Earth 2012, 117. [Google Scholar] [CrossRef]
- Murakawa, Y.; Hara, M.; Oguchi, H.; Hamate, Y.; Kuwano, H. Surface acoustic wave based sensors employing ionic liquid for hydrogen sulfide gas detection. Microsyst. Technol. 2013, 19, 1255–1259. [Google Scholar] [CrossRef]
- Berti, M.; Genevois, R.; LaHusen, R.; Simoni, A.; Tecca, P.R. Debris flow monitoring in the acquabona watershed on the dolomites (Italian alps). Phys. Chem. Earth Part B 2000, 25, 707–715. [Google Scholar] [CrossRef]
- Hurlimann, M.; Rickenmann, D.; Graf, C. Field and monitoring data of debris-flow events in the swiss alps. Can. Geotech. J. 2003, 40, 161–175. [Google Scholar] [CrossRef]
- Uddin, M.S.; Inaba, H.; Itakura, Y.; Yoshida, Y.; Kasahara, M. Adaptive computer-based spatial-filtering method for more accurate estimation of the surface velocity of debris flow. Appl. Opt. 1999, 38, 6714–6721. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Chen, G.; Li, Y.; Xu, L.; Zheng, L.; Zhang, Y. A new approach for analyzing the velocity distribution of debris flows at typical cross-sections. Nat. Hazards 2014, 74, 2053–2070. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, W.J.; Xu, Q.; Xie, P.; Hao, L. Run-Out analysis of flow-like landslides triggered by the ms 8.0 2008 wenchuan earthquake using smoothed particle hydrodynamics. Landslides 2012, 9, 275–283. [Google Scholar] [CrossRef]
- Cascini, L.; Cuomo, S.; Pastor, M.; Sorbino, G.; Piciullo, L. Sph run-out modelling of channelised landslides of the flow type. Geomorphology 2014, 214, 502–513. [Google Scholar] [CrossRef]
- Armanini, A.; Capart, H.; Fraccarollo, L.; Larcher, M. Rheological stratification in experimental free-surface flows of granular-liquid mixtures. J. Fluid Mech. 2005, 532, 269–319. [Google Scholar] [CrossRef]
- Hotta, N. Basal interstitial water pressure in laboratory debris flows over a rigid bed in an open channel. Natl. Hazards Earth Syst. Sci. 2012, 12, 2499–2505. [Google Scholar] [CrossRef] [Green Version]
- Iverson, R.M.; Logan, M.; LaHusen, R.G.; Berti, M. The perfect debris flow? Aggregated results from 28 large-scale experiments. J. Geophys. Res.-Earth 2010, 115. [Google Scholar] [CrossRef]
- Stancanelli, L.M.; Lanzoni, S.; Foti, E. Mutual interference of two debris flow deposits delivered in a downstream river reach. J. Mt. Sci.-Engl. 2014, 11, 1385–1395. [Google Scholar] [CrossRef]
- Stancanelli, L.M.; Lanzoni, S.; Foti, E. Propagation and deposition of stony debris flows at channel confluences. Water Resour. Res. 2015, 51, 5100–5116. [Google Scholar] [CrossRef]
- Takahashi, T. Debris Flow: Mechanics, Prediction and Countermeasures; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Egashira, S.; MIYAMOTO, K.; Itoh, T. Constitutive equations of debris flow and their applicability. In Proceedings of the First International Conference Water Resources Engineering Division/ASCE, San Francisco, CA, USA, 2–6 September 2001; pp. 340–349.
- Yang, H.J.; Wei, F.Q.; Hu, K.H. Mean velocity estimation of viscous debris flows. J. Earth Sci.-China 2014, 25, 771–778. [Google Scholar] [CrossRef]
- Prochaska, A.B.; Santi, P.M.; Higgins, J.D. Relationships between size and velocity for particles within debris flows. Can. Geotech. J. 2008, 45, 1778–1783. [Google Scholar] [CrossRef]
- Cagnoli, B.; Romano, G.P. Granular pressure at the base of dry flows of angular rock fragments as a function of grain size and flow volume: A relationship from laboratory experiments. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Julien, P.Y.; Paris, A. Mean velocity of mudflows and debris flows. J. Hydraul. Eng.-Asce 2010, 136, 676–679. [Google Scholar] [CrossRef]
- Chen, G. Prevention and Control of Debris Flow; China Railway Press: Beijing, China, 1983. [Google Scholar]
- Koch, T. Testing various constitutive equations for debris flow modelling. IAHS Publ.-Ser. Proc. Rep.-Intern Assoc. Hydrol. Sci. 1998, 248, 249–258. [Google Scholar]
- Rickenmann, D. Empirical relationships for debris flows. Nat. Hazards 1999, 19, 47–77. [Google Scholar] [CrossRef]
- Huang, R. Model Building and Calculation of the Debris Flow Rate in Dam Site of Wudongde Hydropower Station Based on Ppa. Ph.D. Dessertation, Jilin University, Changchun, China, 2011. [Google Scholar]
- Riverol-Canizares, C.; Pilipovik, V. The use of radial basis function networks (rbfn) to predict critical water parameters in desalination plants. Expert Syst. Appl. 2010, 37, 7285–7287. [Google Scholar] [CrossRef]
- Khodaveisi, J.; Dadfarnia, S.; Shabani, A.M.H.; Moghadam, M.R.; Hormozi-Nezhad, M.R. Artificial neural network assisted kinetic spectrophotometric technique for simultaneous determination of paracetamol and p-aminophenol in pharmaceutical samples using localized surface plasmon resonance band of silver nanoparticles. Spectrochim. Acta A 2015, 138, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, Z.; Hassanzadeh, Z.; Ghavami, R. Application of a new version of ga-rbf neural network for simultaneous spectrophotometric determination of zn(ii), fe(ii), co(ii) and cu(ii) in real samples: An exploratory study of their complexation abilities toward mtb. Talanta 2016, 160, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, Q.; Chen, J. Forcast for average velocity of debris flow based on bp neural network. J. Jilin Univ. (Earth Sci. Ed.) 2013, 43, 186–191. [Google Scholar]
- Wang, Q.; Kong, Y.Y.; Zhang, W.; Chen, J.P.; Xu, P.H.; Li, H.Z.; Xue, Y.G.; Yuan, X.Q.; Zhan, J.W.; Zhu, Y.J. Regional debris flow susceptibility analysis based on principal component analysis and self-organizing map: A case study in southwest china. Arab. J. Geosci. 2016, 9, 718. [Google Scholar] [CrossRef]
- Poggio, T.; Girosi, F. Networks for approximation and learning. Proc. IEEE 1990, 78, 1481–1497. [Google Scholar] [CrossRef]
- Yu, G.; Zhang, M.; Wang, G. Application and comparison of prediction models of support vector machines and back-propagation artificial neural network for debris flow average velocity. J. Hydraul. Eng. 2012, 43, 105–110. [Google Scholar]
- Zhang, W.; Li, H.-Z.; Chen, J.-P.; Zhang, C.; Xu, L.-M.; Sang, W.-F. Comprehensive hazard assessment and protection of debris flows along jinsha river close to the wudongde dam site in china. Nat. Hazards 2011, 58, 459–477. [Google Scholar] [CrossRef]
- Niu, C.; Wang, Q.; Chen, J.; Zhang, W.; Xu, L.; Wang, K. Hazard assessment of debris flows in the reservoir region of wudongde hydropower station in china. Sustainability 2015, 7, 15099–15118. [Google Scholar] [CrossRef]
- Dal Sasso, S.F.; Sole, A.; Pascale, S.; Sdao, F.; Pinzon, A.B.; Medina, V. Assessment methodology for the prediction of landslide dam hazard. Nat. Hazards Earth Syst. Sci. 2014, 14, 557–567. [Google Scholar] [CrossRef] [Green Version]
- Dang, C.; Cui, P.; Cheng, Z.L. The formation and failure of debris flow-dams, background, key factors and model tests: Case studies from china. Environ. Geol. 2009, 57, 1901–1910. [Google Scholar] [CrossRef]
- Ermini, L.; Casagli, N.; Farina, P. Landslide dams: Analysis of case histories and new perspectives from the application of remote sensing monitoring techniques to hazard and risk assessment. Ital. J. Eng. Geol. Environ. 2006, 1, 45–52. [Google Scholar]
- Chen, J.; He, Y.; Wei, F. Debris flow erosion and deposition in jiangjia gully, yunnan, china. Environ. Geol. 2005, 48, 771–777. [Google Scholar] [CrossRef]
- Cui, P.; Chen, X.; Waqng, Y.; Hu, K.; Li, Y. Jiangjia ravine debris flows in south-western china. In Debris-Flow Hazards and Related Phenomena; Springer: New York, NY, USA, 2005; pp. 565–594. [Google Scholar]
- Tiranti, D.; Bonetto, S.; Mandrone, G. Quantitative basin characterisation to refine debris-flow triggering criteria and processes: An example from the italian western alps. Landslides 2008, 5, 45–57. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. Gsa: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Xu, Y.N. Study on Flow Mechanism for Avalanche Soils and Scour and Silting Characteristics of Debris Flows. Ph.D. Dessertation, Institute of Water Conservancy and Hydroelectric Power Research, Beijing, China, 2001. [Google Scholar]
- Liu, H.J.; Tang, C.; Cui, P. Gis-Based criticality zoning of debris flow in dongchuan district. Arid Land Geogr. 2005, 28, 445–449. [Google Scholar]
- Specification of Geological Investigation for Debris Flow Stabilization dz/t 0220-2006; China Standard Press: Beijing, China, 2006.
- Gregoretti, C.; Fontana, G.D. The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the dolomites: Analyses of critical runoff. Hydrol. Process 2008, 22, 2248–2263. [Google Scholar] [CrossRef]
- Wolman, M.G. A method of sampling coarse river-bed material. EOS Trans. Am. Geophys. Union 1954, 35, 951–956. [Google Scholar] [CrossRef]
y | x1 | x2 | x3 | x4 | y | x1 | x2 | x3 | x4 |
---|---|---|---|---|---|---|---|---|---|
8.8 | 150 | 6.3 | 2200 | 1.1 | 3.7 | 40 | 6.3 | 2020 | 0.1 |
7.8 | 140 | 6.3 | 1950 | 0.6 | 4.1 | 70 | 5.8 | 1800 | 0.2 |
3.8 | 40 | 6.3 | 1850 | 0.1 | 3.5 | 50 | 5.8 | 1760 | 0.2 |
6.9 | 202 | 5.5 | 2270 | 1.7 | 8.2 | 130 | 6.6 | 2200 | 0.7 |
7.5 | 168 | 5.5 | 2280 | 1.6 | 4.8 | 93 | 5.8 | 1920 | 0.3 |
8.9 | 175 | 6.3 | 2080 | 0.8 | 9.2 | 372 | 6.6 | 2210 | 1.2 |
7.4 | 200 | 6.3 | 2210 | 1.7 | 9.6 | 220 | 6.6 | 2290 | 1.5 |
7.3 | 90 | 6.3 | 2210 | 1 | 5.8 | 107 | 5.5 | 2290 | 1.2 |
6.6 | 70 | 6.3 | 2190 | 1.2 | 3.9 | 55 | 5.8 | 2070 | 0.8 |
9.4 | 210 | 6.6 | 2210 | 1.2 | 5.6 | 70 | 5.5 | 1920 | 0.3 |
4 | 40 | 6.3 | 2040 | 0.3 | 3.9 | 60 | 5.5 | 1830 | 0.1 |
7.4 | 145 | 5.5 | 2250 | 1.1 | 6.9 | 122 | 5.5 | 2210 | 1 |
5.8 | 103 | 5.5 | 2210 | 0.8 | 9.6 | 275 | 6.6 | 2210 | 1.6 |
4.7 | 60 | 5.5 | 1970 | 0.5 | 5 | 65 | 5.5 | 2240 | 1.1 |
7.7 | 161 | 5.5 | 2250 | 1 | 3.7 | 55 | 5.8 | 1800 | 0.1 |
7.7 | 177 | 5.5 | 2240 | 1.1 | 8.1 | 160 | 6.6 | 2220 | 1.2 |
7.9 | 200 | 6.3 | 2250 | 1.4 | 6.6 | 226 | 5.5 | 2130 | 1.1 |
8.4 | 210 | 6.6 | 2200 | 0.8 | 7.4 | 55 | 6.3 | 2250 | 0.9 |
9.3 | 210 | 6.3 | 2290 | 1 | 7.5 | 170 | 6.6 | 2190 | 1.1 |
3.6 | 58 | 5.8 | 1690 | 0.2 | 6.4 | 109 | 5.5 | 2250 | 1.1 |
10 | 95 | 6.3 | 2160 | 0.6 | 9.3 | 210 | 6.3 | 2210 | 1.1 |
7.6 | 125 | 6.3 | 2100 | 0.6 | 6.9 | 250 | 5.5 | 2220 | 0.9 |
7.6 | 11 | 6.3 | 2070 | 0.7 | 6 | 120 | 5.5 | 2200 | 0.8 |
7.6 | 100 | 6.3 | 2190 | 0.9 | 4.9 | 60 | 5.5 | 1990 | 0.6 |
8.5 | 200 | 6.3 | 2300 | 1.5 | 3.6 | 52 | 5.8 | 1700 | 0.1 |
Gully | x1 (cm) | x2 (%) | x3 (kg·m−3) | x4 (cm) |
---|---|---|---|---|
Xiabaitan | 200 | 40.7 | 2250 | 3.23 |
Shangbaitan | 150 | 35.8 | 2110 | 3.08 |
Zhugongdi | 180 | 41.8 | 2040 | 2.97 |
Zhuzhahe | 180 | 5.0 | 2120 | 2.15 |
Zhiligou | 170 | 10.2 | 2320 | 3.23 |
Mengguogou | 180 | 5.6 | 2100 | 3.06 |
Measured Value (m/s) | RBF | MDEE | GSA-RBF | |||
---|---|---|---|---|---|---|
Value (m/s) | Relative Error (%) | Value (m/s) | Relative Error (%) | Value (m/s) | Relative Error (%) | |
4.8 | 6.1 | 27.1 | 5.0 | 3.6 | 5.0 | 4.2 |
4.9 | 5.3 | 8.2 | 4.7 | 3.6 | 4.8 | 2.0 |
4.7 | 5.3 | 12.8 | 4.7 | 0.5 | 4.7 | 0.0 |
7.7 | 7.9 | 2.6 | 7.2 | 6.3 | 7.1 | 7.8 |
7.7 | 8.1 | 5.2 | 7.4 | 3.3 | 7.2 | 6.5 |
3.9 | 5.0 | 28.2 | 4.2 | 7.0 | 3.6 | 7.7 |
3.9 | 4.9 | 25.6 | 4.2 | 9.0 | 4.1 | 5.1 |
6.4 | 6.2 | 3.1 | 5.8 | 10.0 | 6.4 | 0.0 |
3.7 | 3.8 | 2.7 | 3.7 | 0.2 | 3.8 | 2.7 |
7.6 | 9.9 | 30.3 | 6.8 | 10.3 | 7.7 | 1.3 |
Average error | - | 14.6 | - | 5.4 | - | 3.7 |
Maximum error | - | 30.3 | - | 10.3 | - | 7.8 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, C.; Song, S.; Chen, J.; Zheng, L.; Kong, Y. An Approach to Predict Debris Flow Average Velocity. Water 2017, 9, 205. https://doi.org/10.3390/w9030205
Cao C, Song S, Chen J, Zheng L, Kong Y. An Approach to Predict Debris Flow Average Velocity. Water. 2017; 9(3):205. https://doi.org/10.3390/w9030205
Chicago/Turabian StyleCao, Chen, Shengyuan Song, Jianping Chen, Lianjing Zheng, and Yuanyuan Kong. 2017. "An Approach to Predict Debris Flow Average Velocity" Water 9, no. 3: 205. https://doi.org/10.3390/w9030205
APA StyleCao, C., Song, S., Chen, J., Zheng, L., & Kong, Y. (2017). An Approach to Predict Debris Flow Average Velocity. Water, 9(3), 205. https://doi.org/10.3390/w9030205