Modeling Potential Impacts of Climate Change on Streamflow Using Projections of the 5th Assessment Report for the Bernam River Basin, Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Watershed
2.2. The Study Framework
2.3. Data Source
2.4. The SWAT Model
2.5. Model Setup, Calibration and Validation
2.6. Model Prediction Evaluation
2.7. Graphical User Interface for Generating Future Climate Data
2.7.1. Future Climate Data
2.7.2. Graphical User-Interface Development
3. Results and Discussion
3.1. User-Interface Operation and Outputs
3.2. Future Climate Change Scenarios
3.2.1. Projected Temperature
3.2.2. Projected Mean Rainfall
3.3. Hydrological Impacts of Climate Change
3.3.1. Model Calibration and Validation
3.3.2. Streamflow Changes Corresponding to Future Scenarios
4. Methodological Limitations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Solomon, S. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC (Vol. 4); Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Wilby, R.; Charles, S.; Zorita, E.; Timbal, B.; Whetton, P.; Mearns, L. Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods, IPCC Task Group on Scenarios for Climate Impact Assessment (TGCIA). Availiable online: www.ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf (accessed on 4 August 2014).
- Xu, C.Y. Climate change and hydrologic models: A review of existing gaps and recent research developments. Water Resour Manag. 1999, 13, 369–382. [Google Scholar] [CrossRef]
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Alam, M.M.; Siwar, C.; Molla, R.I.; Talib, B.; Bin Toriman, M.E. Paddy farmers’ adaptation practices to climatic vulnerabilities in Malaysia. Mitig. Adapt. Strateg. Glob. Chang. 2012, 17, 415–423. [Google Scholar] [CrossRef]
- Tan, M.L.; Ficklin, D.L.; Yusop, Z. Impacts and uncertainties of climate change on streamflow of the Johor River Basin, Malaysia using a CMIP5 General Circulation Model ensemble. J. Water Clim. Chang. 2014, 5, 676–695. [Google Scholar] [CrossRef]
- Fowler, H.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Prudhomme, C.; Reynard, N.; Crooks, S. Downscaling of global climate models for flood frequency analysis: Where are we now? Hydrol. Process. 2002, 16, 1137–1150. [Google Scholar] [CrossRef]
- Ghazalli, M. Modernisation of Irrigation and Drainage Management for Agricultural Production; Department of Irrigation and Drainage Malaysia: Kuala Lumpur, Malaysia, 1998. [Google Scholar]
- Lee, T.S.; Haque, M.A.; Najim, M. Scheduling the cropping calendar in wet-seeded rice schemes in Malaysia. Agric. Water Manag. 2005, 71, 71–84. [Google Scholar] [CrossRef]
- Alansi, A.; Amin, M.; Abdul Halim, G.; Shafri, H.; Aimrun, W. Validation of SWAT model for stream flow simulation and forecasting in Upper Bernam humid tropical river basin, Malaysia. Hydrol. Earth Syst. Sci. Discuss. 2009, 6, 7581–7609. [Google Scholar] [CrossRef]
- Prudhomme, C.; Jakob, D.; Svensson, C. Uncertainty and climate change impact on the flood regime of small UK catchments. J. Hydrol. 2003, 277, 1–23. [Google Scholar] [CrossRef]
- Dibike, Y.B.; Coulibaly, P. Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models. J. Hydrol. 2005, 307, 145–163. [Google Scholar] [CrossRef]
- Jones, R.; Murphy, J.; Noguer, M.; Keen, A. Simulation of climate change over Europe using a nested regional-climate model. II: Comparison of driving and regional model responses to a doubling of carbon dioxide. Q. J. R. Meteorol. Soc. 1997, 123, 265–292. [Google Scholar] [CrossRef]
- Mearns, L.; Giorgi, F.; Whetton, P.; Pabon, D.; Hulme, M.; Lal, M. Guidelines for Use of Climate Scenarios Developed from Regional Climate Model Experiments. Data Distribution Centre of the Intergovernmental Panel on Climate Change, IPCC Task Group on Scenarios for Climate Impact Assessment (TGCIA). Available online: www.ipcc-data.org/guidelines/dgm_no1_v1_10-2003.pdf (accessed on 4 August 2014).
- Wilby, R.L.; Hassan, H.; Hanaki, K. Statistical downscaling of hydrometeorological variables using general circulation model output. J. Hydrol. 1998, 205, 1–19. [Google Scholar] [CrossRef]
- Chung, S.O.; Rodríguez-Díaz, J.; Weatherhead, E.; Knox, J. Climate change impacts on water for irrigating paddy rice in South Korea. Irrig. Drain. 2011, 60, 263–273. [Google Scholar] [CrossRef]
- Dessu, S.B.; Melesse, A.M. Impact and uncertainties of climate change on the hydrology of the Mara River basin, Kenya/Tanzania. Hydrol. Process. 2013, 27, 2973–2986. [Google Scholar] [CrossRef]
- Diaz-Nieto, J.; Wilby, R.L. A comparison of statistical downscaling and climate change factor methods: Impacts on low flows in the River Thames, United Kingdom. Clim. Chang. 2005, 69, 245–268. [Google Scholar] [CrossRef]
- Nakicenovic, N.; Swart, R. Special Report on Emissions Scenarios Edited by Nebojsa Nakicenovic and Robert Swart; Cambridge University Press: Cambridge, UK, 2000; p. 612. ISBN 0521804930. [Google Scholar]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.; Lamarque, J.; Riahi, K. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang. 2011, 109, 213. [Google Scholar] [CrossRef]
- Wayne, G. The Beginner’s Guide to Representative Concentration Pathways. 2013. Available online: https://skepticalscience.com/docs/RCP_Guide.pdf (accessed on 7 January 2015).
- Gassman, P.; Reyes, M.; Green, C.; Arnold, J. The soil and water assessment tool: Historical development, applications, and future research directions Invited Review Series. Trans. Am. Soc. Agric. Eng. 2007, 50, 1211–1250. [Google Scholar]
- Deni, S.M.; Jemain, A.A. Fitting the distribution of dry and wet spells with alternative probability models. Meteorol. Atmos. Phys. 2009, 104, 13–27. [Google Scholar] [CrossRef]
- The study on Modernization of Irrigation Water Management System in the Granary Areas of Peninsular Malaysia. In Nippon Koei, Kuala Lumpur, Malaysia; JICA, DID: Kuala Lumpur, Malaysia, 1998.
- Wong, C.; Venneker, R.; Jamil, A.; Uhlenbrook, S. Development of a gridded daily hydrometeorological data set for Peninsular Malaysia. Hydrol. Process. 2011, 25, 1009–1020. [Google Scholar] [CrossRef]
- Wong, C.; Venneker, R.; Uhlenbrook, S.; Jamil, A.; Zhou, Y. Variability of rainfall in Peninsular Malaysia. Hydrol. Earth Syst. Sci. Discuss. 2009, 6, 5471–5503. [Google Scholar] [CrossRef]
- Lai, S.H. Application of Swat Hydrological Model with GIS Interface to Upper Bernam River Basin. Unpublished Thesis, Universiti Putra Malaysia, Serdang, Selangor, 2001. [Google Scholar]
- Wong, I.F. Reconnaissance Soil Survey of Selangor; Ministry of Agriculture and Lands, Division of Agriculture: Putrajaya, Malaysia, 1970. [Google Scholar]
- Babel, M.S.; Wahid, S.M. Freshwater Under Threat South East Asia: Vulnerability Assessment of Freshwater Resources to Environmental Change: Mekong River Basin. United Nations Environment Programme (UNEP): Nairobi, Kenya, 2009. Available online: http://www.unep.org/pdf/southasia_report.pdf (accessed on 7 January 2015).
- Raneesh, K.; Thampi Santosh, G. A study on the impact of climate change on streamflow at the watershed scale in the humid tropics. Hydrol. Sci. J. 2011, 56, 946–965. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development 1; Wiley Online Library: Hoboken, NJ, USA, 1998. [Google Scholar]
- Eckhardt, K.; Arnold, J. Automatic calibration of a distributed catchment model. J. Hydrol. 2001, 251, 103–109. [Google Scholar] [CrossRef]
- Williams, J.R. Flood routing with variable travel time or variable storage coefficients. Trans. Am. Soc. Civ. Eng. 1969, 12, 100–103. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; van Liew, M.W. SWAT: Model use, calibration, and validation. Trans. Am. Soc. Agric. Eng. 2012, 55, 1491–1508. [Google Scholar]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Abbaspour, K.; Johnson, C.; van Genuchten, M.T. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Yang, J.; Reichert, P.; Abbaspour, K.; Xia, J.; Yang, H. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol. 2008, 358, 1–23. [Google Scholar] [CrossRef]
- Ashraf Vaghefi, S.; Mousavi, S.; Abbaspour, K.; Srinivasan, R.; Yang, H. Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh River Basin in Iran. Hydrol. Process. 2014, 28, 2018–2032. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the SWAT model on a large river basin with point and nonpoint sources. J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Van Liew, M.; Arnold, J.; Garbrecht, J. Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans. Am. Soc. Civ. Eng. 2003, 46, 1539–1551. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. Am. Soc. Agric. Eng. 2007, 50, 885–900. [Google Scholar]
- Ghosh, S.; Mujumdar, P. Nonparametric methods for modeling GCM and scenario uncertainty in drought assessment. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- New, M.; Hulme, M. Representing uncertainty in climate change scenarios: A Monte-Carlo approach. Integr. Assess. 2000, 1, 203–213. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Leconte, R. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol. 2011, 401, 190–202. [Google Scholar] [CrossRef]
- Ouyang, F.; Zhu, Y.; Fu, G.; Lü, H.; Zhang, A.; Yu, Z.; Chen, X. Impacts of climate change under CMIP5 RCP scenarios on streamflow in the Huangnizhuang catchment. Stoch. Environ. Res. Risk Assess. 2015, 29, 1781–1795. [Google Scholar] [CrossRef]
- Knox, J.W.; Díaz, J.R.; Nixon, D.; Mkhwanazi, M. A preliminary assessment of climate change impacts on sugarcane in Swaziland. Agric. Syst. 2010, 103, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Lelis, T.A.; Calijuri, M.L.; Santiago, A.D.F.; Lima, D.C.D.; Rocha, E.D.O. Sensitivity analysis and calibration of SWAT model applied to a watershed in southeastern Brazil. Rev. Bras. Ciênc. Solo 2012, 36, 623–634. [Google Scholar] [CrossRef]
- Pinto, D.B.F.; da Silva, A.M.; Beskow, S.; de Mello, C.R.; Coelho, G. Application of the soil and water assessment tool(swat) for sediment transport simulation at a headwater watershed in Minas Gerais State, Brazil. Trans. Am. Soc. Agric. Eng. 2013, 56, 697–709. [Google Scholar]
- Kilsby, C.; Jones, P.; Burton, A.; Ford, A.; Fowler, H.; Harpham, C.; Wilby, R. A daily weather generator for use in climate change studies. Environ. Model. Softw. 2007, 22, 1705–1719. [Google Scholar] [CrossRef]
Data | Data Source | Data Description |
---|---|---|
Digital Elevation Model (DEM) | DIVA-GIS (GIS Data Depository Organization) | Elevation, overland, channel slopes, boundary |
Soils Map | Department of Agriculture (DOA) | Soil classification and properties |
Land Use Map | Department of Agriculture (DOA) | Land use classification: cropland, forest, pastures, etc. |
Climate Data | Department of Irrigation and Drainage (DID) | Daily rainfall, maximum and minimum temperature (1976–2005) |
Streamflow | Department of Irrigation and Drainage (DID) | Daily stream outflow (1975–2006) |
Organization | GCM | Resolution | |
---|---|---|---|
Latitude | Longitude | ||
Canadian Centre for Climate Modelling and Analysis | CanESM2 | 2.8 | 2.8 |
National Center for Atmospheric Research | CCSM4 | 1.25 | 0.94 |
Centre National de Recherches Météorologiques/Centre Européen de Recherche et Formation Avancée en CalculScientifique | CNRM-CM5 | 1.4 | 1.4 |
Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate Change Centre of Excellence | CSIRO | 1.8 | 1.8 |
NOAA Geophysical Fluid Dynamics Laboratory | GFDL-ESM2G | 2.5 | 2.0 |
NOAA Geophysical Fluid Dynamics Laboratory | GFDL-ESM2M | 2.5 | 2.0 |
Met Office Hadley Centre | HadGEM2-CC | 1.88 | 1.25 |
Met Office Hadley Centre | HadGEM2-ES | 1.88 | 1.25 |
Max-Planck-Institutfür Meteorologie (Max Planck Institute for Meteorology) | MPI-ESM-LR | 1.88 | 1.87 |
Meteorological Research Institute | MRI-CGCM3 | 1.1 | 1.1 |
Periods | Annual Changes Corresponding to Scenarios | ||
---|---|---|---|
RCP4.5 | RCP6.0 | RCP8.5 | |
Maximum temperature (°C) | |||
2020s | 0.7 | 0.5 | 0.8 |
2050s | 1.3 | 1.1 | 1.9 |
2080s | 1.6 | 1.9 | 3.3 |
Minimum temperature (°C) | |||
2020s | 0.7 | 0.6 | 0.9 |
2050s | 1.4 | 1.2 | 2.0 |
2080s | 1.8 | 1.9 | 3.4 |
Periods | Annual Changes Corresponding to Scenarios | ||
---|---|---|---|
RCP4.5 | RCP6.0 | RCP8.5 | |
Average change (Dry season) | −2.4 | −3.2 | −3.7 |
2020s | −0.4 | −1.8 | −0.7 |
2050s | −3.2 | −1.8 | −3.3 |
2080s | −3.6 | −6.1 | −7.1 |
Average change (Wet season) | 1.0 | 0.8 | 2.4 |
2020s | 2.0 | 2.5 | 2.7 |
2050s | 0.2 | 0.2 | 1.8 |
2080s | 0.9 | −0.4 | 2.7 |
Average change (Annual) | |||
2020s | 0.8 | 0.4 | 1.0 |
2050s | 0.2 | 0.2 | 1.8 |
2080s | 0.9 | −0.4 | 2.7 |
Rank | Parameters Description | File | Final Parameter Range | |
---|---|---|---|---|
Min | Max | |||
1 | CN2 (SCS curve number) | .mgt | −0.3000 | 0.3000 |
2 | ALPHA_BF (Baseflow alpha factor) | .gw | 0.0000 | 1.0000 |
3 | ESCO (Soil evaporation compensation factor) | .hru | 0.0000 | 1.0000 |
4 | GW_REVAP (Groundwater revap coefficient) | .gw | 0.0000 | 0.4000 |
5 | CH_N2 (Manning’s value for main channel) | .rte | 0.0000 | 0.3000 |
6 | SOL_BD (Soil bulk density) | .sol | −0.0270 | 0.3000 |
7 | GW_DELAY (Groundwater delay) | .gw | 30.000 | 450.00 |
8 | GWQMN (Threshold water depth in the shallow aquifer for flow) | .gw | 0.0000 | 1.8800 |
9 | CH_K2 (Channel effective hydraulic conductivity) | .rte | 4.0000 | 130.00 |
Periods | Seasonal Changes Corresponding to Scenarios | ||
---|---|---|---|
RCP4.5 | RCP6.0 | RCP8.5 | |
Dry season | −1.5 | −2.8 | −4.3 |
2020s | 1.1 | 1.3 | −0.9 |
2050s | −3.6 | −6.4 | −5.3 |
2080s | −2.0 | −3.4 | −6.6 |
Wet season | 4.4 | 5.0 | 9.4 |
2020s | 5.2 | 9.5 | 8.5 |
2050s | 3.9 | 0.0 | 8.4 |
2080s | 4.3 | 5.3 | 11.4 |
Annual | |||
2020s | 2.5 | 4.4 | 3.1 |
2050s | −0.8 | −4.0 | 0.5 |
2080s | 0.1 | 0.5 | 1.3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dlamini, N.S.; Kamal, M.R.; Soom, M.A.B.M.; Mohd, M.S.F.b.; Abdullah, A.F.B.; Hin, L.S. Modeling Potential Impacts of Climate Change on Streamflow Using Projections of the 5th Assessment Report for the Bernam River Basin, Malaysia. Water 2017, 9, 226. https://doi.org/10.3390/w9030226
Dlamini NS, Kamal MR, Soom MABM, Mohd MSFb, Abdullah AFB, Hin LS. Modeling Potential Impacts of Climate Change on Streamflow Using Projections of the 5th Assessment Report for the Bernam River Basin, Malaysia. Water. 2017; 9(3):226. https://doi.org/10.3390/w9030226
Chicago/Turabian StyleDlamini, Nkululeko Simeon, Md Rowshon Kamal, Mohd Amin Bin Mohd Soom, Mohd Syazwan Faisal bin Mohd, Ahmad Fikri Bin Abdullah, and Lai Sai Hin. 2017. "Modeling Potential Impacts of Climate Change on Streamflow Using Projections of the 5th Assessment Report for the Bernam River Basin, Malaysia" Water 9, no. 3: 226. https://doi.org/10.3390/w9030226
APA StyleDlamini, N. S., Kamal, M. R., Soom, M. A. B. M., Mohd, M. S. F. b., Abdullah, A. F. B., & Hin, L. S. (2017). Modeling Potential Impacts of Climate Change on Streamflow Using Projections of the 5th Assessment Report for the Bernam River Basin, Malaysia. Water, 9(3), 226. https://doi.org/10.3390/w9030226