Modeling of Soil Water Regime and Water Balance in a Transplanted Rice Field Experiment with Reduced Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experimental Data
2.1.1. Study Site Description
2.1.2. Experimental Design
2.1.3. Measurements and Analysis
2.2. Hydrus-1D Model
2.3. Model Evaluation
3. Results
3.1. Model Assessment
3.2. Flooding Water Depths and Surface Runoff
3.3. EvapoTranspiration
3.4. Soil Water Content Changes
3.5. Water Percolation
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Summary of Abbreviations
TPR | Transplanted rice |
DSR | Direct-seeded rice |
MSI | Multiple-shallow irrigation |
AWD | Alternate wetting and drying |
CF | Continuous flood |
TWI | Total water input |
WP | Water productivity |
WPI | Irrigation water productivity |
WPIR | Input water productivity |
WPET | Evapotranspiration water productivity |
ET | Evapotranspiration |
EP | Potential evaporation |
TP | Potential transpiration |
ETP | Potential evapotranspiration |
WC | Water content |
Se | Effective saturation |
DAB | Days after basal fertilization |
LAI | Leaf area index |
References
- Cabangon, R.J.; Tuong, T.P.; Abdullah, N.B. Comparing water input and water productivity of transplanted and direct-seeded rice production systems. Agric. Water Manag. 2002, 57, 11–31. [Google Scholar] [CrossRef]
- Chen, S.; Cai, S.G.; Chen, X.; Zhang, G.P. Genotypic differences in growth and physiological responses to transplanting and direct seeding cultivation in rice. Rice Sci. 2009, 16, 143–150. [Google Scholar] [CrossRef]
- Farooq, M.; Siddique, K.H.M.; Rehman, H.; Aziz, T.; Lee, D.; Wahid, A. Rice direct seeding: Experiences, challenges and opportunities. Soil Till. Res. 2011, 111, 87–98. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, X.; He, Y. The research progress of water-saving irrigation in China since 2000. Adv. Mater. Res. 2014, 955–959, 3206–3210. [Google Scholar] [CrossRef]
- Tan, X.; Shao, D.; Gu, W.; Liu, H. Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D. Agric. Water Manag. 2015, 150, 67–80. [Google Scholar] [CrossRef]
- Belder, P.; Spiertz, J.H.J.; Bouman, B.A.M.; Lu, G.; Tuong, T.P. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Res. 2005, 93, 169–185. [Google Scholar] [CrossRef]
- Jia, G.; Yan, Z.; Wang, Y.; Zhu, F. Field test and research on agricultural water-saving irrigation and pollution reduction in Taihu Lake Basin. Yangtze River 2013, 44, 81–84. [Google Scholar]
- Jiang, P.; Yuan, Y.; Zhu, R.; Dai, Y.; Shen, Y.; Zhao, Z.; Yue, Y.; Zhao, Q.; Cao, L. Study on the nitrogen loss from paddy fields on different water management. Chin. J. Agro-Environ. Sci. 2013, 32, 1592–1596. [Google Scholar]
- Waraich, E.A.; Ahmad, R.; Ashraf, M.Y.; Saifullah; Ahmad, M. Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agric. Scand. Sect. B Soil Plant Sci. 2011, 61, 291–304. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Feng, L.; Tuong, T.P.; Lu, G.; Wang, H.; Feng, Y. Exploring options to grow rice using less water in northern China using a modelling approach II. Quantifying yield, water balance components, and water productivity. Agric. Water Manag. 2007, 88, 23–33. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef]
- Liang, Y.; Li, F.; Nong, M.; Luo, H.; Zhang, J. Microbial activity in paddy soil and water use efficiency of rice as affected by irrigation method and nitrogen level. Commun. Soil Sci. Plant Anal. 2015, 47, 19–31. [Google Scholar] [CrossRef]
- Mao, Z. Water Efficient Irrigation and environmentally Sustainable Irrigated Rice Production in China. International Commission on Irrigation and Drainage, 2001. Available online: http://www.icid.org/wat_mao.pdf (accessed on 23 December 2013). (In Chinese).
- Tan, X.; Shao, D.; Liu, H.; Yang, F.; Xiao, C.; Yang, H. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy Water Environ. 2013, 11, 381–395. [Google Scholar] [CrossRef]
- Ye, Y.; Liang, X.; Chen, Y.; Liu, J.; Gu, J.; Guo, R.; Li, L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Res. 2013, 144, 212–224. [Google Scholar] [CrossRef]
- Prathapar, S.A.; Qureshi, A.S. Modelling the effects of deficit irrigation on soil salinity, depth to water table and transpiration in semi-arid zones with monsoonal rains. Water Resour. Dev. 1999, 15, 141–159. [Google Scholar] [CrossRef]
- Kato, Y.; Okami, M. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions. Ann. Bot. 2011, 108, 575–583. [Google Scholar] [CrossRef] [PubMed]
- El-Sadek, A. Water use optimisation based on the concept of partial rootzone drying. Ain Shams Eng. J. 2014, 5, 55–62. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S.; Yang, J.; Zhang, J. Yield, grain quality and water use efficiency of rice under non-flooded mulching cultivation. Field Crops Res. 2008, 108, 71–81. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Tuong, T.P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Peng, S.; Yang, S.; Xu, J.; Luo, Y.; Hou, H. Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements. Paddy Water Environ. 2011, 9, 333–342. [Google Scholar] [CrossRef]
- Garg, K.K.; Das, B.S.; Safeeq, M.; Bhadoria, P.B.S. Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport. Agric. Water Manag. 2009, 96, 1705–1714. [Google Scholar] [CrossRef]
- Tan, X.; Shao, D.; Liu, H. Simulating soil water regime in lowland paddy fields under different water managements using HYDRUS-1D. Agric. Water Manag. 2014, 132, 69–78. [Google Scholar] [CrossRef]
- Tsubo, M.; Fukai, S.; Tuong, T.P.; Ouk, M. A water balance model for rainfed lowland rice fields emphasising lateral water movement within a toposequence. Ecol. Model. 2007, 204, 503–515. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Development and applications of the HYDRUS and STANMOD software packages, and related codes. Vadose Zone J. 2008, 7, 587–600. [Google Scholar] [CrossRef]
- Yang, S.; Peng, S.; Xu, J.; Hou, H.; Gao, X. Nitrogen Loss from paddy field with different water and nitrogen managements in Taihu lake region of China. Commun. Soil Sci. Plant Anal. 2013, 44, 2393–2407. [Google Scholar] [CrossRef]
- Li, Y.; Šimůnek, J.; Jing, L.; Zhang, Z.; Ni, L. Evaluation of water movement and water losses in a direct-seeded-rice field experiment using Hydrus-1D. Agric. Water Manag. 2014, 142, 38–46. [Google Scholar] [CrossRef]
- Molden, D. A water-productivity framework for understanding and action. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; Kijne, J.W., Barker, R., Molden, D., Eds.; International Water Management Institute: Colombo, Sri Lanka, 2003; pp. 1–18. [Google Scholar]
- Phogat, V.; Yadav, A.K.; Malik, R.S.; Kumar, S.; Cox, J. Simulation of salt and water movement and estimation of water productivity of rice crop irrigated with saline water. Paddy Water Environ. 2010, 8, 333–346. [Google Scholar] [CrossRef]
- Humphreys, E.; Kukal, S.S.; Gill, G.; Rangarajan, R. Effect of water management on dry seeded and puddled transplanted rice Part 2: Water balance and water productivity. Field Crops Res. 2011, 120, 123–132. [Google Scholar]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. Irrigation and Drain; Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Feddes, R.A.; Kowalik, P.J.; Zaradny, H. (Eds.) Simulation of Field Water Use and Crop Yield; John Wiley & Sons: New York, NY, USA, 1978. [Google Scholar]
- Arif, C.; Setiawan, B.I.; Sofiyuddin, H.A.; Martief, L.M.; Mizoguchi, M.; Doi, R. Estimating Crop Coefficient in Intermittent Irrigation Paddy Fields Using Excel Solver. Rice Sci. 2012, 19, 143–152. [Google Scholar] [CrossRef]
- Belmans, C.; Wesseling, J.G.; Feddes, R.A. Simulation model of the water balance of a cropped soil: SWATRE. J. Hydrol. 1983, 63, 271–286. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, L.; Dong, Y. Rice Field Ecosystem in China; Chinese Agricultural Press: Beijing, China, 1998. (In Chinese) [Google Scholar]
- Zhang, H.C.; Li, J.; Yao, Y.; Huo, Z.Y.; Dai, Q.G.; Xu, K.; Yang, B.; Zhao, P.H.; Wei, H.Y. Scientific Issues of Direct Seeding Rice Cultivation; Chinese Agricultural Science Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Ünan, R.; Sezer, İ.; ŞAhin, M.; Mur, L.A.J. Control of lodging and reduction in plant length in rice (Oryza sativa, L.) with the treatment of trinexapac-ethyl and sowing density. Turk. J. Agric. For. 2013, 37, 257–264. [Google Scholar] [CrossRef]
- Maqsood, M.; Shehzad, M.A.; Ali, S.N.A.; Iqbal, M. Rice cultures and nitrogen rate effects on yield and quality of rice (Oryza sativa, L.). Turk. J. Agric. For. 2013, 37, 665–673. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, Y.; Min, J.; Wang, S.; Shi, W.; Xing, G. Nitrogen runoff dominates water nitrogen pollution from rice-wheat rotation in the Taihu Lake region of China. Agric. Ecosyst. Environ. 2012, 156, 1–11. [Google Scholar] [CrossRef]
- Tuong, T.P.; Bouman, B.A.M. Rice production in water-scarce environments. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; Kijne, J.W., Barker, R., Molden, D., Eds.; CABI Publishing: Wallingford, UK, 2003; pp. 53–67. [Google Scholar]
- Lian, G.; Wang, D.; Lin, J.; Yan, D. Characteristics of nutrient leaching from paddy field in Taihu Lake area. Chin. J. Appl. Ecol. 2003, 14, 1879–1883. [Google Scholar]
- Singh, R.; van Dam, J.C.; Feddes, R.A. Water productivity analysis of irrigated crops in Sirsa district, India. Agric. Water Manag. 2006, 82, 253–278. [Google Scholar] [CrossRef]
- Zwart, S.J.; Bastiaanssen, W.G.M. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric. Water Manag. 2004, 69, 115–133. [Google Scholar] [CrossRef]
- English, M. Deficit irrigation. I. Analytical framework. J. Irrig. Drain. Eng. ASCE 1990, 116, 399–412. [Google Scholar] [CrossRef]
Depth (cm) | Soil Particle Size Distribution (%) | Bulk Density (g·cm−3) | θr (cm3·cm−3) | θS (cm3·cm−3) | α (cm) | n | Ks (cm·Day−1) | ||
---|---|---|---|---|---|---|---|---|---|
Sand (>0.05 mm) | Silt (0.002–0.05 mm) | Clay (<0.002 mm) | |||||||
0–20 | 7.01 | 73.70 | 19.29 | 1.42 | 0.125 | 0.510 | 0.0092 | 1.420 | 0.758 |
20–40 | 0.02 | 81.01 | 18.97 | 1.56 | 0.073 | 0.441 | 0.0130 | 1.100 | 0.533 |
40–60 | 18.53 | 72.83 | 8.64 | 1.51 | 0.075 | 0.489 | 0.0040 | 1.853 | 0.724 |
60–80 | 14.44 | 81.64 | 3.91 | 1.43 | 0.046 | 0.500 | 0.0051 | 1.326 | 1.159 |
80–100 | 14.25 | 81.59 | 4.16 | 1.43 | 0.081 | 0.521 | 0.0021 | 1.811 | 0.702 |
100–120 | 11.32 | 80.30 | 8.38 | 1.43 | 0.052 | 0.512 | 0.0039 | 1.436 | 0.714 |
Season | DAB | ||||
---|---|---|---|---|---|
2 | 30 | 60 | 90 | 128 | |
2008 | 3.1 ± 0.5 | 4.4 ± 1.1 | 6.3 ± 1.3 | 7.3 ± 1.7 | 4.9 ± 1.1 |
2009 | 3.0 ± 0.6 | 4.6 ± 1.0 | 6.4 ± 1.1 | 7.3 ± 1.9 | 4.8 ± 0.9 |
Season | Input | Output | δ | Water Productivity | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R | I | SR | ET | SS | P | WPI | WPIR | WPET | ||
2008-TPR | 49.6 | 45.0 | 0 | −63.8 | −3.9 | −29.7 | −2.8 | 2.08 | 0.99 | 1.47 |
2009-TPR | 96.4 | 24.0 | −7.7 | −66.1 | −4.2 | −44.4 | −2.0 | 3.85 | 0.77 | 1.40 |
2008-DSR | 54.3 | 72.0 | −5.8 | −68.9 | −1.2 | −53.9 | −3.5 | 1.25 | 0.71 | 1.30 |
2009-DSR | 97.4 | 46.0 | −24.4 | −64.0 | −2.3 | −50.1 | 2.7 | 1.85 | 0.59 | 1.33 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Šimůnek, J.; Wang, S.; Yuan, J.; Zhang, W. Modeling of Soil Water Regime and Water Balance in a Transplanted Rice Field Experiment with Reduced Irrigation. Water 2017, 9, 248. https://doi.org/10.3390/w9040248
Li Y, Šimůnek J, Wang S, Yuan J, Zhang W. Modeling of Soil Water Regime and Water Balance in a Transplanted Rice Field Experiment with Reduced Irrigation. Water. 2017; 9(4):248. https://doi.org/10.3390/w9040248
Chicago/Turabian StyleLi, Yong, Jirka Šimůnek, Shuang Wang, Jiahui Yuan, and Weiwei Zhang. 2017. "Modeling of Soil Water Regime and Water Balance in a Transplanted Rice Field Experiment with Reduced Irrigation" Water 9, no. 4: 248. https://doi.org/10.3390/w9040248
APA StyleLi, Y., Šimůnek, J., Wang, S., Yuan, J., & Zhang, W. (2017). Modeling of Soil Water Regime and Water Balance in a Transplanted Rice Field Experiment with Reduced Irrigation. Water, 9(4), 248. https://doi.org/10.3390/w9040248