Reversed Currents in Charged Liquid Bridges
Abstract
:1. Introduction
2. Velocity Profile with Bulk Charges
3. Surface Potential
4. Velocity Profile with Bulk and Surface Charges
5. Summary
Conflicts of Interest
References
- Armstrong, W.G. The Electrical Engineer; The Newcastle Literary and Philosophical Society: New Castle, UK, 1893; pp. 154–155. [Google Scholar]
- Saija, F.; Aliotta, F.; Fontanella, M.E.; Pochylski, M.; Salvato, G.; Vasi, C.; Ponterio, R.C. Communication: An extended model of liquid bridging. J. Chem. Phys. 2010, 133, 081104. [Google Scholar] [CrossRef] [PubMed]
- Wexler, A.; López Sàenz, M.; Schreer, O.; Woisetschläger, J.; Fuchs, E. The Preparation of Electrohydrodynamic Bridges from Polar Dielectric Liquids. J. Vis. Exp. 2014, 91, e51819. [Google Scholar] [CrossRef] [PubMed]
- Melcher, J.R.; Taylor, G.I. Electrohydrodynamics: A review of role of interfacial shear stresses. Ann. Rev. Fluid Mech. 1969, 1, 111–146. [Google Scholar] [CrossRef]
- Sacha, G.M.; Verdaguer, A.; Salmeron, M. Induced water condensation and bridge formation by electric fields in atomic force microscopy. J. Phys. Chem. B 2006, 110, 14870–14873. [Google Scholar] [CrossRef] [PubMed]
- Squires, T.M.; Quake, S.R. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 2005, 77, 977–1026. [Google Scholar] [CrossRef]
- Oh, J.M.; Ko, S.H.; Kang, K.H. Analysis of electrowetting-driven spreading of a drop in air. Phys. Fluids 2010, 22, 032002. [Google Scholar] [CrossRef]
- Garcia-Martin, A.; Garcia, R. Formation of nanoscale liquid menisci in electric fields. Appl. Phys. Lett. 2006, 88, 123115. [Google Scholar] [CrossRef]
- Chen, S.; Huang, X.; van der Vegt, N.F.A.; Wen, W.; Sheng, P. Giant Electrorheological Effect: A Microscopic Mechanism. Phys. Rev. Lett. 2010, 105, 046001. [Google Scholar] [CrossRef] [PubMed]
- Cramer, T.; Zerbetto, F.; Garcia, R. Molecular mechanism of water bridge buildup: Field-induced formation of nanoscale menisci. Langmuir 2008, 24, 6116–6120. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.C.; Levine, Z.A.; Vernier, P.T. Nanoscale, Electric Field-Driven Water Bridges in Vacuum Gaps and Lipid Bilayers. J. Membr. Biol. 2013, 246, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Ganancalvo, A.M. On the theory of electrohydrodynamically driven capillary jets. J. Fluid Mech. 1997, 335, 165–188. [Google Scholar] [CrossRef]
- Gamero-Castano, M. Energy dissipation in electrosprays and the geometric scaling of the transition region of cone-jets. J. Fluid Mech. 2010, 662, 493–513. [Google Scholar] [CrossRef]
- Higuera, F. Electrodispersion of a liquid of finite electrical conductivity in an immiscible dielectric liquid. Phys. Fluids 2010, 22, 112107. [Google Scholar] [CrossRef]
- Eggers, J. Universal pinching of 3d axisymmetrical free-surface flow. Phys. Rev. Lett. 1993, 71, 3458–3460. [Google Scholar] [CrossRef] [PubMed]
- Eggers, J. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 1997, 69, 865–929. [Google Scholar] [CrossRef]
- Chen, J.; Wang, C.; Wei, N.; Wan, R.; Gao, Y. 3D flexible water channel: Stretchability of nanoscale water bridge. Nanoscale 2016, 8, 5676–5681. [Google Scholar] [CrossRef] [PubMed]
- Teschke, O.; Soares, D.M.; Filho, J.F.V. Floating liquid bridge tensile behavior: Electric-field-induced Young’s modulus measurements. Appl. Phys. Lett. 2013, 103, 251608. [Google Scholar] [CrossRef]
- Gómez-Monivas, S.; Sáenz, J.J.; Calleja, M.; García, R. Field-Induced Formation of Nanometer-Sized Water Bridges. Phys. Rev. Lett. 2003, 91, 056101. [Google Scholar] [CrossRef] [PubMed]
- Montazeri Namin, R.; Azizpour Lindi, S.; Amjadi, A.; Jafari, N.; Irajizad, P. Experimental investigation of the stability of the floating water bridge. Phys. Rev. E 2013, 88, 033019. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.; Morgan, H.; Green, N.G.; Castellanos, A. Ac electrokinetics: a review of forces in microelectrode structures. J. Phys. D Appl. Phys. 1998, 31, 2338–2353. [Google Scholar] [CrossRef]
- Widom, A.; Swain, J.; Silverberg, J.; Sivasubramanian, S.; Srivastava, Y.N. Theory of the Maxwell pressure tensor and the tension in a water bridge. Phys. Rev. E 2009, 80, 016301. [Google Scholar] [CrossRef] [PubMed]
- Morawetz, K. The effect of electromagnetic fields on a charged catenary. AIP Adv. 2012, 2, 022146. [Google Scholar] [CrossRef]
- Woisetschlager, J.; Gatterer, K.; Fuchs, E.C. Experiments in a floating water bridge. Exp. Fluids 2010, 48, 121–131. [Google Scholar] [CrossRef]
- Marin, A.G.; Lohse, D. Building water bridges in air: Electrohydrodynamics of the floating water bridge. Phys. Fluids 2010, 22, 122104. [Google Scholar] [CrossRef]
- Morawetz, K. Theory of water and charged liquid bridges. Phys. Rev. E 2012, 86, 026302, errata: Phys. Rev. E 86, 069904. [Google Scholar] [CrossRef] [PubMed]
- Oshurko, V.B.; Fedorov, A.N.; Ropyanoi, A.A.; Fedosov, M.V. Hysteresis and negative differential resistance of the I–V characteristic of a water bridge. Tech. Phys. 2014, 59, 1245–1248. [Google Scholar] [CrossRef]
- Wexler, A.; Drusová, S.; Fuchs, E.; Woisetschläger, J.; Reiter, G.; Fuchsjäger, M.; Reiter, U. Magnetic resonance imaging of flow and mass transfer in electrohydrodynamic liquid bridges. J. Vis. Exp. 2017, 20, 97. [Google Scholar] [CrossRef]
- Fuchs, E.C.; Agostinho, L.L.F.; Eisenhut, M.; Woisetschlager, J. Mass and charge transfer within a floating water bridge. In Laser Applications in Life Sciences; Kinnunen, M., Myllylä, R., Eds.; Proc. SPIE: Oulu, Finland, 2010; Volume 7376, p. 73761E. [Google Scholar]
- Teschke, O.; Soares, D.M.; Gomes, W.E.; Filho, J.F.V. Floating liquid bridge charge dynamics. Phys. Fluids 2016, 28, 012105. [Google Scholar] [CrossRef]
- Fuchs, E.C.; Sammer, M.; Wexler, A.D.; Kuntke, P.; Woisetschläger, J. A floating water bridge produces water with excess charge. J. Phys. D Appl. Phys. 2016, 49, 125502. [Google Scholar] [CrossRef]
- Chandrasekharaiah, D.S. Continuum Mechanics; Academic Press: Boston, MA, USA, 1994. [Google Scholar]
- Giuliani, L.; D’Emilia, E.; Lisi, A.; Grimaldi, S.; Brizhik, L.; Giudice, E.D. Copper ion fluxes through the floating water bridge under strong electric potential. Electromagn. Biol. Med. 2015, 34, 167–169. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morawetz, K. Reversed Currents in Charged Liquid Bridges. Water 2017, 9, 353. https://doi.org/10.3390/w9050353
Morawetz K. Reversed Currents in Charged Liquid Bridges. Water. 2017; 9(5):353. https://doi.org/10.3390/w9050353
Chicago/Turabian StyleMorawetz, Klaus. 2017. "Reversed Currents in Charged Liquid Bridges" Water 9, no. 5: 353. https://doi.org/10.3390/w9050353
APA StyleMorawetz, K. (2017). Reversed Currents in Charged Liquid Bridges. Water, 9(5), 353. https://doi.org/10.3390/w9050353