Water Use and Yield of Soybean under Various Irrigation Regimes and Severe Water Stress. Application of AquaCrop and SIMDualKc Models
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Characterization and Description of the Experiments
- (a)
- FI, full irrigation, aimed at fully satisfying crop water requirements, thus to avoid water stress in all crop growth stages;
- (b)
- DIGFill, deficit irrigation during the flowering to grain filling periods;
- (c)
- DIVeg, deficit irrigation during the vegetative period;
- (d)
- DIVeg-GFill, deficit irrigation during the vegetative to the grain filling periods;
- (e)
- Rain-fed.
2.2. Modelling
3. Results and Discussion
3.1. Soil Water Simulation and Models Calibration and Parameterization
3.2. Water Balance and Water Use Components
3.3. Yield Predictions
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Layer Depth (m) | Soil 1 | Soil 2 | ||||||
---|---|---|---|---|---|---|---|---|
θsat (cm3·cm−3) | θFC (cm3·cm−3) | θWP (cm3·cm−3) | Ksat (cm·day−1) | θsat (cm3·cm−3) | θFC (cm3·cm−3) | θWP (cm3·cm−3) | Ksat (cm·day−1) | |
0–0.20 | 0.52 | 0.36 | 0.16 | 57.4 | 0.46 | 0.30 | 0.14 | 40.5 |
0.20–0.60 | 0.52 | 0.45 | 0.29 | 64.7 | 0.50 | 0.40 | 0.26 | 50.2 |
0.60–1.00 | 0.54 | 0.37 | 0.19 | 65.4 | 0.47 | 0.32 | 0.18 | 51.5 |
Crop Growth Stages | |||||
---|---|---|---|---|---|
Year | Initial | Crop Development | Mid-Season | Late-Season | |
2011–2012 | Dates | 11 November to 29 November | 30 November to 20 December | 21 December to 4 March | 5 March to 9 April |
CGDD (°C) * | 336 | 654 | 2015 | 2640 | |
2012–2013 | Dates | 3 December to 17 December | 18 December to 17 January | 18 January to 24 March | 24 March to 25 March |
CGDD (°C) * | 363 | 759 | 1894 | 2235 |
Irrigation Depths | Irrigation Depths | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dates | FI | DIGFill | DIVeg | DIVeg-GFill | Dates | FI | DIGFill | DIVeg | DIVeg-GFill |
16 November 2011 | 36 | 36 | 36 | 36 | 5 December 2012 | 18 | 18 | 18 | 18 |
5 December 2011 | 36 | 36 | 29 December 2012 | 54 | 54 | 54 | 54 | ||
10 December 2011 | 36 | 4 January 2013 | 36 | 36 | 36 | 54 | |||
14 December 2011 | 36 | 9 January 2013 | 36 | 36 | 36 | ||||
19 December 2011 | 36 | 36 | 14 January 2013 | 36 | 36 | ||||
1 January 2012 | 48 | 54 | 21 January 2013 | 36 | 36 | 36 | |||
4 January 2012 | 36 | 28 January 2013 | 36 | 36 | |||||
9 January 2012 | 18 | 54 | 54 | 11 February 2013 | 36 | 54 | 54 | ||
20 January 2012 | 54 | 16 February 2013 | 54 | 54 | |||||
30 January 2012 | 36 | 36 | 15 March 2013 | 54 | 54 | ||||
15 February 2012 | 36 | 36 | |||||||
Total | 354 | 216 | 162 | 90 | Total | 342 | 306 | 216 | 306 |
References
- Frank, F.C.; Viglizzo, E.F. Water use in rain-fed farming at different scales in the Pampas of Argentina. Agric. Syst. 2012, 109, 35–42. [Google Scholar] [CrossRef]
- Andrade, F.H. Analysis of growth and yield of maize, sunflower and soybean grown at Balcarce, Argentina. Field Crops Res. 1995, 41, 1–12. [Google Scholar] [CrossRef]
- Karam, F.; Masaad, R.; Sfeir, T.; Mounzer, O.; Rouphael, Y. Evapotranspiration and seed yield of field grown soybean under deficit irrigation conditions. Agric. Water Manag. 2005, 75, 226–244. [Google Scholar] [CrossRef]
- Payero, J.O.; Melvin, S.R.; Irmak, S. Response of soybean to deficit irrigation in the semi-arid environment of West-Central Nebraska. Trans. ASAE 2005, 48, 2189–2203. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Ma, L.; Hoogenboom, G.; Ahuja, L.R.; Nielsen, D.C.; Ascough, J.C., II. Development and evaluation of the RZWQM-CROPGRO hybrid model for soybean production. Agron. J. 2005, 97, 1172–1182. [Google Scholar] [CrossRef]
- Mercau, J.L.; Dardanelli, J.L.; Collino, D.J.; Andriani, J.M.; Irigoyen, A.; Satorre, E.H. Predicting on-farm soybean yields in the pampas using CROPGRO-soybean. Field Crop. Res. 2007, 100, 200–209. [Google Scholar] [CrossRef]
- Liu, S.; Yang, J.Y.; Zhang, X.Y.; Drury, C.F.; Reynolds, W.D.; Hoogenboom, G. Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China. Agric. Water Manag. 2013, 123, 32–44. [Google Scholar] [CrossRef]
- Setiyono, T.D.; Cassman, K.G.; Specht, J.E.; Dobermann, A.; Weiss, A.; Yang, H.; Conley, S.P.; Robinson, A.P.; Pedersen, P.; De Bruin, J.L. Simulation of soybean growth and yield in near-optimal growth conditions. Field Crop. Res. 2010, 119, 161–174. [Google Scholar] [CrossRef]
- Sinclair, T.R. Water and nitrogen limitation in soybean grain production I. Model development. Field Crop. Res. 1986, 15, 125–141. [Google Scholar] [CrossRef]
- Boogard, H.L.; van Diepen, C.A.; Rotter, R.P.; Cabrera, J.M.C.A.; van Laar, H.H. User’s Guide for the WOFOST 7.1 Crop Growth Simulation Model and WOFOST Control Center 1.5; Technical Document 52; DLO Winand Staring Centre: Wageningen, The Netherlands, 1998. [Google Scholar]
- Cera, J.C.; Streck, N.A.; Yang, H.; Zanon, A.J.; de Paula, G.M.; Lago, I. Extending the evaluation of the SoySim model to soybean cultivars with high maturation groups. Field Crop. Res. 2017, 201, 162–174. [Google Scholar] [CrossRef]
- Gerdes, G.; Allison, B.E.; Pereira, L.S. The soybean model SOYGRO: Field calibration and evaluation of irrigation schedules. In Crop-Water-Simulation Models in Practice; Wageningen Pers: Wageningen, The Netherlands, 1995; pp. 161–173. [Google Scholar]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Crop Water Productivity. Calculation Procedures and Calibration Guidance, AquaCrop version 4.0; FAO: Rome, Italy, 2012. [Google Scholar]
- Abi Saab, M.T.; Albrizio, R.; Nangia, V.; Karam, F.; Rouphael, Y. Developing scenarios to assess sunflower and soybean yield under different sowing dates and water regimes in the Bekaa valley (Lebanon): Simulations with AquaCrop. Int. J. Plant Prod. 2014, 8, 457–482. [Google Scholar]
- Paredes, P.; Wei, Z.; Liu, Y.; Xu, D.; Xin, Y.; Zhang, B.; Pereira, L.S. Performance assessment of the FAO AquaCrop model for soil water, soil evaporation, biomass and yield of soybeans in north china plain. Agric. Water Manag. 2015, 152, 57–71. [Google Scholar] [CrossRef]
- Stewart, J.I.; Hagan, R.M.; Pruitt, W.O.; Danielson, R.E.; Franklin, W.T.; Hanks, R.J.; Riley, J.P.; Jackson, E.B. Optimizing Crop Production through Control of Water and Salinity Levels in the Soil; Utah Water Research Laboratory: Logan, UT, USA, 1977; p. 191. [Google Scholar]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water; Irrig. Drain. Paper 33; FAO: Rome, Italy, 1979; p. 193. [Google Scholar]
- Paredes, P.; Rodrigues, G.C.; Alves, I.; Pereira, L.S. Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies. Agric. Water Manag. 2014, 135, 27–39. [Google Scholar] [CrossRef]
- Paredes, P.; Pereira, L.S.; Rodrigues, G.C.; Botelho, N.; Torres, M.O. Using the FAO dual crop coefficient approach to model water use and productivity of processing pea (Pisum sativum L.) as influenced by irrigation strategies. Agric. Water Manag. 2017. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Rodrigues, G.C.; Neves, M. Modeling barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing SIMDualKc and AquaCrop models. Agric. Water Manag. 2015, 159, 239–254. [Google Scholar] [CrossRef]
- Lorite, I.J.; Garcia-Vila, M.; Carmona, M.A.; Santos, C.; Soriano, M.A. Assessment of the irrigation advisory services’ recommendations and farmers’ irrigation management: A case study in Southern Spain. Water Resour. Manag. 2012, 26, 2397–2419. [Google Scholar] [CrossRef]
- Woli, P.; Jones, J.W.; Ingram, K.T.; Hoogenboom, G. Predicting crop yields with the agricultural reference index for drought. J. Agron. Crops Sci. 2014, 200, 163–171. [Google Scholar] [CrossRef]
- Kiymaz, S.; Ertek, A. Water use and yield of sugar beet (Beta vulgaris L.) under drip irrigation at different water regimes. Agric. Water Manag. 2015, 158, 225–234. [Google Scholar] [CrossRef]
- Gonzalez Perea, R.; Camacho Poyato, E.; Montesinos, P.; Rodriguez Diaz, J.A. Optimization of irrigation scheduling using soil water balance and genetic algorithms. Water Resour. Manag. 2016, 30, 2815–2830. [Google Scholar] [CrossRef]
- Wei, Z.; Paredes, P.; Liu, Y.; Chi, W.W.; Pereira, L.S. Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain. Agric. Water Manag. 2015, 147, 43–53. [Google Scholar] [CrossRef]
- Battisti, R.; Sentelhas, P.C.; Boote, K.J. Inter-comparison of performance of soybean crop simulation models and their ensemble in southern Brazil. Field Crop. Res. 2017, 200, 28–37. [Google Scholar] [CrossRef]
- Barreiro, M.; Tippmann, A. Atlantic modulation of El Nino influence on summertime rainfall over southeastern South America. Geophys. Res. Lett. 2008. [Google Scholar] [CrossRef]
- Kayano, M.T.; Andreoli, R.V. Relations of South American summer rainfall interannual variations with the Pacific Decadal Oscillation. Int. J. Climatol. 2007, 27, 531–540. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Koppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Farahani, H.J.; Izzi, G.; Oweis, T.Y. Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agron. J. 2009, 101, 469–476. [Google Scholar] [CrossRef]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Alves, I.; Fernando, R.M.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agric. Water Manag. 2012, 103, 8–24. [Google Scholar] [CrossRef]
- Kool, D.; Agam, N.; Lazarovitch, N.; Heitman, J.L.; Sauer, T.J.; Ben-Gal, A. A review of approaches for evapotranspiration partitioning. Agric. For. Meteorol. 2014, 184, 56–70. [Google Scholar] [CrossRef]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Smith, M.; Raes, D.; Wright, J.L. FAO-56 Dual crop coefficient method for estimating evaporation from soil and application extensions. J. Irrig. Drain. Eng. 2005, 131, 2–13. [Google Scholar] [CrossRef]
- Cammalleri, C.; Rallo, G.; Agnese, C.; Ciraolo, G.; Minacapilli, M.; Provenzano, G. Combined use of eddy covariance and sap flow techniques for partition of ET fluxes and water stress assessment in an irrigated olive orchard. Agric. Water Manag. 2013, 120, 89–97. [Google Scholar] [CrossRef]
- Ding, R.; Kang, S.; Zhang, Y.; Hao, X.; Tong, L.; Du, T. Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching. Agric. Water Manag. 2013, 127, 85–96. [Google Scholar] [CrossRef]
- Zhao, P.; Li, S.; Li, F.; Du, T.; Tong, L.; Kang, S. Comparison of dual crop coefficient method and Shuttleworth–Wallace model in evapotranspiration partitioning in a vineyard of northwest China. Agric. Water Manag. 2015, 160, 41–56. [Google Scholar] [CrossRef]
- Paco, T.A.; Poças, I.; Cunha, M.; Silvestre, J.C.; Santos, F.L.; Paredes, P.; Pereira, L.S. Evapotranspiration and crop coefficients for a super intensive olive orchard. An application of SIMDualKc and METRIC models using ground and satellite observations. J. Hydrol. 2014, 519, 2067–2080. [Google Scholar] [CrossRef]
- Qiu, R.; Du, T.; Kang, S.; Chen, R.; Wu, L. Assessing the SIMDualKc model for estimating evapotranspiration of hot pepper grown in a solar greenhouse in Northwest China. Agric. Syst. 2015, 138, 1–9. [Google Scholar] [CrossRef]
- Zhao, N.N.; Liu, Y.; Cai, J.B.; Rosa, R.D.; Paredes, P.; Pereira, L.S. Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component. Agric. Water Manag. 2013, 117, 93–105. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, L.; Shen, X.; Li, X.; Sun, J.; Duan, A.; Wu, L. Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency. Agric. Water Manag. 2014, 146, 1–10. [Google Scholar] [CrossRef]
- Allen, R.G.; Wright, J.L.; Pruitt, W.O.; Pereira, L.S.; Jensen, M.E. Water requirements. In Design and Operation of Farm Irrigation Systems; Hoffman, G.J., Evans, R.G., Jensen, M.E., Martin, D.L., Elliot, R.L., Eds.; American Society of Agricultural and Biological Engineers (ASABE): St. Joseph, MI, USA, 2007; pp. 208–288. [Google Scholar]
- Liu, Y.; Pereira, L.S.; Fernando, R.M. Fluxes through the bottom boundary of the root zone in silty soils: Parametric approaches to estimate groundwater contribution and percolation. Agric. Water Manag. 2006, 84, 27–40. [Google Scholar] [CrossRef]
- Gimenez, L.; Garcia-Petillo, M.; Paredes, P.; Pereira, L.S. Predicting maize transpiration, water use and productivity for developing improved supplemental irrigation schedules in western Uruguay to cope with climate variability. Water 2016. [Google Scholar] [CrossRef]
- Vanuytrecht, E.; Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E.; Heng, L.K.; Garcia Vila, M.; Moreno, P.M. AquaCrop: FAO’s crop water productivity and yield response model. Environ. Model. Softw. 2014, 62, 351–360. [Google Scholar] [CrossRef]
- Foster, T.; Brozović, N.; Butler, A.P.; Neale, C.M.U.; Raes, D.; Steduto, P.; Fereres, E.; Hsiao, T. AquaCrop-OS: An open source version of FAO’s crop water productivity model. Agric. Water Manag. 2017, 181, 18–22. [Google Scholar] [CrossRef]
- Legates, D.; McCabe, G., Jr. Evaluating the use of goodness of fit measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models: Part 1. A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Odhiambo, L.O.; Irmak, S. Evaluation of the impact of surface residue cover on single and dual crop coefficient for estimating soybean actual evapotranspiration. Agric. Water Manag. 2012, 104, 221–234. [Google Scholar] [CrossRef]
- Tabrizi, M.S.; Parsinejad, M.; Babazadeh, H. Efficacy of partial root drying technique for optimizing soybean crop production in semi-arid regions. Irrig. Drain. 2012, 61, 80–88. [Google Scholar] [CrossRef]
- Payero, J.O.; Irmak, S. Daily energy fluxes, evapotranspiration and crop coefficient of soybean. Agric. Water Manag. 2013, 129, 31–43. [Google Scholar] [CrossRef]
- Khoshravesh, M.; Mostafazadeh-Fard, B.; Heidarpour, M.; Kiani, A.R. AquaCrop model simulation under different irrigation water and nitrogen strategies. Water Sci. Technol. 2013, 67, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.A.; Shen, Y.; Stricevic, R.; Pei, H.; Sun, H.; Amiri, E.; Penas, A.; del Rio, S. Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agric. Water Manag. 2014, 135, 61–72. [Google Scholar] [CrossRef]
- Katerji, N.; Campi, P.; Mastrorilli, M. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agric. Water Manag. 2013, 130, 14–26. [Google Scholar] [CrossRef]
- Banterng, P.; Hoogenboom, G.; Patanothai, A.; Singh, P.; Wani, S.P.; Pathak, P.; Tongpoonpol, S.; Atichart, S.; Srihaban, P.; Buranaviriyakul, S.; et al. Application of the Cropping System Model (CSM)-CROPGRO Soybean for determining optimum management strategies for soybean in tropical environments. J. Agron. Crop. Sci. 2010, 196, 231–242. [Google Scholar] [CrossRef]
- Paredes, P.; Torres, M.O. Parameterization of AquaCrop model for vining pea biomass and yield predictions and assessing impacts of irrigation strategies considering various sowing dates. Irrig. Sci. 2017, 35, 27–41. [Google Scholar] [CrossRef]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
Model | Crop Season | Irrigation Strategy | b0 | R2 | RMSE (cm3·cm−3) | NRMSE (%) | EF |
---|---|---|---|---|---|---|---|
SIMDualKc | 2011–2012 | FI | 0.99 | 0.65 | 0.019 | 5.6 | 0.63 |
DIGFill | 0.98 | 0.73 | 0.025 | 7.6 | 0.71 | ||
DIVeg | 0.99 | 0.86 | 0.019 | 6.6 | 0.86 | ||
DIVeg-GFill | 0.97 | 0.84 | 0.017 | 5.9 | 0.79 | ||
Rain-fed | 0.98 | 0.83 | 0.019 | 6.5 | 0.82 | ||
2012–2013 | FI | 0.98 | 0.74 | 0.017 | 4.8 | 0.61 | |
DIGFill | 0.98 | 0.94 | 0.014 | 4.2 | 0.91 | ||
DIVeg | 0.99 | 0.79 | 0.017 | 5.1 | 0.69 | ||
DIVeg-GFill | 1.01 | 0.82 | 0.015 | 4.8 | 0.80 | ||
Rain-fed | 0.95 | 0.86 | 0.019 | 6.0 | 0.64 | ||
AquaCrop | 2011–2012 | FI | 0.99 | 0.61 | 0.020 | 6.1 | 0.57 |
DIGFill | 1.03 | 0.72 | 0.028 | 8.5 | 0.64 | ||
DIVeg | 1.00 | 0.93 | 0.010 | 3.4 | 0.93 | ||
DIVeg-GFill | 1.00 | 0.83 | 0.021 | 7.3 | 0.83 | ||
Rain-fed | 0.99 | 0.88 | 0.016 | 5.3 | 0.88 | ||
2012–2013 | FI | 0.97 | 0.76 | 0.018 | 5.0 | 0.58 | |
DIGFill | 0.95 | 0.92 | 0.021 | 6.6 | 0.79 | ||
DIVeg | 1.00 | 0.76 | 0.023 | 7.0 | 0.41 | ||
DIVeg-GFill | 1.06 | 0.87 | 0.022 | 7.3 | 0.54 | ||
Rain-fed | 0.92 | 0.86 | 0.029 | 9.2 | 0.16 |
Model | Parameters | Values | |
---|---|---|---|
SIMDualKc | Crop | Kcb ini | 0.15 |
Kcb mid | 1.10 | ||
Kcb end | 0.35 | ||
p ini, p dev, p mid, and p end | 0.50 | ||
Soil evaporation | REW (mm) | 10 | |
TEW (mm) | 23 | ||
Ze (m) | 0.10 | ||
Deep percolation | aD | 370/360 * | |
bD | −0.017 | ||
Runoff | CN | 80 | |
AquaCrop | Conservative crop | Base temperature(°C) | 5 |
Cut-off temperature (°C) | 30 | ||
Canopy cover at 90% emergence (cco, %) | 1.5 | ||
Soil water depletion threshold for canopy expansion (Upper and lower thresholds) | 0.15 0.65 | ||
Shape factor for water stress coefficient for canopy expansion | 3.0 | ||
Soil water depletion threshold for stomatal control | 0.50 | ||
Shape factor for water stress coefficient for stomatal control | 3.0 | ||
Calibrated crop | Crop coefficient for transpiration (KcTr,x) | 1.10 | |
Adjusted biomass (water) productivity (BWP *, g·m−2) | 14 | ||
Maximum canopy cover (CCx, %) | 100 | ||
Canopy growth coefficient (CGC, % GDD−1) | 0.744 | ||
Canopy decline coefficient (CDC, % GDD−1) | 0.440 |
Year/Strategy | Crop Stage | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Initial | Crop Development | Mid-Season | Late Season | Full Season | |||||||
SIM | Aqua | SIM | Aqua | SIM | Aqua | SIM | Aqua | SIM | Aqua | ||
2011–2012/FI | Es (mm) | 77 | 68 | 28 | 26 | 4 | 9 | 3 | 11 | 112 | 114 |
Tc act (mm) | 16 | 6 | 71 | 64 | 436 | 419 | 83 | 85 | 606 | 574 | |
Es/ETc act (%) | 83 | 92 | 28 | 29 | 1 | 2 | 3 | 11 | 16 | 17 | |
DIGFill | Es (mm) | 75 | 70 | 22 | 27 | 3 | 9 | 2 | 11 | 102 | 117 |
Tc act (mm) | 16 | 6 | 71 | 64 | 407 | 416 | 83 | 85 | 577 | 571 | |
Es/ETc act (%) | 82 | 92 | 24 | 30 | 1 | 2 | 2 | 11 | 15 | 17 | |
DIVeg | Es (mm) | 77 | 68 | 3 | 8 | 2 | 59 | 3 | 38 | 85 | 173 |
Tc act (mm) | 16 | 6 | 68 | 58 | 283 | 167 | 83 | 44 | 450 | 275 | |
Es/ETc act (%) | 83 | 92 | 4 | 12 | 1 | 26 | 3 | 46 | 16 | 39 | |
DIVeg-GFill | Es (mm) | 75 | 70 | 3 | 8 | 2 | 34 | 2 | 25 | 82 | 137 |
Tc act (mm) | 16 | 6 | 68 | 61 | 262 | 235 | 83 | 68 | 429 | 370 | |
Es/ETc act (%) | 82 | 92 | 4 | 12 | 1 | 13 | 2 | 27 | 16 | 27 | |
Rain-fed | Es (mm) | 70 | 70 | 3 | 8 | 2 | 36 | 3 | 22 | 78 | 136 |
Tc act (mm) | 16 | 6 | 68 | 61 | 290 | 250 | 83 | 67 | 457 | 384 | |
Es/ETc act (%) | 81 | 92 | 4 | 12 | 1 | 13 | 3 | 25 | 15 | 26 | |
2012–2013/FI | Es (mm) | 64 | 62 | 51 | 49 | 3 | 1 | 1 | 3 | 119 | 115 |
Tc act (mm) | 11 | 2 | 95 | 96 | 291 | 295 | 50 | 61 | 447 | 454 | |
Es/ETc act (%) | 85 | 97 | 35 | 34 | 1 | 0 | 2 | 5 | 21 | 20 | |
DIGFill | Es (mm) | 64 | 62 | 47 | 49 | 3 | 1 | 1 | 3 | 115 | 115 |
Tc act (mm) | 12 | 2 | 95 | 95 | 277 | 270 | 50 | 57 | 434 | 424 | |
Es/ETc act (%) | 84 | 97 | 33 | 34 | 1 | 0 | 2 | 5 | 21 | 21 | |
DIVeg | Es (mm) | 63 | 63 | 39 | 48 | 2 | 8 | 1 | 5 | 105 | 124 |
Tc act (mm) | 12 | 2 | 95 | 95 | 250 | 248 | 50 | 58 | 407 | 403 | |
Es/ETc act (%) | 84 | 97 | 29 | 34 | 1 | 3 | 2 | 8 | 21 | 24 | |
DIVeg-GFill | Es (mm) | 62 | 62 | 43 | 50 | 3 | 1 | 1 | 3 | 109 | 116 |
Tc act (mm) | 12 | 2 | 95 | 95 | 280 | 293 | 50 | 61 | 437 | 451 | |
Es/ETc act (%) | 84 | 97 | 31 | 34 | 1 | 0 | 2 | 5 | 20 | 20 | |
Rain-fed | Es (mm) | 64 | 62 | 34 | 43 | 2 | 11 | 1 | 5 | 101 | 121 |
Tc act (mm) | 12 | 2 | 95 | 95 | 245 | 233 | 48 | 53 | 400 | 383 | |
Es/ETc act (%) | 84 | 97 | 26 | 31 | 1 | 5 | 2 | 9 | 20 | 24 |
Treatment | Model | P (mm) | I (mm) | ΔSWC (mm) | DP (mm) | RO (mm) | ETc act (mm) | Tc act (mm) | Es (mm) | Es/ETc act (%) |
---|---|---|---|---|---|---|---|---|---|---|
2011–2012 | ||||||||||
FI | SIMDualKc | 821 | 354 | 16 | 266 | 207 | 718 | 606 | 112 | 16 |
AquaCrop | 821 | 354 | 23 | 245 | 266 | 688 | 574 | 114 | 17 | |
DIGFill | SIMDualKc | 676 | 288 | 37 | 190 | 132 | 679 | 577 | 102 | 15 |
AquaCrop | 676 | 288 | −8 | 109 | 159 | 688 | 571 | 117 | 17 | |
DIVeg | SIMDualKc | 773 | 162 | 15 | 211 | 204 | 535 | 450 | 85 | 16 |
AquaCrop | 773 | 162 | 19 | 248 | 259 | 448 | 275 | 173 | 39 | |
DIVeg-GFill | SIMDualKc | 628 | 90 | 22 | 100 | 129 | 511 | 429 | 82 | 16 |
AquaCrop | 628 | 90 | 6 | 80 | 138 | 507 | 370 | 137 | 27 | |
Rain-fed | SIMDualKc | 821 | 0 | 17 | 98 | 205 | 535 | 457 | 78 | 15 |
AquaCrop | 821 | 0 | 5 | 89 | 217 | 520 | 384 | 136 | 26 | |
2012–2013 | ||||||||||
FI | SIMDualKc | 786 | 342 | 10 | 408 | 164 | 566 | 447 | 119 | 21 |
AquaCrop | 786 | 342 | 20 | 306 | 273 | 569 | 454 | 115 | 20 | |
DIGFill | SIMDualKc | 666 | 306 | 39 | 304 | 158 | 549 | 434 | 115 | 21 |
AquaCrop | 666 | 306 | 56 | 216 | 274 | 539 | 424 | 115 | 21 | |
DIVeg | SIMDualKc | 746 | 216 | 45 | 330 | 164 | 512 | 407 | 105 | 21 |
AquaCrop | 746 | 216 | −2 | 159 | 274 | 527 | 403 | 124 | 24 | |
DIVeg-GFill | SIMDualKc | 668 | 306 | 39 | 318 | 149 | 546 | 437 | 109 | 20 |
AquaCrop | 668 | 306 | 30 | 180 | 257 | 567 | 451 | 116 | 20 | |
Rain-fed | SIMDualKc | 786 | 0 | 61 | 183 | 164 | 501 | 400 | 101 | 20 |
AquaCrop | 786 | 0 | 75 | 139 | 219 | 504 | 383 | 121 | 24 |
Year | Irrig. Strategy | Observed * | SIMDualKc-Stewart | AquaCrop | ||||
---|---|---|---|---|---|---|---|---|
Predicted | Deviation | Predicted | Deviation | |||||
(kg·ha−1) | (kg ha−1) | (kg·ha−1) | (%) | (kg·ha−1) | (kg·ha−1) | (%) | ||
2009–2010 | FI | 4225 (±215) | 4281 | −56 | −1 | 5179 | −954 | −23 |
DIGFill | 2107 (±748) | 3490 | −1383 | −66 | 4270 | −2163 | −103 | |
Rain-fed | 4209 (±91) | 4278 | −68 | −2 | 5182 | −973 | −23 | |
2010–2011 | FI | 6293 (±209) | 6038 | 255 | 4 | 5089 | 1204 | 19 |
DIVeg | 4856 (±1324) | 4830 | 26 | 1 | 4407 | 449 | 9 | |
DIVeg-GFill | 4592 (±584) | 4394 | 199 | 4 | 3626 | 966 | 21 | |
Rain-fed | 4377 (±502) | 3804 | 573 | 13 | 3684 | 693 | 16 | |
2011–2012 | FI | 5368 (±133) | 5456 | −88 | −2 | 5425 | −57 | −1 |
DIGFill | 4071 (±294) | 5114 | −1043 | −26 | 5367 | −1296 | −32 | |
DIVeg | 4597 (±178) | 3620 | 977 | 21 | 2725 | 1872 | 41 | |
DIVeg-GFill | 3491 (±228) | 3370 | 121 | 3 | 3662 | −171 | −5 | |
Rain-fed | 4493 (±105) | 3705 | 788 | 18 | 3764 | 729 | 16 | |
2012–2013 | FI | 5402 (±591) | 5446 | −44 | −1 | 5287 | 115 | 2 |
DIGFill | 4605 (±556) | 5227 | −622 | −14 | 4930 | −325 | −7 | |
DIVeg | 4045 (±66) | 4797 | −752 | −19 | 4768 | −723 | −18 | |
DIVeg-GFill | 4069 (±87) | 5276 | −1206 | −30 | 5269 | −1200 | −29 | |
Rain-fed | 4721 (±495) | 4683 | 38 | 1 | 4547 | 174 | 4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giménez, L.; Paredes, P.; Pereira, L.S. Water Use and Yield of Soybean under Various Irrigation Regimes and Severe Water Stress. Application of AquaCrop and SIMDualKc Models. Water 2017, 9, 393. https://doi.org/10.3390/w9060393
Giménez L, Paredes P, Pereira LS. Water Use and Yield of Soybean under Various Irrigation Regimes and Severe Water Stress. Application of AquaCrop and SIMDualKc Models. Water. 2017; 9(6):393. https://doi.org/10.3390/w9060393
Chicago/Turabian StyleGiménez, Luis, Paula Paredes, and Luis S. Pereira. 2017. "Water Use and Yield of Soybean under Various Irrigation Regimes and Severe Water Stress. Application of AquaCrop and SIMDualKc Models" Water 9, no. 6: 393. https://doi.org/10.3390/w9060393
APA StyleGiménez, L., Paredes, P., & Pereira, L. S. (2017). Water Use and Yield of Soybean under Various Irrigation Regimes and Severe Water Stress. Application of AquaCrop and SIMDualKc Models. Water, 9(6), 393. https://doi.org/10.3390/w9060393