More Than Meets the Kappa for Antibody Superantigen Protein L (PpL)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recombinant Antibody Production
2.2. Binding Affinity Quantification
3. Results
3.1. BLI Measurement of Recombinant IgG1 Variants to Protein A (SpA)
3.2. BLI Measurement of Recombinant IgG1 Variants to Protein G (SpG)
3.3. BLI Measurement of Recombinant IgG1 Variants Binding to Protein L (PpL)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deacy, A.M.; Gan, S.K.-E.; Derrick, J.P. Superantigen Recognition and Interactions: Functions, Mechanisms and Applications. Front. Immunol. 2021, 12, 731845. [Google Scholar] [CrossRef] [PubMed]
- Spaulding, A.R.; Salgado-Pabón, W.; Kohler, P.L.; Horswill, A.R.; Leung, D.Y.M.; Schlievert, P.M. Staphylococcal and Streptococcal Superantigen Exotoxins. Clin. Microbiol. Rev. 2013, 26, 422–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjöbring, U.; Björck, L.; Kastern, W. Streptococcal protein G. Gene structure and protein binding properties. J. Biol. Chem. 1991, 266, 399–405. [Google Scholar] [CrossRef]
- Su, C.T.-T.; Lua, W.-H.; Poh, J.-J.; Ling, W.-L.; Yeo, J.Y.; Gan, S.K.-E. Molecular Insights of Nickel Binding to Therapeutic Antibodies as a Possible New Antibody Superantigen. Front. Immunol. 2021, 12, 676048. [Google Scholar] [CrossRef]
- Grov, A.; Myklestad, B.; Oeding, P. Immunochemical Studies on Antigen Preparations from Staphylococcus Aureus. Acta Pathol. Microbiol. Scand. 1964, 61, 588–596. [Google Scholar] [CrossRef]
- Sasso, E.H.; Silverman, G.J.; Mannik, M. Human IgA and IgG F(ab’)2 that bind to staphylococcal protein A belong to the VHIII subgroup. J. Immunol. 1991, 147, 1877–1883. [Google Scholar]
- Nilson, B.H.; Solomon, A.; Björck, L.; Akerström, B. Protein L from Peptostreptococcus magnus binds to the kappa light chain variable domain. J. Biol. Chem. 1992, 267, 2234–2239. [Google Scholar] [CrossRef]
- Su, C.T.-T.; Ling, W.-L.; Lua, W.-H.; Poh, J.-J.; Gan, S.K.-E. The role of Antibody Vκ Framework 3 region towards Antigen binding: Effects on recombinant production and Protein L binding. Sci. Rep. 2017, 7, 3766. [Google Scholar] [CrossRef]
- Ling, W.-L.; Su, C.T.-T.; Lua, W.-H.; Yeo, J.Y.; Poh, J.-J.; Ng, Y.-L.; Wipat, A.; Gan, S.K.-E. Engaging the ‘A’ Class Antibody: Variable-Heavy (VH) region influencing IgA1&2 engagement of FcαRI and superantigen proteins G, A, and L. bioRxiv 2021. [Google Scholar] [CrossRef]
- Samsudin, F.; Yeo, J.Y.; Gan, S.K.-E.; Bond, P.J. Not all therapeutic antibody isotypes are equal: The case of IgM versus IgG in Pertuzumab and Trastuzumab. Chem. Sci. 2020, 11, 2843–2854. [Google Scholar] [CrossRef] [Green Version]
- Gan, S.K.-E.; Yeo, J.Y. Sagacious Epitope Selection for Vaccines, and Both Antibody-Based Therapeutics and Diagnostics: Tips From Virology and Oncology. Preprints 2021. [Google Scholar] [CrossRef]
- Ling, W.-L.; Lua, W.-H.; Gan, S.K.-E. Sagacity in antibody humanization for therapeutics, diagnostics and research purposes: Considerations of antibody elements and their roles. Antib. Ther. 2020, 3, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janeway, C.A.; Travers, P.; Walport, M.; Capra, D.J. Immunobiology; Taylor & Francis Group/Garland Science: London, UK, 2001. [Google Scholar]
- Haraldsson, Á.; Kock-Jansen, M.J.H.; Jaminon, M.; v Eck-Arts, P.B.J.M.; de Boo, T.; Weemaes, C.M.R.; Bakkeren, J.A.J.M. Determination of Kappa and Lambda Light Chains in Serum Immunoglobulins G, A and M. Ann. Clin. Biochem. 1991, 28, 461–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alroy, I.; Yarden, Y. The ErbB signaling network in embryogenesis and oncogenesis: Signal diversification through combinatorial ligand-receptor interactions. FEBS Lett. 1997, 410, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Olayioye, M.A.; Neve, R.M.; Lane, H.A.; Hynes, N.E. The ErbB signaling network: Receptor heterodimerization in development and cancer. Embo J. 2000, 19, 3159–3167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, P.; Presta, L.; Gorman, C.M.; Ridgway, J.B.; Henner, D.; Wong, W.L.; Rowland, A.M.; Kotts, C.; Carver, M.E.; Shepard, H.M. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. USA 1992, 89, 4285–4289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fendly, B.M.; Winget, M.; Hudziak, R.M.; Lipari, M.T.; Napier, M.A.; Ullrich, A. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res. 1990, 50, 1550–1558. [Google Scholar]
- Lua, W.-H.; Gan, S.K.-E.; Lane, D.P.; Verma, C.S. A search for synergy in the binding kinetics of Trastuzumab and Pertuzumab whole and F(ab) to Her2. NPJ Breast Cancer 2015, 1, 15012. [Google Scholar] [CrossRef] [Green Version]
- Phua, S.-X.; Chan, K.-F.; Su, C.T.-T.; Poh, J.-J.; Gan, S.K.-E. Perspective: The promises of a holistic view of proteins—impact on antibody engineering and drug discovery. Biosci. Rep. 2019, 39, BSR20181958. [Google Scholar] [CrossRef] [Green Version]
- Ling, W.-L.; Lua, W.-H.; Poh, J.-J.; Yeo, J.Y.; Lane, D.P.; Gan, S.K.-E. Effect of VH–VL Families in Pertuzumab and Trastuzumab Recombinant Production, Her2 and FcγIIA Binding. Front. Immunol. 2018, 9, 469. [Google Scholar] [CrossRef] [Green Version]
- Ling, W.-L.; Su, C.T.-T.; Lua, W.-H.; Poh, J.-J.; Ng, Y.-L.; Wipat, A.; Gan, S.K.-E. Essentially Leading Antibody Production: An Investigation of Amino Acids, Myeloma, and Natural V-Region Signal Peptides in Producing Pertuzumab and Trastuzumab Variants. Front. Immunol. 2020, 11, 604318. [Google Scholar] [CrossRef] [PubMed]
- Lua, W.-H.; Ling, W.-L.; Yeo, J.Y.; Poh, J.-J.; Lane, D.P.; Gan, S.K.-E. The effects of Antibody Engineering CH and CL in Trastuzumab and Pertuzumab recombinant models: Impact on antibody production and antigen-binding. Sci. Rep. 2018, 8, 718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lua, W.-H.; Su, C.T.-T.; Yeo, J.Y.; Poh, J.-J.; Ling, W.-L.; Phua, S.-X.; Gan, S.K.-E. Role of the IgE variable heavy chain in FcεRIα and superantigen binding in allergy and immunotherapy. J. Allergy Clin. Immunol. 2019, 144, 514–523.e515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, W.-T.; Verma, C.S.; Lane, D.P.; Gan, S.K.-E. A comparison and optimization of methods and factors affecting the transformation of Escherichia coli. Biosci. Rep. 2013, 33, e00086. [Google Scholar] [CrossRef]
- Heng, Z.S.-L.; Yeo, J.Y.; Koh, D.W.-S.; Gan, S.K.-E.; Ling, W.-L. Augmenting recombinant antibody production in HEK293E cells: Optimising transfection and culture parameters. Antib. Ther. 2022, 5, 30–41. [Google Scholar] [CrossRef]
- Su, C.T.-T.; Lua, W.-H.; Ling, W.-L.; Gan, S.K.-E. Allosteric Effects between the Antibody Constant and Variable Regions: A Study of IgA Fc Mutations on Antigen Binding. Antibodies 2018, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo, G.; Gruvegård, M.; Van Alstine, J.M. Antibody Fragments and Their Purification by Protein L Affinity Chromatography. Antibodies 2015, 4, 259–277. [Google Scholar] [CrossRef] [Green Version]
- Åkerström, B.; Björck, L. Protein L: An Immunoglobulin Light Chain-binding Bacterial Protein: Characterization of binding and physicochemical properties. J. Biol. Chem. 1989, 264, 19740–19746. [Google Scholar] [CrossRef]
- Deisenhofer, J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-. ANG resolution. Biochemistry 1981, 20, 2361–2370. [Google Scholar] [CrossRef]
- Kato, K.; Lian, L.-Y.; Barsukov, I.L.; Derrick, J.P.; Kim, H.; Tanaka, R.; Yoshino, A.; Shiraishi, M.; Shimada, I.; Arata, Y.; et al. Model for the complex between protein G and an antibody Fc fragment in solution. Structure 1995, 3, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Choe, W.; Durgannavar, T.A.; Chung, S.J. Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides. Materials 2016, 9, 994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, W.-L.; Yeo, J.Y.; Ng, Y.-L.; Wipat, A.; Gan, S.K.-E. More Than Meets the Kappa for Antibody Superantigen Protein L (PpL). Antibodies 2022, 11, 14. https://doi.org/10.3390/antib11010014
Ling W-L, Yeo JY, Ng Y-L, Wipat A, Gan SK-E. More Than Meets the Kappa for Antibody Superantigen Protein L (PpL). Antibodies. 2022; 11(1):14. https://doi.org/10.3390/antib11010014
Chicago/Turabian StyleLing, Wei-Li, Joshua Yi Yeo, Yuen-Ling Ng, Anil Wipat, and Samuel Ken-En Gan. 2022. "More Than Meets the Kappa for Antibody Superantigen Protein L (PpL)" Antibodies 11, no. 1: 14. https://doi.org/10.3390/antib11010014
APA StyleLing, W. -L., Yeo, J. Y., Ng, Y. -L., Wipat, A., & Gan, S. K. -E. (2022). More Than Meets the Kappa for Antibody Superantigen Protein L (PpL). Antibodies, 11(1), 14. https://doi.org/10.3390/antib11010014