A Physiologically Based Pharmacokinetic Framework for Quantifying Antibody Distribution Gradients from Tumors to Tumor-Draining Lymph Nodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. The PBPK Model Structure
2.2. Model Calibration and Simulation
3. Results
3.1. The PBPK Model Adequately Captured Antibody Distribution in Anatomically Distinctive Tumors and TDLNs
3.2. Therapeutic Antibodies Showed Varied Distribution across Metastatic Lesions
3.3. Therapeutic Antibodies Markedly Reduced Distribution in the TDLNs after Surgical Resection
3.4. Tumor-Induced Tissue Inflammation Limits Antibody Distribution in the Intratumoral TDLNs
3.5. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Primary Tumors | Antibody | R01 (nM) | R02 (nM) | Kd (nM) | Kd,FcRn (nM) | dln | CLp (L/h) |
---|---|---|---|---|---|---|---|
Breast [23] | 89Zr-atezolizumab | 0.001 | 2.5 | 0.43 | 2400 | 5 | 0.0083 |
Appendix E
Type of TDLN | Antibody | σV | Lorgan a (L/hr) | VISF,PT b (L) | Vp (L) | Laff (L/h) | Leff (L/h) |
---|---|---|---|---|---|---|---|
Peritumoral | 64Cu-DOTA-trastuzumab | 0.87 | 0.008 | 0.1122 | 5.0 | 0.04 | 0.004 |
(+)-Intratumoral | 64Cu-DOTA-trastuzumab | 0.87 | 0.008 | 0.1122 | 5.0 | 0.00001 | 0.00001 |
(−)-Intratumoral | 64Cu-DOTA-trastuzumab | 0.87 | 0.008 | 0.1122 | 5.0 | 0.004 | 0.004 |
Type of TDLN | Antibody | R01 (nM) | R02 (nM) | Kd (nM) | Kd,FcRn (nM) | dln | CLp (L/h) |
---|---|---|---|---|---|---|---|
Peritumoral | 64Cu-DOTA-trastuzumab | 500 | 100 | 5 | 2400 | 5 | 0.004 |
(+)-Intratumoral | 64Cu-DOTA-trastuzumab | 500 | 100 | 5 | 2400 | 5 | 0.00001 |
(−)-Intratumoral | 64Cu-DOTA-trastuzumab | 500 | 0 | 5 | 2400 | 5 | 0.004 |
Appendix F
References
- Topalian, S.L.; Taube, J.M.; Pardoll, D.M. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 2020, 367, eaax0182. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.C.; Orlowski, R.J.; Xu, X.; Mick, R.; George, S.M.; Yan, P.K.; Manne, S.; Kraya, A.A.; Wubbenhorst, B.; Dorfman, L.; et al. A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat. Med. 2019, 25, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Cascone, T.; William, W.N.; Weissferdt, A.; Leung, C.H.; Lin, H.Y.; Pataer, A.; Godoy, M.C.B.; Carter, B.W.; Federico, L.; Reuben, A.; et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: The phase 2 randomized NEOSTAR trial. Nat. Med. 2021, 27, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osorio, J.C.; Arbour, K.C.; Le, D.T.; Durham, J.N.; Plodkowski, A.J.; Halpenny, D.F.; Ginsberg, M.S.; Sawan, P.; Crompton, J.G.; Yu, H.A.; et al. Lesion-Level Response Dynamics to Programmed Cell Death Protein (PD-1) Blockade. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 3546–3555. [Google Scholar] [CrossRef]
- Salgado, E.; Cao, Y. Pharmacokinetics and pharmacodynamics of therapeutic antibodies in tumors and tumor-draining lymph nodes. Math. Biosci. Eng. 2021, 18, 112–131. [Google Scholar] [CrossRef]
- Abuqayyas, L.; Balthasar, J.P. Application of PBPK modeling to predict monoclonal antibody disposition in plasma and tissues in mouse models of human colorectal cancer. J. Pharmacokinet. Pharmacodyn. 2012, 39, 683–710. [Google Scholar] [CrossRef] [Green Version]
- Polli, J.R.; Engler, F.A.; Balthasar, J.P. Physiologically Based Modeling of the Pharmacokinetics of “Catch-and-Release” Anti-Carcinoembryonic Antigen Monoclonal Antibodies in Colorectal Cancer Xenograft Mouse Models. J. Pharm. Sci. 2019, 108, 674–691. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Balthasar, J.P.; Jusko, W.J. Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J. Pharm. Pharm. 2013, 40, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Jusko, W.J. Incorporating target-mediated drug disposition in a minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J. Pharmacokinet. Pharmacodyn. 2014, 41, 375–387. [Google Scholar] [CrossRef]
- Ager, A.; May, M.J. Understanding high endothelial venules: Lessons for cancer immunology. Oncoimmunology 2015, 4, e1008791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vella, G.; Guelfi, S.; Bergers, G. High Endothelial Venules: A Vascular Perspective on Tertiary Lymphoid Structures in Cancer. Front. Immunol. 2021, 12, 736670. [Google Scholar] [CrossRef] [PubMed]
- Mager, D.E.; Krzyzanski, W. Quasi-Equilibrium Pharmacokinetic Model for Drugs Exhibiting Target-Mediated Drug Disposition. Pharm. Res. 2005, 22, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Gibiansky, L.; Gibiansky, E. Target-mediated drug disposition model: Approximations, identifiability of model parameters and applications to the population pharmacokinetic–pharmacodynamic modeling of biologics. Expert. Opin. Drug Metab. Toxicol. 2009, 5, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Rohatgi, A. WebPlotDigitizer Version 4.4. 2017. Available online: https://apps.automeris.io/wpd/ (accessed on 18 September 2019).
- den Hollander, M.W.; Bensch, F.; Glaudemans, A.W.; Oude Munnink, T.H.; Enting, R.H.; den Dunnen, W.F.; Heesters, M.A.; Kruyt, F.A.; Lub-de Hooge, M.N.; Cees de Groot, J.; et al. TGF-β Antibody Uptake in Recurrent High-Grade Glioma Imaged with 89Zr-Fresolimumab PET. J. Nucl. Med. 2015, 56, 1310–1314. [Google Scholar] [CrossRef] [Green Version]
- Bahce, I.; Huisman, M.C.; Verwer, E.E.; Ooijevaar, R.; Boutkourt, F.; Vugts, D.J.; van Dongen, G.A.; Boellaard, R.; Smit, E.F. Pilot study of (89)Zr-bevacizumab positron emission tomography in patients with advanced non-small cell lung cancer. EJNMMI Res. 2014, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Gaykema, S.B.; Brouwers, A.H.; Lub-de Hooge, M.N.; Pleijhuis, R.G.; Timmer-Bosscha, H.; Pot, L.; van Dam, G.M.; van der Meulen, S.B.; de Jong, J.R.; Bart, J.; et al. 89Zr-bevacizumab PET imaging in primary breast cancer. J. Nucl. Med. 2013, 54, 1014–1018. [Google Scholar] [CrossRef] [Green Version]
- Oosting, S.F.; Brouwers, A.H.; van Es, S.C.; Nagengast, W.B.; Oude Munnink, T.H.; Lub-de Hooge, M.N.; Hollema, H.; de Jong, J.R.; de Jong, I.J.; de Haas, S.; et al. 89Zr-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of antiangiogenic treatment. J. Nucl. Med. 2015, 56, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Kurihara, H.; Yonemori, K.; Tsuda, H.; Suzuki, J.; Kono, Y.; Honda, N.; Kodaira, M.; Yamamoto, H.; Yunokawa, M.; et al. 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer. J. Nucl. Med. 2013, 54, 1869–1875. [Google Scholar] [CrossRef] [Green Version]
- O’Donoghue, J.A.; Lewis, J.S.; Pandit-Taskar, N.; Fleming, S.E.; Schöder, H.; Larson, S.M.; Beylergil, V.; Ruan, S.; Lyashchenko, S.K.; Zanzonico, P.B.; et al. Pharmacokinetics, Biodistribution, and Radiation Dosimetry for (89)Zr-Trastuzumab in Patients with Esophagogastric Cancer. J. Nucl. Med. 2018, 59, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Lamberts, L.E.; Menke-van der Houven van Oordt, C.W.; ter Weele, E.J.; Bensch, F.; Smeenk, M.M.; Voortman, J.; Hoekstra, O.S.; Williams, S.P.; Fine, B.M.; Maslyar, D.; et al. ImmunoPET with Anti-Mesothelin Antibody in Patients with Pancreatic and Ovarian Cancer before Anti-Mesothelin Antibody–Drug Conjugate Treatment. Clin. Cancer Res. 2016, 22, 1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bensch, F.; van der Veen, E.L.; Lub-de Hooge, M.N.; Jorritsma-Smit, A.; Boellaard, R.; Kok, I.C.; Oosting, S.F.; Schröder, C.P.; Hiltermann, T.J.N.; van der Wekken, A.J.; et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat. Med. 2018, 24, 1852–1858. [Google Scholar] [CrossRef]
- Brown, L.V.; Gaffney, E.A.; Ager, A.; Wagg, J.; Coles, M.C. Comparative Anatomical Limits of CART-Cell Delivery to Tumours in Mice and Men. bioRxiv 2019, 759167. [Google Scholar] [CrossRef]
- Cao, Y.; Jusko, W.J. Mechanistic physiologically based pharmacokinetic models in development of therapeutic monoclonal antibodies. In ADME and Translational Pharmacokinetics/Pharmacodynamics of Therapeutic Proteins: Applications in Drug Discovery and Devleopment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 159–174. [Google Scholar]
- Malik, P.R.V.; Hamadeh, A.; Phipps, C.; Edginton, A.N. Population PBPK modelling of trastuzumab: A framework for quantifying and predicting inter-individual variability. J. Pharm. Pharm. 2017, 44, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Ji, P.; Li, Z.; Roy, P.; Sahajwalla, C.G. The antibody drug absorption following subcutaneous or intramuscular administration and its mathematical description by coupling physiologically based absorption process with the conventional compartment pharmacokinetic model. J. Clin. Pharm. 2013, 53, 314–325. [Google Scholar] [CrossRef]
- Varkhede, N.; Forrest, L. Understanding the Monoclonal Antibody Disposition after Subcutaneous Administration using a Minimal Physiologically based Pharmacokinetic Model. J. Pharm. Pharm. Sci. 2018, 21, 130s–148s. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Gardner, I.; Rose, R.; Jamei, M. Incorporating Target Shedding Into a Minimal PBPK-TMDD Model for Monoclonal Antibodies. CPT Pharmacomet. Syst. Pharm. 2014, 3, e96. [Google Scholar] [CrossRef]
- Moulin, A.; Mathieu, M.; Lawrence, C.; Bigelow, R.; Levine, M.; Hamel, C.; Marquette, J.P.; Le Parc, J.; Loux, C.; Ferrari, P.; et al. Structures of a pan-specific antagonist antibody complexed to different isoforms of TGFβ reveal structural plasticity of antibody-antigen interactions. Protein Sci. 2014, 23, 1698–1707. [Google Scholar] [CrossRef] [Green Version]
- Sumner, G.; Georgaros, C.; Rafique, A.; DiCioccio, T.; Martin, J.; Papadopoulos, N.; Daly, T.; Torri, A. Anti-VEGF drug interference with VEGF quantitation in the R&D systems human quantikine VEGF ELISA kit. Bioanalysis 2019, 11, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Komarova, T.V.; Sheshukova, E.V.; Kosobokova, E.N.; Kosorukov, V.S.; Shindyapina, A.V.; Lipskerov, F.A.; Shpudeiko, P.S.; Byalik, T.E.; Dorokhov, Y.L. The biological activity of bispecific trastuzumab/pertuzumab plant biosimilars may be drastically boosted by disulfiram increasing formaldehyde accumulation in cancer cells. Sci. Rep. 2019, 9, 16168. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Ishii-Watabe, A.; Tada, M.; Kobayashi, T.; Kanayasu-Toyoda, T.; Kawanishi, T.; Yamaguchi, T. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: A comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J. Immunol. 2010, 184, 1968–1976. [Google Scholar] [CrossRef] [PubMed]
- Nathanson, S.D.; Nelson, L.; Karvelis, K.C. Rates of flow of technetium 99m--labeled human serum albumin from peripheral injection sites to sentinel lymph nodes. Ann. Surg. Oncol. 1996, 3, 329–335. [Google Scholar] [CrossRef]
- Trachtman, H.; Fervenza, F.C.; Gipson, D.S.; Heering, P.; Jayne, D.R.W.; Peters, H.; Rota, S.; Remuzzi, G.; Rump, L.C.; Sellin, L.K.; et al. A phase 1, single-dose study of fresolimumab, an anti-TGF-β antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 2011, 79, 1236–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, K.; Peyret, T.; Marchand, M.; Quartino, A.; Gosselin, N.H.; Girish, S.; Allison, D.E.; Jin, J. Population pharmacokinetics of bevacizumab in cancer patients with external validation. Cancer Chemother. Pharm. 2016, 78, 341–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruno, R.; Washington, C.B.; Lu, J.F.; Lieberman, G.; Banken, L.; Klein, P. Population pharmacokinetics of trastuzumab in patients with HER2+ metastatic breast cancer. Cancer Chemother. Pharm. 2005, 56, 361–369. [Google Scholar] [CrossRef]
- Shemesh, C.S.; Chanu, P.; Jamsen, K.; Wada, R.; Rossato, G.; Donaldson, F.; Garg, A.; Winter, H.; Ruppel, J.; Wang, X.; et al. Population pharmacokinetics, exposure-safety, and immunogenicity of atezolizumab in pediatric and young adult patients with cancer. J. ImmunoTher. Cancer 2019, 7, 314. [Google Scholar] [CrossRef]
- Mager, D.E.; Jusko, W.J. General Pharmacokinetic Model for Drugs Exhibiting Target-Mediated Drug Disposition. J. Pharmacokinet. Pharmacodyn. 2001, 28, 507–532. [Google Scholar] [CrossRef]
- Stanton, A.W.; Mellor, R.H.; Cook, G.J.; Svensson, W.E.; Peters, A.M.; Levick, J.R.; Mortimer, P.S. Impairment of lymph drainage in subfascial compartment of forearm in breast cancer-related lymphedema. Lymphat Res. Biol. 2003, 1, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Padera, T.P.; Stoll, B.R.; Tooredman, J.B.; Capen, D.; Tomaso, E.D.; Jain, R.K. Cancer cells compress intratumour vessels. Nature 2004, 427, 695. [Google Scholar] [CrossRef]
- Swartz, M.A.; Lund, A.W. Lymphatic and interstitial flow in the tumour microenvironment: Linking mechanobiology with immunity. Nat. Rev. Cancer 2012, 12, 210–219. [Google Scholar] [CrossRef]
- Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. Science 2011, 331, 1559–1564. [Google Scholar] [CrossRef] [PubMed]
- Bernadou, G.; Campone, M.; Merlin, J.-L.; Gouilleux-Gruart, V.; Bachelot, T.; Lokiec, F.; Rezai, K.; Arnedos, M.; Diéras, V.; Jimenez, M.; et al. Influence of tumour burden on trastuzumab pharmacokinetics in HER2 positive non-metastatic breast cancer. Br. J. Clin. Pharm. 2016, 81, 941–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maas, B.M.; Cao, Y. A minimal physiologically based pharmacokinetic model to investigate FcRn-mediated monoclonal antibody salvage: Effects of K(on), K(off), endosome trafficking, and animal species. MAbs 2018, 10, 1322–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.P.; Kim, S.J.; Shah, D.K. Whole-Body Pharmacokinetics of Antibody in Mice Determined using Enzyme-Linked Immunosorbent Assay and Derivation of Tissue Interstitial Concentrations. J. Pharm. Sci. 2021, 110, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Meng, Y.G.; Hoyte, K.; Lutman, J.; Lu, Y.; Iyer, S.; DeForge, L.E.; Theil, F.-P.; Fielder, P.J.; Prabhu, S. Subcutaneous bioavailability of therapeutic antibodies as a function of FcRn binding affinity in mice. MAbs 2012, 4, 101–109. [Google Scholar] [CrossRef] [Green Version]
Primary Tumors | Antibody | σV | Lorgan a (L/h) | VISF,PT b (L) | Vp (L) |
---|---|---|---|---|---|
GBM [16] | 89Zr-fresolimumab | 0.94 | 0.05 | 0.265 | 5.0 |
NSCLC [17] | 89Zr-bevacizumab | 0.85 | 0.012 | 0.175 | 5.0 |
Breast [18] | 89Zr-bevacizumab | 0.95 | 0.008 | 0.112 | 5.0 |
Renal [19] | 89Zr-bevacizumab | 0.97 | 0.082 | 0.060 | 5.0 |
Breast [20] | 64Cu-DOTA-trastuzumab | 0.65 | 0.008 | 0.112 | 5.0 |
Esophagogastric [21] | 89Zr-trastuzumab | 0.95 | 0.007 | 0.005 | 7.0 |
Pancreatic [22] | 89Zr-MMOT0530A | 0.87 | 0.004 | 0.029 | 5.0 |
Ovarian [22] | 89Zr-MMOT0530A | 0.95 | 0.004 | 0.001 | 5.0 |
NSCLC [23] | 89Zr-atezolizumab | 0.80 | 0.012 | 0.175 | 5.0 |
Breast [23] | 89Zr-atezolizumab | 0.90 | 0.008 | 0.112 | 5.0 |
Bladder [23] | 89Zr-atezolizumab | 0.86 | 0.001 | 0.0084 | 5.0 |
Primary Tumors | Antibody | R01 (nM) | R02 (nM) | Kd (nM) | Kd,FcRn (nM) | dln | CLp (L/h) |
---|---|---|---|---|---|---|---|
GBM [16] | 89Zr-fresolimumab | 1 | 1 | 1.7 | 2400 | 19 | 0.075 |
NSCLC [17] | 89Zr-bevacizumab | 10 | 10 | 0.058 | 2400 | 21 | 0.07 |
Breast [18] | 89Zr-bevacizumab | 1 | 1.5 | 0.058 | 2400 | 20 | 0.06 |
Renal [19] | 89Zr-bevacizumab | 10 | 2.5 | 0.058 | 2400 | 21 | 0.042 |
Breast [20] | 64Cu-DOTA-trastuzumab | 100 | 100 | 5 | 774 | 61 | 0.063 |
Esophagogastric [21] | 89Zr-trastuzumab | 30 | 30 | 5 | 774 | 63 | 0.0288 |
Pancreatic [22] | 89Zr-MMOT0530A | 1000 | 1000 | 0.5 | 2400 | 21 | 0.033 |
Ovarian [22] | 89Zr-MMOT0530A | 24 | 24 | 0.5 | 2400 | 24 | 0.033 |
NSCLC [23] | 89Zr-atezolizumab | 7 | 7 | 0.43 | 2400 | 21 | 0.0083 |
Breast [23] | 89Zr-atezolizumab | 1 | 2.5 | 0.43 | 2400 | 20 | 0.0083 |
Bladder [23] | 89Zr-atezolizumab | 11 | 11 | 0.43 | 2400 | 24 | 0.0083 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado, E.; Cao, Y. A Physiologically Based Pharmacokinetic Framework for Quantifying Antibody Distribution Gradients from Tumors to Tumor-Draining Lymph Nodes. Antibodies 2022, 11, 28. https://doi.org/10.3390/antib11020028
Salgado E, Cao Y. A Physiologically Based Pharmacokinetic Framework for Quantifying Antibody Distribution Gradients from Tumors to Tumor-Draining Lymph Nodes. Antibodies. 2022; 11(2):28. https://doi.org/10.3390/antib11020028
Chicago/Turabian StyleSalgado, Eric, and Yanguang Cao. 2022. "A Physiologically Based Pharmacokinetic Framework for Quantifying Antibody Distribution Gradients from Tumors to Tumor-Draining Lymph Nodes" Antibodies 11, no. 2: 28. https://doi.org/10.3390/antib11020028
APA StyleSalgado, E., & Cao, Y. (2022). A Physiologically Based Pharmacokinetic Framework for Quantifying Antibody Distribution Gradients from Tumors to Tumor-Draining Lymph Nodes. Antibodies, 11(2), 28. https://doi.org/10.3390/antib11020028