Antibody Light Chains: Key to Increased Monoclonal Antibody Yields in Expi293 Cells?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of Expression Plasmids
2.2. Expression of Recombinant mAbs
2.3. ELISA
3. Results
3.1. Recombinant IgMs with λ Light Chains Express Better Than Isogenic IgMs with κ Light Chains in Expi293 Cells
3.2. Pairing γ or α Heavy Chains with λ or κ Light Chains Affects the Expression of IgG and Dimeric IgA (dIgA) mAbs in Expi293 Cells
3.3. Switching Light-Chain Constant Regions Does Not Change Epitope Specificities
3.4. Variable Regions but Not J Chain Also Contribute to Expression Yields
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, R.M.; Hwang, Y.C.; Liu, I.J.; Lee, C.C.; Tsai, H.Z.; Li, H.J.; Wu, H.C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 2020, 27, 1. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. FDA approves 100th monoclonal antibody product. Nat. Rev. Drug Discov. 2021, 20, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Kaplon, H.; Reichert, J.M. Antibodies to watch in 2019. MAbs 2019, 11, 219–238. [Google Scholar] [CrossRef] [PubMed]
- Mole, C.M.; Bene, M.C.; Montagne, P.M.; Seilles, E.; Faure, G.C. Light chains of immunoglobulins in human secretions. Clin. Chim. Acta 1994, 224, 191–197. [Google Scholar] [CrossRef]
- Watkins, J.D.; Sholukh, A.M.; Mukhtar, M.M.; Siddappa, N.B.; Lakhashe, S.K.; Kim, M.; Reinherz, E.L.; Gupta, S.; Forthal, D.N.; Sattentau, Q.J.; et al. Anti-HIV IgA isotypes: Differential virion capture and inhibition of transcytosis are linked to prevention of mucosal R5 SHIV transmission. AIDS 2013, 27, F13–F20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, S.; Tomusange, K.; Kulkarni, V.; Adeniji, O.S.; Lakhashe, S.K.; Hariraju, D.; Strickland, A.; Plake, E.; Frost, P.A.; Ratcliffe, S.J.; et al. Anti-HIV IgM protects against mucosal SHIV transmission. AIDS 2018, 32, F5–F13. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yang, Z.Y.; Li, Y.; Hogerkorp, C.M.; Schief, W.R.; Seaman, M.S.; Zhou, T.; Schmidt, S.D.; Wu, L.; Xu, L.; et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 2010, 329, 856–861. [Google Scholar] [CrossRef] [Green Version]
- Walker, L.M.; Huber, M.; Doores, K.J.; Falkowska, E.; Pejchal, R.; Julien, J.P.; Wang, S.K.; Ramos, A.; Chan-Hui, P.Y.; Moyle, M.; et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 2011, 477, 466–470. [Google Scholar] [CrossRef] [Green Version]
- Falkowska, E.; Le, K.M.; Ramos, A.; Doores, K.J.; Lee, J.H.; Blattner, C.; Ramirez, A.; Derking, R.; van Gils, M.J.; Liang, C.H.; et al. Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. Immunity 2014, 40, 657–668. [Google Scholar] [CrossRef] [Green Version]
- Sajadi, M.M.; Dashti, A.; Rikhtegaran Tehrani, Z.; Tolbert, W.D.; Seaman, M.S.; Ouyang, X.; Gohain, N.; Pazgier, M.; Kim, D.; Cavet, G.; et al. Identification of Near-Pan-neutralizing Antibodies against HIV-1 by Deconvolution of Plasma Humoral Responses. Cell 2018, 173, 1783–1795. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.D.; Georgiev, I.S.; Ofek, G.; Zhang, B.; Asokan, M.; Bailer, R.T.; Bao, A.; Caruso, W.; Chen, X.; Choe, M.; et al. Optimization of the Solubility of HIV-1-Neutralizing Antibody 10E8 through Somatic Variation and Structure-Based Design. J. Virol. 2016, 90, 5899–5914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sui, J.; Aird, D.R.; Tamin, A.; Murakami, A.; Yan, M.; Yammanuru, A.; Jing, H.; Kan, B.; Liu, X.; Zhu, Q.; et al. Broadening of neutralization activity to directly block a dominant antibody-driven SARS-coronavirus evolution pathway. PLoS Pathog. 2008, 4, e1000197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sholukh, A.M.; Mukhtar, M.M.; Humbert, M.; Essono, S.S.; Watkins, J.D.; Vyas, H.K.; Shanmuganathan, V.; Hemashettar, G.; Kahn, M.; Hu, S.L.; et al. Isolation of monoclonal antibodies with predetermined conformational epitope specificity. PLoS ONE 2012, 7, e38943. [Google Scholar] [CrossRef] [PubMed]
- Tiller, T.; Busse, C.E.; Wardemann, H. Cloning and expression of murine Ig genes from single B cells. J. Immunol. Methods 2009, 350, 183–193. [Google Scholar] [CrossRef]
- Lampson, L.A.; Levy, R. Two populations of Ia-like molecules on a human B cell line. J. Immunol. 1980, 125, 293–299. [Google Scholar]
- Johansen, F.E.; Braathen, R.; Brandtzaeg, P. The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA. J. Immunol. 2001, 167, 5185–5192. [Google Scholar] [CrossRef] [Green Version]
- Hieter, P.A.; Korsmeyer, S.J.; Waldmann, T.A.; Leder, P. Human immunoglobulin kappa light-chain genes are deleted or rearranged in lambda-producing B cells. Nature 1981, 290, 368–372. [Google Scholar] [CrossRef]
- Arun, S.S.; Breuer, W.; Hermanns, W. Immunohistochemical examination of light-chain expression (lambda/kappa ratio) in canine, feline, equine, bovine and porcine plasma cells. Zentralbl. Veterinarmed. A 1996, 43, 573–576. [Google Scholar] [CrossRef]
- Popov, A.V.; Zou, X.; Xian, J.; Nicholson, I.C.; Bruggemann, M. A human immunoglobulin lambda locus is similarly well expressed in mice and humans. J. Exp. Med. 1999, 189, 1611–1620. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Sun, L. Therapeutic antibodies for COVID-19: Is a new age of IgM, IgA and bispecific antibodies coming? MAbs 2022, 14, 2031483. [Google Scholar] [CrossRef]
- Ku, Z.; Xie, X.; Hinton, P.R.; Liu, X.; Ye, X.; Muruato, A.E.; Ng, D.C.; Biswas, S.; Zou, J.; Liu, Y.; et al. Nasal delivery of an IgM offers broad protection from SARS-CoV-2 variants. Nature 2021, 595, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Montano, R.F.; Morrison, S.L. Influence of the isotype of the light chain on the properties of IgG. J. Immunol. 2002, 168, 224–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
IgG1 | dIgA1 | dIgA2 | IgM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yields (μg/mL) | Fold Difference | Yields (μg/mL) | Fold Difference | Yields (μg/mL) | Fold Difference | Yields (μg/mL) | Fold Difference | |||||
κ | λ | λ/κ | κ | λ | λ/κ | κ | λ | λ/κ | κ | λ | λ/κ | |
VRC01 | 252.11 ± 7.09 | 122.42 ± 3.94 | −2 | 182 ± 17 | 198.75 ± 17.46 | 1 | 2.14 ± 0.3 | 68.37 ± 8.77 | 32 | 60.81 ± 8.29 | 739.56 ± 62.72 | 12 |
Fm-6 | 8.79 ± 5.38 | 33.78 ± 13.6 | 4 | 17.18 ± 4.73 | 0.53 ± 0.37 | −33 | 0.09 ± 0.02 | 1.99 ± 2.28 | 11 | 0.004 ± 0.001 | 77.56 ± 8.67 | 19,368 |
33C6 | 25.1 ± 1.73 | 1.78 ± 0.4 | −14 | 21.86 ± 11.63 | 443.96 ± 80.59 | 20 | 0.22 ± 0.01 | 280.7 ± 33.8 | 1298 | 0.02 ± 0.01 | 285.83 ± 35.12 | 11,630 |
PGT121 | 60.45 ± 19.92 | 56.95 ± 21.38 | −1 | 35.26 ± 5.86 | 292.72 ± 29.01 | 8 | 0.05 ± 0.01 | 179.37 ± 39.93 | 3920 | 0.11 ± 0.01 | 767.49 ± 89.43 | 7032 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, S.; Gautam, S.; Coneglio, J.D.; Scinto, H.B.; Ruprecht, R.M. Antibody Light Chains: Key to Increased Monoclonal Antibody Yields in Expi293 Cells? Antibodies 2022, 11, 37. https://doi.org/10.3390/antib11020037
Gong S, Gautam S, Coneglio JD, Scinto HB, Ruprecht RM. Antibody Light Chains: Key to Increased Monoclonal Antibody Yields in Expi293 Cells? Antibodies. 2022; 11(2):37. https://doi.org/10.3390/antib11020037
Chicago/Turabian StyleGong, Siqi, Seijal Gautam, Joshua D. Coneglio, Hanna B. Scinto, and Ruth M. Ruprecht. 2022. "Antibody Light Chains: Key to Increased Monoclonal Antibody Yields in Expi293 Cells?" Antibodies 11, no. 2: 37. https://doi.org/10.3390/antib11020037
APA StyleGong, S., Gautam, S., Coneglio, J. D., Scinto, H. B., & Ruprecht, R. M. (2022). Antibody Light Chains: Key to Increased Monoclonal Antibody Yields in Expi293 Cells? Antibodies, 11(2), 37. https://doi.org/10.3390/antib11020037